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The quantum theory of a real scalar field in one space dimension with quartic coupling is studied as an
example of a field theory possessing exact classical solutions representing extended distributions of energy and
momentum. It is shown how formal canonical quantization can be implemented in practice to obtain self-
consistent, Lorentz-covariant descriptions of restricted portions of Hilbert space. This is done by deriving
dynamical and kinematical sum rules from the equations of motion and commutation relations, respectively.
These sum rules are shown to have a variational basis, which guarantees the consistency of the approach.
Overall, we derive Lorentz-covariant generalizations of results found previously by Goldstone and Jackiw
using the same approach, as well as some new results.

I. INTRODUCTION

This paper is concerned with the quantum theory
of nonlinear field equations known to possess
classical solutions variously characterized as
kinks, solitons, or simply nonlinear waves. ' '
Since detailed introductory remarks can be found
in essentially all the references cited in the next
paragraph, we shall assume the reader to be con-
versant with this material.

It is indicative of the interest it has generated
that the study of this problem has already elicited
from the theoretical community a truly impressive
(though to the budding author a correspondingly
discouraging) versatility in technique. These
include WEB methods, '" coherent-state varia-
tional principles, "'~ generating-function varia-
tional methods, "'path-integral quantization, "
canonical quantization, ""and generalized self-
consistent field methods, based directly on the
field equations. '"~"

It is the purpose of this paper, as well as of
those with which we intend to follow it, to develop
more fully the last of these methods, particularly
as described by Goldstone and Jackiw. ' In this
early phase, it would appear to be useful to devel-
op any method which is, in its formulation, theo-
retically complete and capable of systematic ex-
ploitation and improvement. We aim to show how
this is true for the method under study, which was
developed originally to provide a theory of collec-
tive motion for nonrelativistic many-body systems. "

Let us understand from the beginning that in the
new development one gets nowhere unless one has
some a Pro~i notions of the physics one is seek-
ing. Conventional, i.e., previous, field theory
may almost be defined by the statement that the
fundamental particles are the fundamental fields
in the Lagrangian density. The kinks or solitons,
by contrast, are coherent, nonlinear superposi-

tions of the fundamental fields. The existence of
the new objects as quantum objects is signaled
by the discovery of exact solutions to the classical
field equations. It is in how this signal is utilized
that the various methods differ. In most of the
quantization methods only the difference between
the original field operator and the classical solu-
tion is quantized. In our method, no such a priori
separation is made. Formal quantization is carried
out quite conventionally, and novelty enters only
when the structure of the assumed Hilbert space
is studied from matrix elements of the field equa-
tions. Assumptions concerning the structure of
this space are verified self -consistently.

In the example studied in Ref. 9 and also in this
paper, where the classical solution is time indepen-
dent, the latter is proved, from the quantum
theory, to be the Fourier transform of the form
factor of a new particle. (In the next paper of this
series, we shall show that certain time-dependent
solutions of the classical field equations can be
interpreted as generating functions of form factors
of a one-dimensional array of states. )

Since, in fact, the structure of our approach has
been elegantly exposed in Ref. 9, we must become
more specific in order to demonstrate how the
practice can be carried further than it was in that
work. We deal therefore, as an example, with
the Lagrangian density describing a p~ model in
one-plus-one dimension,

Z(x, t) =-,' [s,y(x, t)]'- ,' [s„y(x,t)]' V(y)-, (1.1)-
where

1 2V(y) =—(tn'- ~ y')'.
2A.

The Hamiltonian is

II= x,t dx,
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X(x, t) = —,
' v'(x, t) + —,

' [a„y(x,t)]'+ V(y). (1.4)

The theory is taken, as conventionally, to be de-
fined by (1.3), (1.4), and the canonical commuta-
tion relations

[4( t),v(X, t)j =t6( -S),
which together yield the field equations

s, 'y(x, t) a„'y-(x, t)+ v (y(x, t)) = O.

