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Quantum mechanics of extended objects in relativistic field theory*
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(Received 28 May 1975)

We study canonical quantization of certain solutions of nonlinear classical field theories known as extended
objects. These solutions are characterized by an energy density confined in a finite region of space for all time.
We formulate a quantum theory in terms of the normal modes of oscillation about a static solution and the
couplings among these modes. A Feynman diagram prescription is given for calculating Green's functions of
the fields in the presence of an extended object. We discuss the extension of the formalism to solutions

exhibiting a steady rotation in some internal-symmetry space. Problems that may arise in applying the
formalism to bag models for quark confinement are mentioned.

I. INTRODUCTION

The interactions of hadrons have long resisted
quantitative theoretical attack by the methods of
conventional relativistic perturbation theory. This
is primarily due to the large size of the couplings;
indeed, the dimensionless pion-nucleon coupling
constant satisfies g'/4m =15, in sharp contrast to
the fine-structure constant of electrodynamics,
e'/4~ =1/137. While a few terms of an expansion
in powers of e accurately describe electrodynamic
processes, similar terms of an expansion in g
bear little relevance to obsexved hadronic behavior.

Despite the failure of perturbative techniques in
strong-interaction physics, compelling reasons
remain for retaining local field theory. First,
the astounding success of renormalized quantum
electrodynamics indicates that nature has chosen
a local theory at least once. Second, local theoric. s
require such apparently valid consequences as
analyticity properties of scattering amplitudes, the
connection between spin and statistics, the exis-
tence of antiparticles, and the symmetry of TCI'.
Finally, local field theory is the only presently
known way to formulate a quantum-mechanical the-
ory of interacting particles in a relativistic manner.

Faith in local fields has spurred many investi-
gations of alternatives to conventional perturba-
tion theory. In particular, several researchers
have speculated that a hadron may be simply de-
scribed in terms of an appropriately quantized
state of a type of classical solution to a field theo-
ry known as an "extended obj ect." Solutions of this
type are well known in nonlinear classical field theo-
ry. ' For the purposes of this paper, an extended ob-
ject is defined to be a classical solution to the equa-
tions of motion of a local field theory with the proper-
ty that the energy density is, at all times, localized

~

within a given region of space. ' A wave packet in a
'free field theory is not of this type; in general such a
'wave packet will spread as time evolves.

The appealing feature of these objects arises
because on a classical level they are already par-
ticlelike, and yet they possess an extended struc-
ture. The speculation is that hadrons correspond
to such objects and that a perturbative treatment
of quantum-mechanical corrections to the classical
solution may converge faster than in the conven-
tional approach. These objects also present the
exciting possibility of confining quarks. Even clas-
sically some of these extended objects trap quarks
to such an extent that an isolated quark cannot be
produced. " The successes of the quark model
may finally be reconciled with the nonobservation
of free quarks.

There is a close relationship between these ex-
tended objects and the bag model of Chodos et al. '
for quark confinement. In earlier work we dis-
cussed on a classical 1.evel the possibility of ob-
taining this model as a limit of a conventional
local theory in which the bags are extended ob-
jects in the sense discussed above. Because of
difficulties with non-Abelian gauge fields, we were
unable to obtain exactly the same model, but we
presented aviable alternative based on a single trip-
let of quarks and an additional scalar constituent.

The purpose of this paper is to develop a formal-
ism for studying the quantum mechanics of extend-
ed objects. The canonical approach to this pro-
blem has also been discussed by Christ and Lee, '
Tomboulis, ' and Faddeev. ' The procedure con-
sists of first finding the normal modes of oscil-
lation about the lowest state of the classical ob-
ject, then exactly quantizing these normal modes,
and finally doing perturbation theory in the non-
linear couplings among the normal modes. Re-
finements of the procedure treat conserved quan-
tum numbers such as charge and momentum that
may be carried by the object.

As the method is ultimately perturbative about
the classical solution it is, in principle, useful
only when the classical solution resembles the
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quantized object. We have not determined whether
this is the case for the bag limit discussed above.

Section II of this paper presents some examples
of classical extended objects. Section III reviews
other approaches to their quantization. Section IV
treats the quantization of static classical solutions.
Section V formulates a Feynman-diagram expan-
sion for evaluating the expressions of Sec. IV.
Section VI generalizes the procedure to include
classical solutions with a trivial time dependence
related to some conserved quantity such as mo-
mentum. Sec VII comments on the bag limit men-
tioned above. Section VIII summarizes some un-

answeredd

ques tions about these objec ts.

II. CLASSICAL EXAMPLES

Extended but nonspreading solutions to nonlinear
field equations are well known in applied mathe-
matics. ' In this section we review a few such
solutions occurring in Lorentz-invariant theories.

The simplest type of extended, particlelike ob-
ject occurs in one-space-dimensional scalar field
theories with a spontaneously broken discrete
symmetry. "" In particular, consider the La-
grangian density for a single scalar field

~4 ~2 l/I 2

X(x) = cosh ' — x
4~ 2

(2.7)

and is plotted in Fig. 3. The energy is localized
in a region characterized by the dimension p, '.
Integrating (2.7) gives the total classical energy
of the object

H= dx X(x)=
3A.

(2.8)

The stability of this solution is guaranteed by the
topology of its behavior at infinity. "

This example is readily generalized to any V((j&)

with several totally degenerate minima. The fieM
can start in one mimimum at x = -~ and shift into
another as x goes to +~. One extensively studied
case has""

l14 2(2g)1/2
V((t&) = 1 +cos (2.9)

This potential yields the sine-Gordon equation

where x, is the space component of x„. This solu-
tion is sketched in Fig. 2. As x goes from -x to
+x, (j&(x) goes from one minimum of V((t&) to the
other. The energy density becomes

2 = 2 S& (t& (x) B„(j&(x) —V((I& (x)),

where

(2.1)

(2.2)

l1 3 2 (2g) 1/2

4(s)
(~ )„,sis 4(s)).

The solution for the extended object is

(I&(x) = „,arctan(sinhl1x&).

(2.10)

(2.11)

(2.2)

The energy density is

X(x) = —,
' [»(x)]2 +-,' [VP (x)]' + V(P(x)), (2.4)

The potential V(Q) is sketched in Fig. 1. The equa-
tions of motion are. The interest in the sine-Gordon equation arises

because many solutions are analytically known.
Coleman" has discussed the quantized version of
this theory, obtaining the remarkable result that
the theory is equivalent to the massive Thirring"
model. Apparently upon quantization the above
extended object becomes a fermion. Mandelstam"

where»(x) = S,P(x) is the conjugate momentum to
(t&(x). Both X(x) and Z(x) are invariant under the
discrete symmetry operation of taking (j&(x) to
-(j&(x), however, the lowest-energy configuration
does not possess this symmetry and is doubly de-
generate with

»(x) =0,

X(x) =0.

(2.5)

The static solution for the extended object of in-
terest is

2 I/2

2X (
2 I/2

2X

(2.6) FIG. 1. The potential V (Q) in Eq. (2.2).
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{x)
p2 I/2

W(x)

FIG. 2, The static solution in Eq. (2.6).

FIG. 3. The energy density of the extended object in
Eq, (2.6).

has given an expression for the anticommuting
Fermi field in terms of the scalar field Q(x);
this Fermi field satisfies the Thirring-model
equations of motion.

These one-dimensional examples owe their sta-
bility to the topology of the field configuration. A

natural attempt to generalize this to higher spatial
dimensions involves adding more fields. Consider,
for example, in three space dimensions a three-
component field in a theory with spontaneously
broken O(3) symmetry. We might look for an ex-
tended-object type of solution with the asymptotic
behavior

(2.12)

where c' is the value of P, '+Q, '+Q, ' in the vacuum
state of constant fields. However, this fails be-
cause the term in the energy fd'x(VP, )' diver. ges
at large (x~. Consequently, the energy of such a
solution must be infinite. This divergence at
large distances is associated with the massless
Goldstone bosons" of the theory. By introducing
vector mesons and eliminating the Goldstone bo-
sons via the Higgs" mechanism, 't Hooft has ob
tained a solution of finite energy with the topology
of Eq. (2.12). In this construction a massless vec-
tor field (a photon) remains, and the extended ob-
ject is a magnetic source with respect to this field.

