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Some structurally important results in small as well as in large dimensions are presented concerning a

spherical distribution of incoherent dust, the constituents of which are simultaneously sources of gravitational

as well as repulsive short-range scalar fields.

I. INTRODUCTION II ~ GENERAL EQUATIONS

In investigating the structure of "elementary"
particles, it is believed that the effects of gravi-
tational interaction cannot be neglected. ' In the
1950's, considerable interest was focused on a
set of equations in which a real scalar field of
long range is coupled with the gravitational field.' '
Since the scalar fields which find applications in
physics are usually of short range some other
physical interpretation is intended for the scalar
potential. In the case of a real scalar field with
short range, exact solutions are quite difficult to
obtain. Duan'-I-Shi' first obtained a class of so-
lutions to the equations corresponding to the fields
of a point nuclear charge; however, his solutions
contain several functions whose forms are not
explicitly known. Stephenson' presented an ap-
proximate static spherically symmetric solution
of the Einstein-Maxwell- Yukawa field equations
which, he claimed, represents the classical fields
of a proton.

It seems worthwhile to investigate the effect of
a real scalar field coupled with the gravitational
field in the formation of elementary structures.
In a recent work the present authors' have shown
that if one considers the distribution of incoherent
dust charged in the scalar sense, in equilibrium
under the influence of its own gravitational and

long-range repulsive scalar fields, then the only
possible solutions are those given by Das'; how-

ever, for such a distribution one has the matter
density equal to the scalar charge density, which
cannot be attributed to any known elementary
particle.

In this paper we propose to consider a spherical
distribution of incoherent dust in static equilib-
rium. The constituents of the dust are supposed
to be the sources of gravitational as well as short-
range repulsive Yukawa-type fields. In view of
the difficulties in obtaining an exact solution, we

have studied the approximate solutions and ob-
tained some interesting results which are struc-
turally important in small as well as in large
dimensions.

The Einstein scalar field equations are

R2 = 2e(T2 —,
' 52 T)/c2

Si„"+S/l' =co
2P

(i)

(2)

T"= pc'u" u„c'(2S'"S-„-5„'S'"S ~+ &"„S'/l')/2e,

where

e =4 G2/ c,
2 (4)

[q„+q,(2), —a, )+ 22),/r]e ' =op+ S'/l',

[2)„+2),(2), —a, ) —2a, /r]e '"=-ep+S'/l'

+ 2e ~S,',
r '-[r '+(2), —a, )/r]e ' =ep —S'/l',

r 'e ' (r'e" S,), —S/l'=-ec,
where a subscript 1 means d/dr. One obtains
from the Bianchi identity T„,„=O the relation

p~, + 0~i =o.

(s)

(9)

We are considering a static spherical distribu-
tion of incoherent dust of matter density p(r).
The gravitational collapse of this dust is supposed
to be prevented by a stronger short-range re-
pulsion of a Yukawa-type source density o(r) asso-
ciated with the dust. Since the four equations
(6)-(9) contain five unknowns (q, a, p, o, S), one

p is a matter density, S is a short-range (l}re-
pulsive scalar field, o is the density of the source
of S, and u" is the velocity field of p and 0. Super-
scripted and subscripted comma and semicolon
mean ordinary and covariant derivatives, re-
spectively.

For static spherically symmetric systems we
consider the line element

ds2 e22 d222 e20 dr2 r2dg2 r2sin2 gdp2 (5 )

with all functions p, o, S, q, n depending only on r .
Since the static condition implies u"= 0,'e ", Eqs.
(1) and (2}become
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q„+ 22),/r = ep,

q„—2n, /r = -ep,

2a/r-2), + a, =epr,

r '(r'S, ), —S/1' =-fep,

p(2}, +fS,) =0.

(12)

(13)

(14)

(15}

(16)

additional equation such as

o=fp, f=const

may be added.
In view of the difficulty in obtaining exact so-

lutions we make use of an approximate method;
we expand our three potentials g, a, 8 and the two
densities p, o in integral powers of some small
dimensionless constant K, to be identified later.
In the lowest approximation we have taken the
densities independent of z, and differently from
Stephenson' we take the three potentials propor-
tional to x. Then (6)-(10}simplify to

co'tvR = —(f2 —1).I/2 (26)

Since p(r) in (19) should always be positive, we
get from (26) that

~ n& vR& m.

Then with (26) and (27) we have

sinvR = If I

so from (21) and (25)

(27)

(28)

where the subscript e means external, and C and
D are constants of integration. These potentials
have the usual Schwarzschild and Yukawa behavior
at infinity.

We now impose that at the boundary of the sphere
(r =R) the three potentials t7, a, S be continuous
as well as the radial first derivatives of q and S.