(1 5)

(1.6)

Goldstone and Jackiw' have indicated how to ob-
tain consistent c-number equations from (1.5) and
(1.6) which characterize the soliton and certain
excited states in the same sector of Hilbert space.
We refer the reader to their paper for the general
derivation of the equations which we shall exploit
in the sequel. (We shall, however, give a sum-
maryofideasin Secs. II, III.) They have shown
that the static classical solution

m
y, (x-x,) = ~tanhm(x-x, )

describes the Fourier transform of the form fac-
tor of a particle at rest, whose mass is in lowest
approximation

4m3M=—
3 (1 .6)

and that this solution is valid provided M» m, i.e.,
m'» X. The derivation of this result requires, as
we analyze in Sec. II, two assumptions, namely,
(m/M)«1 and (p/M) «1, where p is-the-momen-
tum of the particle. Goldstone and Jacki have
established, however, that the corrections of
order (p/M)2 are as expected, and thus they have
provided the approximate relativistic invariance
of the theory. For the soliton, the double expan-
sion in (m/M) and (p/M) is studied to lowest order
in Sec. II, the purpose of this study being to set
the stage for the core of the work.

In Sec. III we develop the first new result of our
work. We consider the exact c-number equations
derivable from (1.5) and (1.6) by assuming all
sums over intermediate states are exhausted by
the soliton, anexcitedbound state of the same
intrinsic structure, and the one-soliton-one-
meson continuum states. As established, ' the
resulting equations contain correctly all terms of
order X ' and X'. We prove that these equations
can be solved to all orders in (p/M) provided we
always neglect (m /M) compared to (p/M). We
thereby establish the relativistic covariance of
the c-number equations and of their solutions.
The consistency of the commutation relations
(1.5) is also established in the same approxima-
tion.

In See. IV we show how the c-number equations

of motion can be derived from a novel variational
principle, involving the trace of the Hamiltonian,
H. This novel variational principle has been
known within other contexts for some time, "and
a concise account of it has been given quite recent-
ly within the context of particle quantum mechan-
ics." The general principle is described and the
functional which yields the c-number equations of
Sec. II is derived and discussed. An important
consequence of the variational principle is that the
Hamiltonian is diagonal within the space of states
utilized in the trace. It is seen that this yields a
set of consistency conditions which must be the
general consistency conditions yearned for in
Ref. 9.

These last are illustrated in Sec. V, where we
also establish that energy and momentum of the
soliton transform like the components of a vector.
This is shown by use of a generalized virial theo-
rem.

We conclude this introduction by -emphasizing
that the method under study here is both theoreti-
cally complete and systematically exploitable.
The latter property has been questioned, "and we
therefore address ourselves to this point in partic-
ular: (i) Every observable can be calculated from
the c-number equations derivable from (1.5) and
(1.6). (ii) The basic elements of these equations
are the matrix elements of single field operators
p(x, t) between various states. Each of these can
be represented by a Laurent series in (A,'/m).
The dominant dependence for small A, is deter-
mined by self-consistency requirements. (iii)
Assuming the leading order terms in a given equa-
tion can be obtained exactly, higher-order correc-
tions can be calculated by straightforward pertur-
bation methods.

The one really new element compared to previ-
ous applications to the nonrelativistic many-body
problem is the problem of renormalization, but
the work already done indicates4 that this can be
handled without excessive difficulty.

II. ONE-SOLITON SECTOR: LEADING CORRECTIONS
TO THE STATIC LIMIT

The most rudimentary properties of the soliton
are determined from the equation

{—(q-p)'+[&(q)-E(pH'+2 '}& pill q&

(2.1)

where E(q) = (q'+ M')V', M = (4ms/3X) is the soliton
mass in lowest approximation, p = p(x =0), and

l q& is the soliton state vector with momentum q.
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The approximation in (2.1) arises from evaluation
of the matrix element & p I p3 I q& from a sum rule
which includes only soliton intermediate states.