Topological properties of the field configuration
at large distances from the extended object sta-
bilize the above examples. " An alternative type
of stable extended object occurs in hadronic "bag"
models. '"' ' ' Here a scalar field is distorted
from its vacuum value and held in this distorted
configuration by other fields, i.e. , the quarks,
carrying conserved quantum numbers. These
conserved quantum numbers insure the stability of

the object. In general, these solutions will not be
truly static, for associated with the conserved
charges will be a continuing rotation in the inter-
nal-symmetry space generated by the charges.
This rotation is trivial in the sense that observ-
ables invariant under the internal symmetry are
time independent. In particular, this includes the
Hamiltonian density. These solutions we call
"quasistatic. "

There are several reasons to study quasistatic
extended objects. First, these objects occur in
three dimensions in theories involving only scalar
fields. The trivial time dependence evades a re-
sult of Derrick, "namely, that stable static solu-
tions of finite energy above the vacuum do not
exist in more than one space dimension, for theo-
ries invol. ving only scalar fields. Second, realistic
hadronic models have hadronic constituents that
do carry conserved charges. Finally, momentum
is a conserved quantity which can be treated in the
same manner as other charges; this allows us to
study moving extended objects, even with relativ-
istic momenta.

Our definition of extended object includes much
more than the above static and quasistatic solu-
tions. Indeed, the field configuration can have
any complicated time dependence as long as the
energy does not spread with time. Such solutions
are known for the sine-Gordon equation; they cor-
respond roughly to two of the above static solu-
tions near to each other but lacking sufficient
energy to separate. These solutions are periodic
in time and are well suited to the quantization
technique of Dashen, Hasslacher, and Neveu. '"
Our discussion is not sufficiently sophisticated to
treat these solutions, although Christ and Lee
have shown how canonical procedures may also
be applied here.

We must remark on the spontaneous symmetry
breaking which is essential to some of the above
examples. In quantum mechanics, a symmetry
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cannot be broken by the ground state unless there
is a "sufficiently infinite" number of degrees of
freedom. " A discrete symmetry, such as posses-
sed by the Lagrangian of Eq. (2.1}, can be broken
only if there is at least one infinite spatial dimen-
sion. A continuous symmetry requires at least
two spatial dimensions. The examples discussed
have sufficient spatial dimension for the requisite
symmetry breaking to still occur quantum mech-
anically.

III. OTHER APPROACHES TO QUANTIZATION

Presumably, unique answers exist to such ques-
tions as "do these extended classical objects cor-
respond to particles in the quantum theory, and, if
so, what are their masses~" Insofar as they are
applied correctly, all methods should yield the
same answers and the preferred technique might
be regarded as a matter of taste. However, the
complexity of the respective procedures may vary
with the problem at hand. In particular, for peri-
odic solutions which are neither static nor quasi-
static in the sense of the previous section, it
appears that only the method of Dashen, Hass-
lacher, and Neveu'" is simple. We feel that the
procedures presented in the later sections of this
paper are conceptually the simplest treatments of
the static and quasistatic objects. This section
briefly comments on some of the alternative ap-
proaches. We have already mentioned the works
of Coleman" and Mandelstam" on the sine-Gordon
theor y.

A, WKB methods

In an extensive series of papers, Dashen, Hass-
lacher, and Neveu"" have made semiclassical
approximations on a Feynman path integral repre-
sentation for the trace of the resolvent operator

G(E) = tr ( ) . (3.1)

Poles in this function occur at the energies of the
physical states of the theory. By considering
paths near a periodic classical solution Dashen
et al. are able to isolate such a pole when the clas-
sical orbit satisfies a "quantization condition. "
The procedure is essentially a generalization of
the WKB'4 method to an infinite-degree-of-free-
dom problem. This method was applied success-
fully to the theory of Eqs. (2.1) and (2.2) as well as
the sine-Gordon theory. In the latter problem the
mathematics simplifies enough that Dashen et al.
can exhibit an extremely rich spectrum of states.
Recently Rajaraman and Weinberg" have extended
the discussion to problems with internal symmetry.

This extension covers the quasistatic problem,
and bears some resemblance to our Sec. VI.

C. Generating function variational techniques

Goldstone and Jackiw" have pursued a more
promising variational procedure. In a theory with
a single field Q(x), an external source term
J(x)P(x) is added to the full interacting Lagran-
gian. 2' The probability amplitude for the ground
state ~G & to remain the ground state in the pres-
ence of such a source is

W(J) =(G~T(exp[ild x J(x)g(x)]) ~G).

The state ~G) is in turn thought of as the vacuum
or as the ground state of the extended object at
rest. In the standard manner the generating func-
tion for connected Green's functions is defined

(3.2)

Z(J) = InW(J).

This is Legendre transformed"

(3.3)

I"(Q, ) =Z(J) —J/d'x g, (x)J(x).

The functional I'(Q, } satisfies

(3.4)

(3 5)

If we now turn off the external source, we have

B. Coherent-state variational technique

Coherent states provide a useful technique in the
study of the classical limit of a quantum field
theory. Several authors have attempted to utilize
such states to mimic the classical extended objects
under consideration. "'" The parameters of these
states are varied to minimize the expectation value
of the Hamiltonian. In this way a classical varia-
tional problem is obtained. The hope is that this
will provide a state which is a good approximation
to the properly quantized state of the extended ob-
ject.

In our opinion this approach has some inherent
problems. First, it is difficult to quantify the
validity of the approximations; indeed, there does
not seem to be a systematic procedure for improv-
ing the calculation. Second, it is unclear how
translation invariance enters the scheme; the
Heisenberg uncertainty principle implies that the
position of the extended object at rest cannot be
specified in the quantum theory. Third, renormal-
ization effects are difficult to treat; the bare cou-
pling constants appearing in the Lagrangian are
usually divergent quantities, and these divergences
should not appear in physical quantities.
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61'(P, ) '

6(t), (x) (3.6)

Given I'(Q, ), it becomes a variational problem to
find a g„(x) corresponding to the theory without
an external source. From I'(Q, ), one can calculate
the Green's functions of the theory. By considering
the appropriate Q, (x) we can find the Green's func-
tions for the field in the presence of the extended
object. This includes the energy and form factor
of the state. The calculation of I' proceeds as an
expansion in the number of loops in a Feynman-
diagram expression. Symmetries of the Lagran-
gian essential to some of the extended solutions
are preserved in such an expansion.

Translation invariance complicates the proce-
dure by introducing infrared divergences. As
mentioned before, the position of the extended ob-
ject cannot be specified when it is at rest. Refer-
ence 10 shows how to treat this problem, and the
method should give identical results to the tech-
niques of this paper.

D. Path integrals

Gervais and Sakita and Callan and Gross" have
considered the Green's functions of quantum fields
in the presence of an extended object. They pro-
ceed using path integrals and expanding the action
about the action of the classical path. The equiv-
alence of canonical quantization with path integrals
has been formally shown by Feynman. " Indeed
the Feynman rules of Sec. V should be alternately
obtainable through the procedures of Ref. 8. We
feel that the path-integral method will show its
greatest strength in the treatment of fluctuations
about classical solutions with nontrivial time de-
pendence, where the canonical discussion becomes
rather complicated.

tional manner. Technically the theory should be
cut off at high frequencies until these renormali-
zations are made. With a cutoff we do not need
to define a normal ordering, and thus all products
in this section are not normal ordered.

For simplicity we consider a single Hermitian
scalar field with dynamics controlled by the La-
grangian density

g(x) = ', S„&-f)(x)e„g(x) —V(g(x)). (4.1)

We will write expressions in four-dimensional
space-time although, as already mentioned, static
solutions of finite energy require nore than just
scalar fields. The essence of the procedure should
apply in more realistic situations.

The equations of motion implied by Eq. (4.1) are

y(x) = V'(y(x)),

where

V, ( )
sV(4)

(4.2)

(4.3)

[s,y(x, t), (t) (x', t) ] = -i 6'(x' —x), (4.5)

[(t)(x, t), Q(x', t)] = [B,g(x, t), &,(t)(x', t)] =0. (4.6)

We now assume that we are given a classical
function Q, (x) which is a static solution to Eq.
(4.2)

V2y, (x)+ V (y, (x))=0,

&„(t),(x) =0.
(4.7)

We wish to study the quantum field when it is in
some sense near to Q, (x). This suggests we write

The Hamiltonian operator is

e(~)= Jd'x9(eA'(x)]'+-,'(v((~)]'+)'(0(~))] (44)

The canonical equal-time commutation relations
are

IV. QUANTIZATION OF STATIC EXTENDED OBJECTS (I) (x) = P, (x) + e.(x), (4.6)

In this section we study the quantum fluctuations
about a static classical solution to a field theory.
We expand the Hamiltonian in the difference be-
tween the quantum field and classical solution. The
quadratic terms in this expansion provide an ex-
actly soluble quantum theory. Higher-order terms
are treated using standard perturbation theory.
Before beginning, we remark that in this discus-
sion physical quantities such as energies are to
be measured relative to the vacuum; thus, at the
end of the calculation one must make vacuum sub-
tractions. Also, the parameters appearing in the
Lagrangian are bare couplings and masses; con-
sequently, one must re-express these in terms
of physical parameters calculated in the conven-

where e(x) is a quantum-mechanical operator. We
expand the potential V(P)