The continuity of S and S, not only fixes the con-
stant D, but also prescribes to the radius R the
discrete set of values given by

III. INTERNAL SOLUTIONS

S, = e'R f r 'sinvr,

S, = e'(f If Ir)-'e " "' '
(29)

With p 40 we get from (12), (15), and (16)

=e(f 2 1)f &12p (17)

The continuity of q and g, at r =R specifies the
contants B and C, and the continuity of o is iden-
tically satisfied, giving

2(r2p ) + l 2(f2 1) lp 0 (18)

A short reflection shows that we must have I oI
& p, since if this were not the case, the sphere
would collapse. So with f2&1 in (18) we choose
the regular solution

p =A v'r 'sin vr, A = const,

v= l ~(f2 ]) «2

Then from (17)

(19)

(20}

where the subscript i means internal. Substituting
(17}into (15) we obtain q, =-e'(Rr 'sinvr —vR cosvR),

o,, =e'(Rr 'sinvr —vR cosvr),

q, = -~, =-e'(1+ R/l)R If I
'r-'. -

(30)

(31)

(32)

From equations (29) to (32) it is natural to iden-
tify the constant e' with the necessarily small
constant w in terms of which we made our series
expansion. This identification implies a restric-
tion on the parameters of the system. Remember-
ing that in Schwarzschild-type systems the mass
m is defined by

S, = (eR/fr) i svn,r
where R is the radius of the distribution and

= eA/R

(21)

(22)

q, = —Gm/c r,
we get from (32) that

e ' =
If I (1+R/l ) '(Gm/c'R}; (34)

is a dimensionless constant; and from (16) and

(14), respectively,

(23)

(24)

2), = -e '(8 + Rr ' sinv r), B = const,

a, = e'(Rr 'sinv r —vR cosvr) .

Equation (13}is identically satisfied; the con-
stant B will be fixed by boundary conditions.

one can verify from (20) and (28) that when 1&f'
& ~ we have that v '&

If I (1+R/l ) '& 1, so from
(34) our approximate solution is valid when

Gm/c'R «1. (35)

For practical purposes we define the "effective
Yukawa charge" 7 of our sphere by

IV. EXTERNAL SOLUTIONS; BOUNDARY CONDITIONS

For p =0 we easily obtain integrating (12) to (15)

g2$ = (7yye

then from (29) we obtain

Y=mf '(1+R/l) 'e"~',

(36}

q =-a =-Cy ' 8 =ay 'g "~'
e e y e (25) and we can verify from (20), (27), (28}, and (37)
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that m& Y/f for all values of f' & 1.
A case which deserves a special consideration

is that when f'» 1; then from (27) and (28) one
has vR= w —)f [ ', so from (20) R/l=wlf I I-;

that is, R» l. The internal quantities become

p= (mw/4R')(y 'siny- lR 'cosy),

q, = -(Gm/c'R)(1+ y 'siny),

n, = (Gm/c'R}(y 'siny —cosy),

S, =+ w(Gm/c'R}(l/R)(y 'siny+ l/R),
c~+ pR/wl,

where

y=wr/R

(38)

(39)

(40)

(41)

(42)

(43)

is a radial variable; the external quantities be-
come

q, = —a, = —Gm/c'r,

$, =~ w(Gm/c'r)(l/R }'e~" "' ' .
(44)

(45)

V. DISCUSSIONS

Our approximate solution represents a static
spherically symmetric system whose only far-
reaching interaction is a gravitational one; we
did not use any macroscopic concept such as
pressure to describe such structure. Since our
solution does not show any singularity either in
the source densities or in the potentials, it can be
accepted as a naive classical model of an un-
charged spinless elementary particle.

In our model the mass density p(r) has a max-
imurn finite value at the origin, and decreases
monotonically to a finite value at the boundary.
The condition (35) for the validity of our approx-
imation is usually met both in the very small as
well as in the very large physical systems.

A novel feature of our model is the prescription
(26) for the radius of the system; all previous so-
lutions'" based on electromagnetic and long-
range scalar fields allowed arbitrary values for
the radius.

In our approximate solution we have made an
expansion in integral powers of the small constant
&', and we have taken only the lowest-order term
of the fields and sources; as a consequence our
model presented all functions p, a, g, n, S linearly
proportional to a same constant A, or equivalently
m. A nonlinearity would appear only if higher-

~, + c'pq, =0,

we get from (38) and (39}on integration

(46)

P 2& I g2Rsp2 (47)

Similarly to the density p(r} [Eq. (38)] this pres-
sure has a finite value at the origin and decreases
monotonically to zero (for l/R-0) on the boundary.

order terms in c' were considered.
An interesting feature is the role of the conser-

vation laws in this order of approximation. In
our approximation the field equations themselves
decouple. One would expect, then, that there
should be an independent scalar field existing
along with an independent gravitational field in
this order of approximation. That this does not
occur is a result of the conservation law. Equa-
tion (10), which comes from the conservation
law, then imposes a condition on the first-order
solution because it is static and spherically sym-
metric.

Our final expressions for the source densities
(11) and (19}and for the fields (29) to (32) are not
suitable for obtaining the limit of long-range
scalar field l -~; indeed, it is known' that for
these fields one must have f' =1, and that the
internal structure p(r) remains undefined in the
system (5}to (8).

It would be illustrative to evaluate the constants
appearing in our model when applied to an ele-
mentary particle. Let us choose the neutral pion,
with mass m=2. 4&10 "g and nuclear range l
= 1.5 x 10 "cm. Assuming the radius R = l, we
obtain from (26) ~f ~

=1.12, and we verify from
(35) that e'= 10 ". The mass density p(r) in (19)
decreases from 2.8X 10"g/cm' at the origin to
about half of this value on the boundary. For the
"effective Yukawa charge" (37) we get ( Y~ =2.9
x10 "g.

The case where the radius of the spherical sys-
tem is much larger than the range of the Yukawa
field (R» l) is particularly interesting: The ex-
terior scalar field S, [Eq. (45)] is very small
(l'/R') relative to the exterior gravitational field
p, [Eq. (44}]on the boundary R, and even smaller
at larger distances. If we neglect this S„we can
replace the two concepts of internal scalar field
S& and its source o'by the single concept of a pres-
sure P(r); since in our lowest order of approxima-
tion in c'
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