We form the Fourier transform

(2.2)

and thereby transform (2.1) into the equation

(p =-is„)

f -p'e, (x)+[a(p+p) z(p)]-'+2m']c, (x)

=2]].(2w)-' ardye"" '"" '-C (x-)e (y)e (y)

(2.3)

where we have assumed that 4~(X) is real. [Inci-
dentally, if IX& is the localized state

[-p'+2nP-2]]. y, '(x)] y, (x) =O,

y, (x) = (m/](. &') tanhm (x-x, ),

(2.8)

(2.9)

4 (x) =(p, (x)+ g [(p/M)'c„+ (pm/M') d„

as well as the interpretation of (p, as Fourier
transform of a form factor.

In seeking to improve the solution (2.8), (2.9),
the essential observation is that there are two
expansion parameters. This is immediately evi-
dent if we consider the neglected terms,

l&(P" +P)-E(P)]'=M '(O'P'+PP"'+ 'P')-
+ 0 ('p"), (2.10)

where 'p' =porp. Since (p&-m, the contributions
neglected so far will generate a double series, in
the velocity v- (p/M) and in the mass ratio (m/M).

We explore this double series by expanding the
difference between 4~(x) and (p, (x) in a complete
set,

IX) =(Sm) ('J SP IP) e "", (2.4)
+ g/M)'e„]y„(X) + ~ ~ ~ . (2.11)

then

4,@)=& p I p(x)IX=O& (2v)-"'. ] (2.5)

The emergence of a static solution, (p, (x), to
(2.3) requires the two approximations

&[&(p+p)- &(p)]'& «& -p'&,

O, (x)-=e, ( )-=y. ( ),

(2.6)

(2.7)

the former pertaining to an average with respect
to the wave function p, (x), the latter condition be-
coming nontrivial when p refers to one of the
variables of integration. The application of (2.6)
and (2.7) to (2.3) yields the now well-known result

The orthonormal set y„(x) is that determined by
the process of linearization of the field equations
about the soliton solution, interpreted quantum
mechanically as excited states in the soliton sec-
tor. The |t„(x) thus satisfy the equation, ' rederived
in Sec. IIIB below,

[-p'+2m' —6l]p, 'g)]p„(x) =e„'p„(x), (2.12)

and include, with proper normalization, the func-
tion i pp, ()() (p,'(=-x) for which (() =0. (We designate
this function g, below. ) Without loss of generality
we can and do choose functions p„which are real.

Substituting the expansion (2.11) into (2.3), equa-
tions can be derived for the coefficients c„, d„, e„
by standard perturbative procedure. We find
(choosing the i)„real)

~„'c„=— p„(x)p' (p, (x), (2.13)

~n&n=-m '
n & c +2~~ (y„()py, '()-2 [py„()] y, '(x)) p c„,i„,( ), (2.14)

e„m„'= —(3m) ' JN„(x)() (,I)+(2X/m')J {(„(d(p'(,'(x)]+(, lx)(p (,W)(„tx)]] P c„.t)„, (v)
n'

+(»/~) fy„()[py. (x)]y, ()-[py„( )]y,'()]g d„,p„, ().
n'

(2.15)

The increasing complexity of these equations
results from integrations by parts, which demon-
strate that the momenta x and ~' which occur as
variables of integration in (2.3) yield contributions

both to the expansion in powers of v and in powers
of (m/M). Our equations furthermore do not
determine the coefficients pp dp 8p These may
be taken zero, either for reasons of symmetry
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(d, ) or because nonvanishing values of c, and e,
simply determine a shift in the position of the
center of mass of the soliton away from the origin.