V((t)) = V(P, + e)

= v(4. )+«'(4. )+ 2 ~'v" (4.)+&(~, 4.). (4.9)

This equation defines B(e, Q, ), which is of order
e' for small e Using Eq. . (4.7), we can eliminate
terms linear in e from the Hamiltonian to obtain

II=H, + d'x —,
'

B,e x '+-, V~ x

+-,'[e(x)]'V"(P, (x)) +A(e(x), P, (x))},
(4.10)

where H, is the energy of the classical solution
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(t), (x). We split this Hamiltonian into two parts

H =Ho+H

where

(4.11)

+ d'~ 2 ~0~ x '+2 v~ x '

and

+-', ~'V" (y, (x))j (4.12)

H, = J) d'x R(e (x), (t), (x) ). (4.13)

We will solve the quantum theory defined by H,
exactly, and then treat H, as a perturbation using
standard perturbation theory. Note that in the one
space dimensional theory of Eqs. (2.1) and (2.2),
H, is of order ~' '. Thus the perturbation expan-
sion requires the weak-coupling limit of small A..

The operators and states of the solution to H,
are denoted by the superscript "in." To find this
solution, expand s'"(x, t) -V'V(t), + V" ((t),)V(t), =0. (4.21)

rewritten the dynamics in terms of normal modes
of oscillation.

In general, Eq. (4.17) will have both discrete
and continuum eigenvalues. The discrete solutions
correspond to vibrations of the extended object,
i.e., excited states. The continuum solutions cor-
respond to moving waves of the (t) field in the pres-
ence of the extended object. These moving waves
represent the mesons of the conventionally treated
(t) field. This formalism allows one to discuss
meson scattering on the various states of the ex-
tended object. Any sum over the modes n is actu-
ally a discrete sum over the discrete eigenvalues
plus an integral over the continuum eigenvalues.

Translation ixnvariance of the original Lagrangian
implies that if the classical object is translated in

any spatial direction, there is no restoring force.
This means that there is a normal mode with
(d„=0 for each spatial dimension. ' These modes
can be found by taking the gradient of Eq. (4.7)

e.'"(x, t) =g q„'" (t)(t)„(x), (4.14)
Thus V(t), (x) is a solution to the Schrodinger equa-
tion (4.16) with &u„=0. We write this triply degen-
erate basis function as a vector

where the |I~„are a real, orthonormal, complete
set of functions

(t', (x) = (C)*„(x),

(r) =XV(t), ,

where N is a normalization given by

(4.22)

d'x (t(„(x)(t)„(x) = 5„„, (4.15) N 2 d2x(V(t), )2 = 3. (4.23)

Q (t)„(x)(t)„(x') = 5'(x' —x). (4.16)

and the q„(t) are Hermitian quantum operators.
Because of the structure of H„a particularly
convenient complete set of functions is the set of
solutions to the Schrodinger-type equation

[- V'+ —,'- V" ((t), (x))] (t(„(x) = —2(d„'(t)(x). (4.17)

Stability of the classical solution requires the (d„

to be non-negative; we assume this is the case.
With this choice for the (t)„, H, (e.'") assumes a
particularly simple form

&.(~'") = &.+ Q [-'(q.'")'+ -'~„'(q.'")'], (4.18)

where j'„" means ~,q'„". The equal-time commuta-
tion relations among the q„'" and j'„" are

This integral can be evaluated in terms of H, via
a "virial" relation between the gradient and poten-
tial terms in the Hamiltonian

x( 64(x)]6'=-6 fd',x V ( ()6)=x3 H (4.24)
v'

This relation is proved in Appendix A. The minus
sign in the potential term of Eq. (4.24) is a man-
ifestation of the remark made earlier that scalar
fields alone cannot produce static extended objects
in more than one spatial dimension. " We ignore
this problem because it can be evaded in the ways
discussed in Sec. II. Using Fq. (4.24), we find

1
40 (H )1/2

The association of this mode with translation is
evident from

[()„'"(t), q'"(t)] = i0„-
[q.

'"
(t), q'." (t)] = [q'."(t), q.'" (t)] = 0.

The equations of motion are

q.'" (t) = -~.'q„'" (t).

(4.19)

(4.20)

(t), (x+5) = Q, (x) +(H, )'t'6 ~ (t), +O(5'). (4.26)

The theory defined by 0, can now be solved by
writing

q'"(t) = — (a(6e (" +a("(6'e+' ~') ~n)0

The problem has now been reduced to a set of
independent harmonic oscillators; indeed, we have q(')" (t) =q()'(0) +tqo",

(4.27)
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where q, is time independent. The commutation
relations become

[a'„",a'" ] = 5„'",

[a'„", a'"] = [a„'",a'" ] = [q,
'"

(t), a„'" ] = 0.
(4.28)

The states of the theory are defined as eigenstates
of q',

" and by the occupation numbers of the various
modes with n &0

~ ~

»1P. I»
q, Is;n, , n, , . . . , n, , ) = sIs;n, , . . . ), (4.29)

We impose the normalization

s;nl, . . . , n), . . . Is)nl ''' ni ''')

(4.31)

= (2&)'1)'(s' -s), l5„„. (4.32)

These states diagonalize H, (e )

H,(e'" ) Is; n„. . . )

0, +P (s,. +-,'}e, +-', s '))s;s, . . .). (4.SS)
t =1

To understand the physical significance of s, con-
sider the momentum operator

P= — d'x[8, p (x) ] [|)'4t)(x)]

d'x[&, e(x)]V)t), (x) +O(e')

= -(H, )' 'q, +O(e'). (4.34)

This gives

PIs;n„. . .) = [-(H, )' 's+0(e')] Is;n„. . . ) (4.35)

Remembering that H, =O(e') and p=O(e), we have

a,. Is;n, , . . . , n, , . )=(n,. +1)'t'Is; n„. . . , n, +I, . . .),
(4.30)

ls' ' '
4 ms'"ls ' ' ' 4 J))sss (4.37)

where there are I conventional mesons of momenta
k1 to 0) in the pre sence of an excited exte nded
object characterized by the occupation numbers n,
to n of the ~ discrete normal modes. Note that
even a single discrete eigenmode gives rise to
an infinity of excited states corresponding to the
infinity of allowed occupation numbers for that
level. Of course, when the interactions between
modes are introduced, high excitations become
unstable to meson emission.

The perturbation theory in R(c, Q, ) is formulated
in a standard manner. Using the adiabatic theo-
rem, "eigenstates of the full Hamiltonian can be
found by gradually turning on the interaction from

oO

R(~(x), y, (x)}-R(e(x),y, ( ))xe '1'1, -
(4.38)

where 6 is infinitesimal. The interacting field
is given by

H Is;n„. . . )

pR
H, + sg(s,. ~—,')+,. 40(s')))4;s„, ),

C i

(4.36)

This represents the beginning of an expansion of
the energy in the momentum and quantum fluctua-
tions. Note that the underlying relativis tic nature
of the problem has required the rest mass to equal
the kinematic mass of the P' term. The expansion
is nonrelativistic because we have chosen to quan-
tize in a particular frame, the rest frame of the
classical extended object. In Sec. VI we discuss
quantization about a moving extended solution; this
maintains the relativistic relation between energy
and momentum.

As mentioned earlier there are both discrete and
continuum normal modes. To restore a continuum
notation we would write the states

e(x) = T„I exp i dt'H, (e'", t' ~I'"( )xTexp i dt'H, (&'"s t') (4.39)

where T (T„) is the time-ordering (anti-time-ordering) operation, and Hl(e'", t') represents H, evaluated
for e'" at time t'. Inserting this field into Eq. (4.8) defining e, we have a formal solution to the equations
of motion (4.2) satisfying the commutation relations (4.5) and (4.6). The states defined in Eqs. (4.29)
through (4.32) are, by the adiabatic theorem, eigenstates of the full Hamiltonian H(e). The eigenvalues
are given by

E(s;n„.. . )(2m)'5'(s' —s) =,.„(s';n„.. . IH(e)Is;n„. . . )

~ ~ ~~s';n„. . . T„Iexp i dt'H, (e'", t'
-oo

s ))8)"",}=)})ssS— 4}}})4" }))) s s
oo

(4.40)
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Perturbation theory consists of an expansion of these equations in powers of H, . To understand the physical
significance of the "in" states, restore the continuum notation as in Eq. (4 37). The "in" state represents
the configuration which at t = -~ has the extended object characterized by s and the excitation numbers
n, to n, while widely separated from this object are mesons of momenta k, to 0, . One can also define
"out" states representing the same configuration at t =+ ~.

t
ls;n„. . . &.„,=T&lexp +i dt'H, (e'", t')

I ls;n„. . . &

J—oo
]»~'''~in ' (4.41)

When the energy is below the meson continuum, the discrete "in" and "out*' states of the extended object
can differ only by a phase. In this case Eq. (4.40) becomes

E(s;n„.. . , n ) =
3 I Oo

s';n„. . . T H(&'", t =0)exp i-dt'H, (e'", t') s;n„. . .
17 lit

S'x, (s,n, . . . Is, n, . . . &

(2 P) oil I ln
(4.42)

The last factor removes disconnected Feynman
diagrams in the expansion for the ground-state
energy. In the next section we develop the Feyn-
man rules, taking careful account of the m =0
translation mode.

V. FEYNMAN RULES

Equation (4.42) provides a perturbative scheme
for calculating the energy levels of the extended
object. Equation (4.39) allows calculation of ma-
trix elements of other operators between these
states. In practice, however, such calculations
are rather tedious due to the complicated nature
of the time-ordered products that must be evalua-
ted. A degree of simplification is possible through
the use of Wick's theorem" to reduce these time-
ordered products to a diagrammatic expansion in
Feynman graphs. " Were it not for the ~ =0 trans-
ition mode, such a procedure would be standard
and no elaboration would be necessary. The pur-
pose of this section is to include this mode in the
usual expansion.

The Feynman expansion is most compactly for-
mulated using functional techniques. " In this way
the ground-state matrix elements of a time-or-
dered product in the quantum-mechanical. Hilbert
space is expressed as a matrix element of an or-
dinary product of commuting operators in a new

space. These commuting operators are creation
operators for the ends of lines in a Feynman
graph, while the matrix element connects these

[c„(t),c~ (t ')] = 6„„,6(t' —t),

[c (t) c, '(t')] =0.
(5 1)

The states of this space are generated by applying
the operators ct(t) to a state l0) satisfying

c„(t)l0) =0 (5 2)

and normalized

(OI0) = 1.

We label these states

(5.3)

ln„ t„n„t„~ ~ n, , t, ) = c„(t,) c„.(t,.-)l0). (5.4)

In a Feynman graph, the operator ct(t) creates
the end of a line corresponding to the mode n at
time t. The state l0) represents a configuration
with no lines.

We now define the generating state for the "in"
fields by

ends with propagators in all possible ways. We
call this new space the "end-of-line space. " States
in this space are denoted by curving bras and kets

I (t)) as opposed to states in the quantum-mechani-
cal space denoted I(I&.

We start with the set of "in" states and operators
solving H, as in the last section. For each mode
q„'"(t) we define an operator c„(t) in the new end-of-
line space. These c„(t) satisfy the commutation
relations"

(tp (s', s)(=(p~ s';s,. =p p(pJssdtg '(t) (t)1pi s,.s=
in

(5 5)

The dependence on s' and s must be kept in order to handle the zero-frequency mode. In conventional dis-
cussions of functional techniques, the state ls;n, =0& is replaced with the g.round state of the system. The

utility of the generating state becomes apparent with the relation

(II" (s; s)lc„,(t, ) c„,(t, )l0) =;„(s;0, . . . lT(q„'",(t, ) q„'" (t,.)}Is; 0, . . . &,
.„. (5.5)
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(5.7)

where b,„(t, t') is the Feynrnan "propagator"

Thus a time-ordered product of operators in the physical Hilbert space is related to an ordinary product
of commuting operators in the "end-of-line" space. The state (W,(s', s)~ serves to connect the lines cre-
ated by the ct(t). The contribution of the nonzero-frequency modes to (Wo(s', s)~ is well known" to be

()p(e', s)I=(olsxp —2 «"t cit') s( tt') c( t)),„ si'; ,2. . . I&exp(f«tt'; (t) c,(t))ls;o, . . . )t
fl —].

n

In Appendix B we evualuate the zero-frequency contribution to (W~(s; s) ~
with the result"

(tc.(e', »(l=(O(l(ox)'2'(e —s+1
J «c,lt))

xexp —g dtdt'c„(t)a„(t, t')c„(t') —— dtdt'~t —t'~c (t) c (t') +
~

dt tc, (t) .
n=Z "

Associated with cp is a "propagator"

(5.8)

(5.9)

(5.10)

but we also have additional dependence of (W, (s', s)~ on c,(t) Thes. e additional factors allow for zero-fre-
quency lines in a Feynman diagram to disappear. In some sense they are being absorbed by the classical
solution. Equation (5.9) tells us precisely how to ca,lculate this effect.

The Feynman expansion can be formulated in coordinate space by defining

c(x„)= Q(t)„(x)c„(t). (5.11)

This gives

,„(s';0, . . . (T(e'"(x,) e'" (x„))(s;0, . . . ),„=(W, (s', s)(c~{x,) ~ c~(x„)~0),

where (W, (s', s)~ can be written

(tt', (s', s)l = (Olexp — d xd x'c(x)S(x, x')c(x'))

s+s I

xexp i d t )(x)c(xx) t(2tl)'O(s'-s ~ i Jd'xp(x)c(x)).
l.

Here we have defined the propagator b, (x, x') for the e' field to have contributions from all modes

(5.12)

a(x, x') = Q (t)„(x)b„(t, t') g„(x'),
n=P

(5.13)

with h„given in Eqs. (5.8) and (5.10). We can now define a generating state for the interacting fields

(W(s', s))= (Wo(s', s)[exp i ddx R(ct(x), (t), (x)) . (5.14)

This gives the main result of this section:

„(s';0, . . .. ~T (.'" (x,) ~ e'" (x„)exp[i J d'xR(e'" (x), (t), (x))))~s;0, . . .)
d3g lt('

=;„(s';0,. . . )T(~(x,) . e(x„)&~s';0, . . .&. ', (s";ops';0), =(W(s, s}jct(x,) ~ c'(x„)~0}.

(5.15}

Feynman perturbation theory is an expansion of
the exponential in Eq. (5.14) in powers of R. This
expansion generates the vertices which become
connected with propagators by (W,(s', s)~. The

r

main change from conventional Feynman rules
comes from zero-frequency lines being absorbed
into the nonpropagator terms of Eq. (5.12).

The expression of Eqs. (5.12) to (5.15) suffice
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to calculate perturbatively a large class of Green's
functions for the & field in the presence of the ex-
tended object. A slight complication arises for
some operators of physical interest, including the
Hamiltonian, which involve time derivatives of
e(x). As time derivatives do not commute with
time orderings, some care is necessary. In Ap-
pendix C we extend the end-of-line space to treat
time derivatives of fields. Here we show that in
the case of the energy density the complication
only enters the lowest-order loop diagram. Such
a modification is formally necessary to obtain the
correct zero-point energy for the normal modes.
This extension of the end-of-line space also al-
lows one to discuss Feynman rules with deriva-

tive couplings.
If all we wish to calculate is the ground-state

energy of the extended object with s =0, then the
formalism simplifies considerably. First, we can
eliminate the 5-function term in Eq. (5.12) by in-
tegrating over s' —s at fixed s+s'. Then we con-
sider s+s' =5 so the term in Eq. (5.12) with an
exponential linear in c(x) will drop out. Thus all
new terms in the Feynman rules involving absorp-
tion of zero-frequency lines by the extended ob-
ject do not contribute. We only need consider a
conventional diagrammatic expansionusing the prop-
agator (5.13) and vertices read from R(e, Q, ). This
yields the ground-state rest energy

(
2(() 0, . . . ) H+ (=0 exp —

J
0'xd'x'c(x)0(x x')c(x'} exp(i f0 x)}'(c (x), 0, (x)))

x d x 2 Boc x ~pc~ y —5 x-y +~ II(c r +2 c x V", x +8 c~ x, , x 0

(5.16)

The & (x —y) term comes from the time-derivative
terms in the Hamiltonian as discussed in Appendix
C. The subscript "connected" indicates that we
only include connected Feynman diagrams. Of

course, the conventional vacuum energy still needs
to be subtracted and the coupling constants need
re normalization.