Further discussion of (2.13)-(2.15) is, for our

purposes, unnecessary as we see by consideration
of the energy for which we have the tentative ex-
pression (also discussed more thoroughly in Secs.
III and V)

8 2

blxg)l)) =~())=~+ = ) I) ~ -',„g)+-', ' — + )~ zpN))' )), (2.16)

This is evaluated in the same approximation (sum over intermediate soliton states only) as used to derive
(2.3) (see Sec. IV for discussion of this connection), using unit "volume" for the system, and substituting
&pl s(0)lq& =i[8(p)-E(q)]&pl p I q&. We thus obtain

Z(p) =-,' d e, (x)[[Z(p+p) Z(p)]-'+p 2m' f-e,(x)

+-,'X „dxdye'~ """ '~e~(x)e„(x)e„(y)C~(y)+ (m'/2x). (2.1'I )

When we insert (2.11) into (2.17), keeping only
first-order corrections to the previous static
limit, we characterize the result according to
powers of p. For the p-independent term we find

trying to do two jobs at once. In the next section
we demonstrate how these tasks may be separated.

III. LORENTZ-INVARIANT FORMULATION

A. One-soliton sector

M = (4 3/3~)[1+O(( /M)')]. (2.18)

The designated order of the corrections can be
seen from a typical contribution which arises from
the first term of (2.17), namely,

The essential observation which underlies this
section is that Eq. (2.3) can be solved exactly in
the limit (m/M)-0, v= fp/E(p)] finite. This can
be seen by considering more closely the perturba-
tion due to the originally neglected difference

= (m/M)'xM. (2.19)

A detailed evaluation of these terms will not be
presented. The terms linear in p, typically

y, (x)p'y. (x) = o,

@(p ~p) @(p) PP P PP P
~

Z(p) 8 Z(p)'
(3 .1)

The first term on the right-hand side is vp. &very
other term of (8.1) contains at least one additional
factor of order (m /M) when acting on Q, (x).
the notation

4, (x)
-=e(x, v), (3 .2)

vanish by inversion symmetry, as they should.
Finally for the terms in p', we find with the

help of (2.8) that only the first term of (2.17) con-
tributes,

the left-hand side of (2.3) becomes, in the limit
under consideration,

e„'(1—v' )C (x, v) + 2m 'q)(x, v) .

2 2

(2.20)

What of the right-hand side? We show that the
right-hand side becomes 2XC'(x, v). Toward this
end we write

y, (x)p'y, (x), (2.21)

which is self-consistent to this order provided C„(x)= g (r/M)'X"(x)
ItaO

It is understood that

(3.5)

which is known to be so from a virial theorem, '
generalized in Sec. V.

We have thus verified the approximate Lorentz
invariance of the theory. The method used in this
section is cumbersome, however, because we are

Substituting (3.4) into (2.3), we see that integration
by parts effectively replaces each factor of r by
(p+i 8,), where s„has the effect indicated in (3.5).
Ignoring the latter we indeed reach the desired
equation
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s„'(I-v')C(x, v)+2m'4(x, v) =2ze'(x, v).

This has the solution

4(x, v) =
&p, (x'),

x' =x/(1 —v')"'.

(3.6)

(3.7)

In this evaluation we make use of (3.7) and of the
virial theorem'

U&y &»))d.»=-,' f y, &»)&-»,')g, &»)

Corrections in powers of (m/M) could also be
developed systematically with the help of (3.4), but
are of no interest here.

Et is straightforward now to demonstrate that
for the limit considered, Eq. (2.17) yields the
correct relativistic energy. We have, after taking
the limit (m/M)- 0 and making a trivial rear-
rangement,

E(p) =&p l~(x) lp&

~V 1—V —g~ @ pV ~
+

~
g(4)(x, v))dx+ v' 4(x, v)(-s„')4(x, v)

=m(1- v')V'+, v, =m/(1- v2)v'2. (3.8)(1-v')v'

(3.9)

The basis for calculating corrections to (3.8), i.e.,
corrections to the value of ~will be provided in
the next subsection, but the actual calculation is
postponed to Sec. V.