VI. SYMMETRIES AND CONSERVED QUANTUM NUMBERS

x =g cos8,

y =y sin8.
(6.2)

and eliminates the variable 8 from the problem by
specifying the angular momentum

2
'

l=xy -yx=r 8 . (6 3)

This gives a one-degree-of-freedom problem with
x as the dynamical variable. The energy in terms
of z and l is

L = —,
' x '+ —,

' y' —V((x'+y')' i') . (6.1)

Here one changes variables

In this section we generalize our discussion to
treat the quasistatic objects discussed in Sec. II.
We wish to quantize a solution to a classical field
theory where this solution minimizes the energy
with specified values for certain conserved quan-
tities such as momentum and electric charge.
These conserved quantities are assumed to be
commuting; i.e. , they can be simultaneously spec-
ified. Our goal is to define coordinates which are
conjugate to each of these commuting charges. By
restricting the states to particular values for the

charges, these coordinates will be eliminated,
leaving a quantum-mechanical system with the
number of degrees of freedom reduced by the num-
ber of conserved charges. This section is essen-
tially an elaboration of ideas discussed by Rajara-
man and Weinberg. " The procedure is complete-
ly analogous to the usual treatment of angular mo-
mentum in the two-degrees-of-freedom problem
defined by the Lagrangian

f2 1

(6.4)

The equation of motion is

(6.6)

In the classical problem the centrifugal-barrier
term would be 2l'r ' rather than 2(f' —,')r; the-

difference is introduced by the quantum-mechani-
cal change of variables because 8 and 8 do not
commute. The remainder of this section general-
izes E(ls.( 6.1)-(6.6) to the field theory problem
with an infinite number of degrees of freedom and
a finite number of commuting symmetries.

For simplicity we restrict ourselves to scalar
fields and begin with the Lagrangian density

(6.7)

The term proportional to y-' is well-known "cen-
trifugal barrier. " The commutation relations sat-
isfied by r(f) are

(6.5)
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(t),(x) = Q q;(t)(j);,(x) (6.8)

The functions g, ,(x) are chosen to be real functions
so that the q, (t) are. Hermitian operators. Ortho-
normality implies

where the index a labels the respective fields.
Without loss of generality we take the fields Q,(x)
to be Hermitian. To keep the algebra under con-
trol, we introduce a notation where the space vari-
able x and the field index a are combined into a
single discrete index i. To do this explicitly, ex-
pand the fields (t),(x) in a complete orthonormal set

M. = M ~ = -M*.= -M .
U (6.20)

where j' denotes Hermitian conjugation and * de-
notes complex conjugation. Associated with each
symmetry is a conserved charge

=iP)M ],.q),
e,l~ =0.

(6.21)

As we desire to simultaneously diagonalize these
charges, we assume the generators commute

for every set of k numbers y . A matrix sum over
j is understood. The generators are taken to be
Hermitian, imaginary, and antisymmetric

p J d'x(, .(x)(„(x)=5, ,
a

and completeness requires

(6.9) M. M. =M~.M. ,yI

implying that the operators l commute

(6.22)

g 0;,(x)4,(Y) = ~, ~ (x —y)

The q, (t) are gi.ven by

(6.10)
[f",l~] =0. (6.23)

A relation that will prove useful follows from first
differentiating E(l. (6.19) by y, at y =0

q((f)= Q d'x P,,(x)(t),(x) . (6.11)
V,(q)iM, qq, =0. .

and then differentiating with respect to q,.

(6.24)

In this notation the Lagrangian becomes V, ,(q)iM;. ,q, —iM, ,V, (q) =0. . (6.25)

d xx = 2q,. t —Vq (6.12)
At this point we digress and give some physical

examples of possible M . In particular, consider
the momentum operator

where we have included the spatial gradient terms
in the definition P=- d'x~, .~ .. (6.26)

Finally we define

gn

v,. ...,. (q) = v(q) .
&q, &q&

In this notation the equations of motion are

(6.14)

('(V)=- d'x()'(((~))+- g l~(.(~))') (() (&)
a

Comparison with E(l. (6.21) shows that M repre-
sents the gradient operator. In terms of the com-
plete set introduced in E(l. (6.8)

M, , = i P d 'x g, ,(x)Vg, ,(x) .
a

(6.27)

In the two-degrees-of-freedom problem discussed
at the beginning of this section

q, (f) =-V, (q(f)).

The Hamiltonian is

ff =-' g [u, (f)]'+ V(q(f)),

where

P((&) = q;(&)

(6.15)

(6.16)

(6.17)

(0 11 t'.&,i=P. P, /

op

and thus for this problem

(-i oj
(6.28)

The commutation relations of the theory are

[P,.(t), q,.(f)]=-i6„.. (6.18)

V~ exp i g M y q,. i

= V(q, )
(

(6.19)

We now assume that the theory possesses k sym-
metries generated by matrices Mo (o.=1, . . . , 0)
such that

~ —,P, +Vq — ~ ~P,M q. =0.
a

(6.29)

Returning to the general case, we now study the
classical solution about which we wish to quantize.
Considering the p's and q's as classical functions,
we adjust them at a particular time to minimize H
given l . As H and l are all conserved, this min-
imization will be maintained as time evolves. In-
troducing Lagrange multipliers X, we demand that
the variation of H —Z X l vanish:
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Henceforth, quantities with tildes refer to the
classical, quasistatic solution. Varying p, gives

p] —iX.M].q,. = 0, (6.30)

where X M denotes Z X M . Varying q,. gives
(M,, is antisymmetric)

v, (q)+i& M, ,p, =o. (6.31)

q ((t) = (e"")(,q, (0)

where qj(0) is a solution to the equation

v, (q(0))+(i~ M)„'q, (o) =o

(6.32)

(6.33)

Using the equations of motion to determine the time
evolution of the solution, we obtain

If the M;.&q,.(0) are linearly dependent, A ' will not
exist; we assume the charges are chosen to avoid
such degeneracies. One can readily check that S
is a proj ection

(6.40)

Indeed, S projects onto the space spanned by the

M&&q&, this is the k-dimensional space of zero
eigenvalue to V,~(q)+(iX M),~'.

We now turn to the quantum-mechanical problem
and consider q, (t) which are in some sense near to
the solution q,.(t). By analogy with the two-de-
grees -of-freedom problem mentioned at the begin-
ning of this section, we change variables to a gener-
alized cylindrical coordinate system by writing

and the Xo are determined implicitly by
q, (t)={exp[iZ.e (t)M ]]„r,(t). (6.41)

= -q, (0)iM ~) (iX M))~q„(0) . (6.34)

The system of equations (6.33) and (6.34) is the
generalization of Eq. (4.7) to the quasistatic prob-
lem. Note that all time dependence of the solution
has been isolated in the exponential factor of Eq.
(6.32). If we multiply Eq. (6.33) by M and use Eq.
(6.25), we obtain

[v,,(q)+ (i~.M„2][iM q(o)], = o. (6.35)

—[v' —(x ~ v) ]$,(x, o) -, 0 V(g(x, o))=0.s,(x, 0
(6.3'i)

The form of the differential operator explicitly ex-
hibits the Lorentz contraction of the extended ob-
ject along the direction of the velocity X.

We will find it useful to introduce a k && k sym-
metric matrix

For each of the charges l we have an eigenvector
iMoq(0) of zero eigenvalue for the matrix V,z(q)
+i(X M),&'. These are the generalizations of the
zero-frequency translation mode found in Sec. III.

Equations (6.32) and (6.33) have a simple physical
interpretation when l is the momentum and M the
gradient operator. In this case Eq. (6.32) becomes

(f),(x, t)=e " '
'Q,(x, o)=P ( -Kt, o). (6.36)

We see that the Lagrange multiplier X is just the
velocity of the extended object. Using Eq. (6.13),
we can write Eq. (6.33) as

In introducing k "angular" coordinates 0 we must
place k constraints on r& to maintain the original
number of degrees of freedom. We choose to re-
quire r,.(t) to be outside the k-dimensional sub-
space spanned by the vectors M, ~ q~(0); so, our k
constraints are

q,.(0)M„.r&(t) = 0, n = 1, . . . , k .

or, in terms of the proj ector S,

S„r,(t) = 0. .

(6.42)

(6.43)

A ~=-r,iM,.~iM~qr~ (6.44)

The quasistatic solution q(t) has r(t) =q(0) and
8 "(t)= ~ t.

For q,.(t) near to q, (t), these variable s are unique.
For large fluctuations the coordinates 8 (t) and

r, (t) should be sufficient to describe the configura-
tion, but their values may be ambiguous. In par-
ticular, with fluctuations so large that the system
is better described in terms of several extended
objects, there will be an ambiguity in the defini-
tion of the coordinate corresponding to the object's
position. As our calculations are ultimately per-
turbative, this non-uniqueness plays no role in the
following discussion. Note that no similar ambigu-
ity occurred in Sec. III; there the coordinates
q„(t) including qo(t) were unique for any field con-

figurationn.