B. Excited states

We next consider states which are continuum
one-soliton-one-meson states. As we know from
previous work, ' there is a bound excited state of
the soliton, which must be considered at the same
level of approximation. We first study the con-
tinuum states I q, k), which satisfy the approximate
equation (k, &u referring to the meson),

(- (q+k-p)2+ [E(q)+~(k)-E(p)]'+2~'] &ply I qk& = » ~l, , (&plyl~& (~lpl~'& &~'Iyl q;»

+&plyl~&&~ lyl~'; k&&~'Iy I q&

+&pl pl ~; k& &~l ylr'& &~'lpl q&).

[We describe briefly the derivation of the right-hand side of this equation. First we write

&ply'Iq;k&=-g((plyl~&&~lyl~'&(~'Iyl q;k&+&plyl~& &~I@I~';k'&(~';k'Iylq;k&

+&pl yl ~;k'& &~;k'I y I
~';k"& &~';k" lpl q;k&)

We then assume, for example,

(r; kl &pl r'; k') = 2)) 5 (k- k')(r I &p I
r') + smaller scattering terms. ]

(3.10)

(3.11)

(3.12)

We shall take the Fourier transform of (3.10) and in so doing find it convenient to consider two different
transforms, namely,

e(x p k)-=x(x, v~, (u) =
)I

—e'"~ ~ "(pl &pl q;k),

o&»;», a)-=xl»;v„»)= I—» '» "*&pills)).

(3.13)

(3.14)

With the aid of these definitions, Eq. (3.10) can be transformed to

, +[z(p+p k) +~(k)-z(p)]' +-2m' e(xp, k)

dy f e++ )C (y)@'„*(y)-C)(x;&k)+e~ ~~ " &[@) (y)T&)(y;r-, k)4„(x)+C)(y p, k)C„(y)@',(x)1] ~ (3.15). 2g'
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This equation simplifies in the limit

v =[P/E(P)1 =O(1),

u =[k/(u(k)] =O(1),

(m/M) and (~/E)- 0.

We then have

(3.16)

The right-hand side (3.19) has now been reduced
to

6XC'(x, v)X(x; v, &u). (3.22)

A fina, l simplification is achieved by the substitu-
tion

X(x;v, (u) =exp[i(uv(I —uv)x/(1-v')] r(x; v, (u), (3.23)
E(p+p-k)+~-E(p)= ~+—[p/E(p)](p-k)

=~(1-uv)+pv, (8.17)

which will simplify the left-hand side of (3.15). To
simplify the right-hand side, we introduce the ex-
pansions

which eliminates a term linear in p from the dif-
ferential operator.

With the help then of (3.17), (3.22), and (3.23),
we find that (3.15) simplifies to

—(1 —v') 2
—2m'+ 6XC'(x, v) I'(x;v, (u)

(3.18)
where, in fact,

= ((u')'I'(x; v, (u), (3.24)

p k= E(p) [v —u (&u/—E)]—= E (p)v, (3.20)

so that we can neglect k compared to p. Less
trivially, we find from a study of the equation for
4, which we choose not to reproduce, that we can
set [in our limit (3.16)]

4(x;p, k) =. C (x;p, k) . (3.21)

integrate by parts, and take the limit (m/M)- 0.
The three terms on the right-hand side of (3.15)
become

2~[C,'(x)X&x;v, ~)+e,()C, „(x)C(x;p-k,k)

+X (x; v, (u)4 ~~'(x)] . (3.19)

A further simplification can be achieved, how-
ever. First, we notice that

&u' = u) (I -uv)/(1 —v')v' (3.25)

is the energy of the meson relative to the soliton
of momentum p.

Equation (3.24) tells us that if F,(x;~ ) is the
solution of the same equation for v = 0, then

I'(x;v, (u) =C (v, (u)FO(x';(u'), (3.26)

where x' =x/(1 —v')~'. The constant C (v, &u) will be
considered below. By definition the function K is
(2&@)

' ' times the normalized solution p„consid-
ered in Sec. II. This means that the set I p;k)
satisfies standing-wave boundary conditions.