In analogy to A. ~ and S,.& we define the matrices

A"=-q.sM. . iM'. q =A".
i ij jk (6.38) S() =-iM, ~r~(A ') ~r, iM, q

. (6.45)

Equation (6.34) then becomes

S,q
= -iM,.„q~(0)(A ')'~q, (0)iM~iq . (6.39)

where a sum over P is understood. We also define
the inf inite- dimensional matrix

These objects are quantum operators. In a per-
turbative treatment (A ') ~ appearing in Eq. (6.45)
is to be expanded as a power series about (A ') ~.

The matrix S,, is a projector onto the space spann-
ed by iM,~~ r&.

We need the conjugate momenta to the variables
r, and 8 . For 8 we find
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(6.46)

Thus the 0 conserved charges l are conjugate
variables to the 6 . To determine the conjugate
momenta for z,. we must maintain the constraint
(6.43). This gives

w,. =(1 —S),,

=-,'(1 —S),, [(e ' '),,p, +p„(e""')„.], (6.47)

where M 0=-Z M g . In terms of these variables
the equal-time commutation relations of the theory
are

(6.48)

(6.49)

(6.50)

(6.51)

[z, , 8 ]= [r, , l ] = [vr;, 8 ] = [vr, , l "]= 0 .

Note that (1 —S),&
is the unit matrix on the sub-

space to which x,. and m,. are restricted. To write
the Hamiltonian in terms of the new variables re-
quires that we know p,. in terms of z, , 8, 7t„and
l . In Appendix D we work out this relation taking
proper account of the noncommuting nature of the
quantum operators. The result is

(6.52)

p,. =(e'~' ),,[ ,B(m»+»ci)»+. (1+BS),„l (A ') ai. M», r, ]

= [(~,—iC,)B„.—~, iM;„(A-') "l'(1+SB)„,.](e "'),, ,

where

(6.53)

(6.54)

C,. =-2[(1—S)iM (1+BS)(A ')»iMa], ,r . (6.55)

The object C,. comes from the noncommuting na-
ture of the quantum operators and does not arise
in the classical problem. Because our change of
variables does not involve any explicit time de-
pendence, the Hamiltonian for the new variables
is unchanged. Thus we can insert Eqs. (6.41) and

(6.53) into (6.16) to obtain

x B,,'(~, +S,„iM „r„(A-') 'l'.+iC.,].
+2i (A ')"'l'+I'(~) (6.56)

The terms involving l are the generalization of the
centrifugalbarrier in Eq. (6.4). The terms linear in
C and the conjugate momenta can be combined using

+0(p') . (6.59)

If we restore continuum notation, A '
z is not simp-

ly related to a local operator. Rather, it is a
power series in integrals of local operators. The
reason we have been forced to consider such non-
local objects is rooted in our constraining the
charges. In a study of fluctuations of the fields at
some space point, a change in the charge density
there must be compensated by changes at other
points in space. Our constraints are nonlocal in

the commutation relations into terms independent
of p,. and / . All terms involving C represent the
quantum correction to the centrifugal barrier men-
tioned after Eq. (6.6). The equations of motion of
the theory are easily found by forming commuta-
tors with the Hamiltonian.

As before, perturbation theory provides a form-
al solution to this problem. This begins with an
expansion of such quantities as' ', S, and B about
their classical values. Because of the nonclassical
terms involving C in Eq. (6.56), an expansion of
II about q will have terms linear in z-7. Such
terms effectively shift the position of the minimum
of the quantum-mechanical Hamiltonian in Eq.
(6.56) with respect to the minimum of the classical
Hamiltonian. An alternative perturbative proce-
dure is to expand about a modified classical Hamil-
tonian containing the terms involving C in Eq.
(6.56). The two procedures should be equiva. lent,
although low-order calculations can differ. The
difference can be important with compact sym-
metries where the charges are quantized and near
their minimum quantized value. The classical
limit is approached only when the charges are
large and their discrete nature unimportant. For
example, in the two-degrees-of-freedom problem
of Eq. (6.1), the difference between the classical
centrifugal barrier 2l'/x ' and the quantum-me-
chanical —,(l' —4)/r' is only important when l2 is of
order unity. [On restoration of 8 to the theory,
(l ——,') - (l' —h /4). ] In bag models of hadrons
with only a small number of quarks in a hadron,
these corrections may be nontrivial.

We will not actually carry out the perturbative
expansion here, but merely note some unusual fea-
tures. Suppose we expand x about the classical
F, =q, (0)

(6.57)

The matrix A'8 of Eq. (6.44) becomes

A 8=A 8 —2p,.iM, , iM~»y» —p;iM, ,iM,8„p '. (6.58)

Thus (A ')"~, which appears in H, is

(A ') ~ = (A ')'8+2(A ') 'p,.iM', , iM'. P (A ')'

+ (A ') 'p, ,iM",, (1 —4S),.»i M'„p, (A, ')'~
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that they only fix the global charge. Thus our re-
duced Hamiltonian is not an integral of a local
density.

A second peculiar feature of the perturbation
theory for this problem is that the couplings will
involve time derivatives of the coordinates. This
comes about because B, occurring i.n H via the
term &m&B', , z, , is itself a power series in z. Thus
there will be interaction terms involving factors
of w, In Appendix C we indicated how to handle
such couplings in the end-of-line formalism.

We have formally defined the quantum-mechani-
cal problem with the number of degrees of freedom
reduced by the number of conserved charges. Un-
fortunately the procedure has become rather com-
plicated. Although the relativistic connection be-
tween energy and momentum should follow, in
practice it is simpler to work at zero momentum
and treat translations as in Sec. III. The formal-
ism of this section appears unavoidable if we wish
to treat other conserved charges such as are car-
ried by quarks in bag models.

VII. THE BAG MODEL

In Ref. 4 we showed on a classical level how the
bag model for quark confinement of Chodos et al.'
is related to a limit of an extended object in a local
field theory. Except for some difficulties with non-
Abelian gauge fields, the classical model of Ref.
5 could be obtained exactly in this limit. To evade
the problems with the gauge fields, we presented
a viable model with one Abelian gauge field con-
fined in the bag. The hadron constituents in this
model are a single triplet of quarks and one scalar
parton. The mesons are quark-antiquark bound
states while the baryons are made of three quarks
plus the scalar parton. In this model, quarks are
permanently bound even before taking the limit
giving the model of Ref. 5.

In Ref. 4 we took certain coupling constants in
our local theory to infinity. The methods of this
paper have involved a perturbation series in a
coupling; suggesting that the perturbative treat-
ment of quantum fluctuations could fail for this
system. %e conjecture, however, that the pertur-
bative treatment might be valid for the low excited
states of the bag. Indeed, when the number of
quarks in a bag is large and the bag itself is large,
we intuitively expect a classical behavior of the
system.

The reason that perturbation theory may work in
our limit is that the modes which possess strong
coupling are also taken to infinite frequency. In
particular, the scalar mesons responsible for the
phase transition producing the bag both acquire a
a strong coupling among themselves and a large
mass. On a classical level these strongly coupled

modes will not be seen if we only study the bag at
finite energies; there only the low-frequency
modes are relevant, and these modes can be weak-
ly coupled. This is why the classical model is so
closely related to the Chodos et al. ' bag.

The difficulty in the quantum theory is that high-
frequency modes can enter as virtual intermediate
states in a study of low-energy properties. Thus,
we must study loop diagrams. If there were only a
finite number of high-energy modes, there would
still not be a problem because a simple counting
of masses in propagator denominators and coupl-
ing constants from vertices indicates that in the
limit of Ref. 4 the high-frequency modes do not
contribute to low-energy properties. However,
because of possible divergences in sums over the
infinite number of high-frequency modes, in gener-
al one connot factor masses in high-frequency
propagators out of loop diagrams. Because of
these questions, we have been unable to determine
if the perturbative techniques of this paper apply to
the limiting theory of Ref. 4.

We remark that for studies of the bag at low ex-
citations one should define the renormalization
constants of the theory not in terms of the two-,
three-, and four-point functions of the fields acquir-
ing large masses, but rather in terms of physical
bag parameters. These include the bag skin thick-
ness, skin energy density, and volume energy den-
sity. Indeed, in the Lagrangian we have a large
number of counterterms at our disposal which can
absorb many, if not all, effects of the high-fre-
quency modes. Our conjecture is that the renorm-
alized theory can be defined in terms of finite
physical bag parameters. If so, the bag models of
Ref. 4 and Ref. 5 should still be closelyrelated on
the quantum level.

VIII. REMAINING QUESTIONS

We have studied the problem of quantization of
extended solutions of classical field theories. Us-
ing canonical methods, we exhibited a perturbation
solution for the properties of these objects, the
perturbation being essentially in fluctuations of the
quantum solution about the classical one. . Transla-
tion invariance required a careful separation of
this degree of freedom. Several interesting ques-
tions remain.

How should Fermi fields be treated? Unlike the
Bose case, anticommutation relations are altered
by adding to a Fermi field a classical solution to
the Dirac equation. A possible approach might be
to look for "classical" solutions in some anticom-
muting algebra. Another interpretation has been
proposed by Chang, Ellis, and Lee."

How can one study states with several extended
objects? If we have two extended objects there
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will be forces between them and the solution is
necessarily time dependent. Furthermore, when
they are close together the forces will be strong
and the validity of a perturbative approach is un-
clear. Inevitably this leads us to the problem of
creation of extended objects and pairs of extended
objects. For the bag models this is central to un-
derstanding e'e -hadrons.

Can one find a local field for an extended object?
As mentioned earlier Coleman' and Mandelstam"
have discussed a connection between the extended
solutions of the sine-Gordon equation and the
Fermions of the massive Thirring model. It may
be that hadrons can equivalently be described as
extended objects or in terms of local fields.

What are the statistics of the quantized extended
particles? The results for the sine-Gordon equa-
tion emphasize that we should expect the unexpect-
ed. The bag solutions are unlikely to acquire pe-
culiar statistics, but the 't Hooft monopole" has
unusual properties under rotations and something
strange may occur on quantization.

Indeed, the list of questions seems endless. How

should gauge fields be handled? Does the bag limit
of Ref. 4 make sense? How should one treat
theories with both magnetic and electric couplings
to gauge fields?" Can one obtain a spontaneously
broken symmetry by making the symmetric vac-
cuum unstable to extended object formation? Can
quarks themselves be extended objects?

APPENDIX A: THE VIRIAL THEOREM

The proof of the virial theorem (4.24) is a se-
quence of partial integrations. Here we prove it
in d spatial dimensions

d'x V(@,(x))=
d ~td'x V((t), (x))V x

d'x(V(t), )'=
d

d "x V(g, (x)) =a,d. (A3)

Note that only for d &2 do the gradient and potential
terms in H, have the sam sign. This is an alter-
native proof to the statement that stable static
extended solutions do not exist in scalar field theo-
ries in two or more space dimensions.

APPENDIX B:THE ZERO-FREQUENCY GENERATING STATE

Here we work out the zero-frequency contribu-
tion to (W, (s', s)I. Since all higher modes separ-
ate, we consider the Hamiltonian

H = —,q'. (81)

The equation of motion

q(t) =0

implies

q(t) =q(o) +qt.

The commutation relations are

I.q;(t), q&(t)] = -t5;,"
The states Is) satisfy

(s'Is ) = (2&)'5'(s' —s),

qIs) =sls).

(82)

(83)

(85)

The relative phases of the states Is) are fixed by

e i s "(j(0)
I0 ) (87)

We wish to evaluate

(W,(s', s)I = (OI(s'IT(exp[ fdtq(t) c(t)]jIs). (88)

Define the quantity

yt ~ V ~

(p(s, c)) =7
Isxp (Jdtq(t) . c(t)) I(s).

Using the equation of motion (4.7) gives

"d'x V(y (x))

dxV', x x ~ V' x

(Al)

q ~p(s, c)) = (s —i ] dt c(t)) (p(s, c)).

This implies

(810)

This object is a state in Hilbert space and an oper-
ator in end-of-line space. Using Eqs. (BS), (84),
and (B6), we have

=+— dx V, x '+ V, x x ~ VV, x (p(s, c)) = F(s, c) s - t ](dt c(t)) (811)

dx V, X +2x'V V ~

1 d d-2d'x(vy )'.
d

Then the general theorem reads

(A2)

where F(s, c) is to be determined. Taking q(0) on

the state gives

q(O)(d(s, c)) = (ti Idt tc(t) —ip ) tp(s c(t)). (Btx)

With Eq. (Bll) we see
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iV-,F(s, c) = i-)1~ dt tc (t)F(s, c) (B13) P(s, c) =A (c)exp (s dtto (t)), (B14)

or
where A(c) is to be determined. Now consider the
commutator

I lp(e, c)&, c "(i)1=pIexp( J«'r)(t') r(i')) s(i)I le &

pt t

+i I dt't'c t' —it dt'c t' -iV, +ts s, c

This implies

= (A(c), c'(t&)exp(s j(dt t c(t')) 'Irr ij)tie(-t)&+ (trr -iv +i J dt tc(t \)
'I'ri(s, 'c)). (B15)

OO tre OO

(A(c), c'(tll = (-i «'t'c (t ) —r dr 'tc (t l)A'(xi'
t

dt' —, t+t'+ t —t' c t' A c (B16)

or

A(c)=))exp —— drdt'c(t)' c(t')(t+t +lt —t
I&)

.''
4

(B17)

The constant B is easily shown to be unity. Thus we have

IP(s, c)& =exp(- Jl
dtdt cjt) c(t')it +t''+ It —t I)) exp(s 'dt tc(t)) liT —tjdr c(t)&

and

(ip(iT', iT)l=(ol(pirl's'(iT' —s+i Jdtc(t))exp(- — dtrtt c(t) c(t )(t+t''+ It —i''I)+s Jdttc(t)).

This can be written in the more symmetric form
~p

(ip(s', s))=(o)(pc)'s'(iT' —iT+i dtc(t))exp(- —
J

dtdt c(t) c(t )lt —t')l'e xp
'+ dt tc(t)).

1

(B18)

(B19)

(B20)

Restoring the non-zero -frequency modes gives

Eq. (5.9).

APPENDIX C: TIME DERIVATIVES
AND END-OF-LINE SPACE

and consider states ls) such that

Z/2

(n')" lo),

nlo) =0, (CS)

& = zP2 + 2292

where P = q. As in Eq. (4.27), we write

(Cl)

(C2)

To treat time-ordered products of time deriva-
tives of field requires care in the end-of-line for-
mation because time derivatives do not commute
with time orderings. Since the full Hamiltonian
involves time derivatives we must study this prob-
lem to calculate the energy of an extended object.
This treatment becomes all the more essential
in theories with derivative couplings.

To illustrate the procedure, consider a single
mode with Hamiltonian

(0IT(q(t, ) ~ q(t. )p(t„„) P(t„,.)] lo), (C4)

where for simplicity we consider only first time
derivatives. We extend the end-of-line space by
introducing a creation operator for end of lines
corresponding to time derivatives of the coordin-
ate. Thus consider a new operator d(t) such that

[d(t'), d'(t)] = 5(t' —t),

d(t)lo) =0,

[d(t), d(t')] = [d(t), c(t')] = [d(t), c (t')] =0,

(olo) =1.

We desire to find an end-of-line space expression
for
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It„,t„; t„„,. . . , t ~)=c (t, ) c (t„)d (t„„). d'(t„, )Io).

The generating state is now defined

(qq(=(p
( pexp( Jqtc(q(q(it+ Jqqq(tip(t)) 6).

With this definition

&olr(q(t )" q(t. )P(t.. ) ' "P(t...0 Io) = (w. lc "(t,) c'(t.)d'(t. „) d'(t. ..) lo).

The expression for (W, I can be evaluated using Wick's theorem" to give
Oo

Q CI2 1
(W, l= (Olexp — dtdt' c(t)c(t')&(t, t') +2d(t)c(t') —t((t, t')+d(t)d(t') —,L(t, t') —6(t' —t)

(C5)

(C7)

(C8)

where

iq (t t/) e zulu (

2(d

Equation (C8) gives the correct two-point functions

(olr(q(t) q(t')] lo& = i~(t, t'),

(olrg (t)q(t')) lo) =is,~(t, t'),

(Olr p(t)(tp(t')] lo) =i so'A(t, t') i6(t —-t').

(C9)

(C10)

(C11)

(C12)

The term involving 6(t —t') in Eq. (C12) comes from the equal-time commutator of P with q.
To see the importance of keeping the term involving 5(t' —t) in Eq. (C8), consider the ground-state energy

E,= &oltflo& = &olr(Ifj Io) = (wl-.'d" +-,'~'c"Io)

[8,'a(t, t'—) 6(t —t') +~-'a(t, t')] I, =,

([+2ur'+i5(t' —t)]e ' ' ' -5(t —t')] I,=, =-;(d.
4u (C13)

The purpose of the 5(t —t') is to subtract a diver-
gent piece of BO2b, (t, t') thus giving the correct
zero-point energy. In momentum space the calcu-
lation proceeds,

b, (q) = d(t —t')e'"' ''A(t, t') = 1

APPENDIX D: DERIVATION OF EQ. (6.53)

Equation (6.47) can be rewritten

i(, +i C, =(.1 —S),, (e '~'e), P., , .

where

iC,=-,' (1 -S),. , [tq„, (e*"')„].

(D1)

(D2)

s "dg
E, = — —[q'b, (q) —1 + &u'a (q) ]2 „27T

(C14)
We will work out this commutator later. From
Eq. (6.46) using Eq. (6.45) we obtain

t "(4, )~iM,.B.
&, =S,(e--*"') p.

In interacting theories without derivative cou-
plings, the equal-time term 5(t —t') in Eq. (C8)
only need be considered for this lowest-order
zero-point energy. All higher-order corrections
will not involve a contraction of two d operators;
consequently, the Feynman rules are the naive
ones. This entire discussion is similar for the
zero-frequency mode, where 6 becomes the prop-
agator in Eq. (5.10).

Between Eqs. (Dl) and (D3) we know what S and
1 —S do to (e '~ e),,p, . To invert this we fi~st
prove the following identity

(1 = S —B(1 —S)S+B(l —S),

where J3 is a matrix representing the inverse of
1 —S restricted to the space defined by 1 —S

B = [1 —(1 —S)S ] '(1 —S).

Matrix indices and sums are understood in these
equations. To prove (D4) let X be an arbitrary
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vector and write

(1 —S)(l —S)X

Since I is arbitrary, this is equivalent to Eq.
(D4).

Combining Eqs. (Dl), (D3), and (D4) we obtain
= (1 —S)(1 —g)SX+ (1 —S)(1 —S)(l —S)X

= (1 —S) (1 —S)SX +[1—(1 —S)S](1 —S)X.
p,. = (e'"'e), , [(1 —B(1 —S)),„l (A. ') ~iM„,r,

+B,,(v~+iC, )]. (D9)

This implies

(1 —S)X = [1 —(1 —S)S] '(1 —S) [(1 —S)X —(1 —S)SX]

This simplifies slightly since (1 —S),,iM, , r~ =0.
Thus we have

P,. = (e'"'),,[(1+BS)„I (a ')~tM-,',r,

or

= B(l —S)X —B(l —5)SX

X= [S—B(l —8)S+B(l —S)]X.

(D7)

(D8)

+ B,, (m, + iC,)], (D10)

which is Eq. (6.53). Using (D10) and (6.48)-(6.52)
we can determine C,.:

—,'[(1 S)tM"(1 +BS)(A ') 'tM ]„r, (Dl. l)

which is Eq. (6.55) .

*Work supported by Energy Research and Development
Administration.

~A. Scott, F. Chu, and D. McLaughlin, Proc IEEE 61,
1443 (1973).

2To be precise, a solution of a field theory is an extended
object if for

every&�

&0 there exists anx(t) and an r(e)
such that for aH. times t

where S is a sphere of radius r(~) centered on x(t),
and X(x, t) is the energy density. We consider the
energy relative to the vacuum so X(x) is a non-nega-
tive quantity.

3Y. Nambu, in Proceedings of the Johns Hopkins lVork-
shoP on Current Problems in High Energy Particle
Theory, 1974, edited by G. Domokos et a$. (Johns
Hopkins Univ. , Baltimore, 1974); G. Parisi, Phys.
Rev. D 11, 970 (1975); M. Kobayashi, Prog. Theor.
Phys. 51, 1636 (1974); P. Olesen, invited lecture at
IX Balaton Symposium on Particle Physics, Hungary,
1974 {unpublished); M. Creutz, Phys. Rev. D 10, 2696
(1974); S. Mandelstam, Phys. Lett. 53B, 476 (1975);
A. Jevicki and P. Senjanovic, CCNY report, 1975 (un-
published) .

M. Creutz, Phys. Rev. D 10, 1749 {1974);M. Creutz
and K. S. Soh, ibid. 12, 443 (1975).

~A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and
V. W. Weisskopf, Phys. Rev. D 9, 3471 (1974).

6N. H. Christ and T. D, Lee, Phys. Rev. D 12, 1606
(1975).

~E. Tomboulis, Phys. Rev. D 12, 1678 (1975).
L. D, Faddeev, Zh, Eksp. Teor. Fiz. Pis'ma Red. 21,
14& (1975) I.JETP Lett. 21, 64 (19758.

R. Dashen, B. Hassl. acher, and A. Neveu, Phys. Rev.
D 10, 4114 (1974); 10, 4139 (1974); 10, 4128 (1974);
for an excellent review see R. Rajaraman, Inst. for
Advanced Study Report No. AEC-2220-47 (unpublished).
J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486
(1975); see al.so G. Rosen, Phys. Rev. 160, 1278 (1967);

S. J. Chang, Phys. Rev. D 12, 1071 (1975);S. J.Chang

and J. A. Wright, ibid. 12, 1595 {1975);R. J. Rivers,
Imperial College Report No. ICTP/74/5, 1974 (un-
published); A. Klein and F. Krejs, Phys, Rev. D 12,
3112 (1975).
J.-L Gervais and B. Sakita, Phys. Rev. D 11, 2943
(1975); C. G. Callan and D. J. Gross, Princeton Univ.
report, 1975 (unpublished).
J. Arafune, P. G. O. Freund, and C. J. Goebel,
J. Math. Phys. 16, 433 (1975).

~~R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev.
D 11, 3424 (1975), and references therein.

4S. Coleman, Phys. Rev. D 11, 2088 (1975).
W. Thirring, Ann. Phys. (N. Y.) 3, 91 (1958).

~~S. Mandelstam, University of California at Berkeley
report, 1975 (unpublished).

~J. Goldstone, A. Sat.am, and S. Weinberg, Phys. Rev.
127, 965 (1962).
P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

9G. 't Hooft, Nucl. Phys. B79, 276 (1974).
20P. Vinciarelli, Lett. Nuovo Cimento 4, 905 (1972);

Nucl. Phys. B89, 463 (1975); T. D. Lee and G. C.
Wick, Phys. Rev. D 9, 3471 (1974).
W. A. Bardeen, M. S. Chanowitz, S. D. Drell,
M. Weinstein, and T,-M. Yan, Phys. Rev. D 11, 1094
(1975).
G. H. Derrick, J. Math. Phys. 5, 1252 (1964).

2~8. Coleman, Commun. Math. Phys. 31, 259 (1973).
G. Wentzel, Z. Phys. 38, 518 (1926); H. A. Kramers,
ibid. 39, 828 (1926); L. Brillouin, C. R, Acad. Sci.
183, 24 (1926); more recent references are quoted in
Refs. 9 and 13.
R. Rajaraman and Erik J. Weinberg, Phys. Rev. D 11,
2950 (1975).

~6P. Vinciarel. li, CERN Report No. TH1993, 1975 (un-
published); K. Cahill, Phys. Lett. 53B, 174 {1974).

27Goldstone and Jackiw actually use a slightly more
sophisticated form of I', including not only a source
for Q(x) but in addition a bilinear source of form
J~~ dye(»f (~,y)4(y)
A good review of these variational techniques is con-



3144 MICHAE L CREUTZ

tained in E. Abers and B. W. Lee, Phys. Rep. 9C, 1
(1973).

29R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).
3 This mode does not appear when discussing the vacuum

with g& (x) constant.
t~For a finite-energy stable solution V(g(x)) must always

exceed V(Q, (~)}= 0. In Appendix A the virial theorem
(4.24) is given in arbitrary spatial dimension; the
gradient and potential terms are both positive in one
space dimension.
M. Born and V. Fock, Z. Phys. 51, 165 (1928).

~3G. C. Wick, Phys. Rev. 80, 268 (1950).
~4R. P. Feynman, Phys. Rev. 76, 749 (1949).
35H. M. Fried, Functional Methods and Models in Quan-

tum Field Theory (MIT Press, Cambridge, Mass. ,
1972). Our notation differs somewhat.

36For a theory with Fermi fields these would become

anticommutation relations .
The 4 function containing e(}(t) in Eq. {5.9) is defined
as an operator in end-of-l. ine space with the properties

0 (s' s+—i fdt c,(t))] 0) =& (s' —s)I 0),

[03(s' s+-i fdt co(t)}, cto(t)]

= —i V, 0~(s' s-+i fdt ca(t)),
[0~(s'-s+i fdt c&(t)), c„(t)]=-0, n& 0

where V~ is the gradient with respect to s. Repeated
application of these relations gives the effect of this
6 function on the states of end-of-line space. For
more rigor, one can smear the states with a test func-
tion.

~ S. J. Chang, S. D. Ellis, and B. W. Lee, Phys. Rev.
D 11, 3572 (1975).