We conclude this section with a brief account of
the corresponding development for the bound state
lp*) . We will make note only of differences com-
pared to the previous considerations. The analog
of (8.11) is

& pl&'I q*& = P(&pl &I&&&r I pl&'&(&'I pl q*& +&pl&I&&(&l pl&'*&&&'*I&i q"&+ (pl pl&*) &r*lpl&'*&&r'*Ill q*) ).
(3.27a)

Corresponding to (3.12) we have

(p*lyl q*& -=&plyl q&.

We define

E+(P) = [P'+ (M+ ~)']'".

(3.27b)

(3.28)

Thus

E*(p+p) —E(p)=- pv +(ua(I —v')'~' (3.29)

The analogs of (3.18) and (3.14) are called
@,(x) =X&x; v~, &og andy, (x) =X(X;v„~s) and may be
taken equal in the limit (3.16) when v~ = v, .

Corresponding to (3.15), we then find

, +[E*(p+ p) -E (p)]'+ 2m' X(x; v, (us)

dy"'"'4 ye ye. 4 ye. y4. e. ye. ye. 33

Proceeding as before and with the substitution
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q (x) =X(x;v, me) = exP[imvx/(1 —v') V'] Y(x; v, ~),
We find the equation

(3.31 )

—(1-v'), —23232+ 6ze2(x, v) Y(X; v, (u ) =(ue2Y(x;v, ~). (3.32)

Again if Fo(x;~) is the solution of (3.32) for v =0, then

(3.33)Y(x;v, (ue) =Ce(v, (u ) Y, (x', (u ),

and the constant Ce is to be determined under the condition (2~) Y, is normalized.
We shall utilize these solutions in the remaining sections, but we must complete our understanding of

them by a consideration of questions of normalization, completeness, and their relation to the commuta-
tion relations.

C. Commutation relations

%'e study the commutation relation

9 y, t
=i&pl[y(, o), [a, y(y, o)]] I q& =i&plq»( -y) (3.34)

First, consider the contribution from soliton intermediate states, namely,

i — p r r y q gr-gq +p yr x qQx —gp

Introducing (2.2) in the form

(3.35)

&ply(x)l &
= d . *'" '" ep-, ), (3.36)

(3.35) becomes

i dx, (e'~' ~)"oe,(X-x,)[E(q p„) E(q)]C, (y--x,)-+e+'~' 2)"oe, (X x,)[E(p+p, )--E(p)]C2(y-x,)). (3.37)

The simplest way to extract the information we are after is to take the limit q- p and to utilize the expan-
sion (3.1) The leading contributions are quadratic in p. We thereby find

(1 v2 )3/2
g ' dip 9„4)p -Xp By@p P —Pp ~ (3.38)

The contributions from the excited intermediate states studied in the previous subsection can be obtained
following the same outline. In terms of the solutions given in (3.26) and (3.33), the contributions analogous
to (3.38) are

i dxo —
1

Y(x'-x„v, (o)1'(y —x„v,(u) + I 2e, q2 Y(x-x„v, (ue) Y(y yo, v, (ue)-[ .
"

dk 2(o(1-uv) 2(ue (3.39)

The sum of (3.38) and (3.39) is to be equated to the right-hand side of (3.34) in the limit q-p. Here we

must remember that we are not using an invariant normalization. Consequently, we must write

lim&plq) =&pip) = (1-v')'~'&olo) = (1-v')'~2L, (3.40)

where I, is the "volume" of the system at rest. The factor in (3.40) is understood from the circumstance
that l p) transforms as [E(p)] '~2. Let us further note that

&pip) =Iim2s6(p-q) =lim
lj

dxoe'"02 2 . (3.41)
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Comparison of (3.40) and (3.41) implies that we must interpret j dx, as L,(1 —v')'t' when we integrate over a
surface at constant time in the frame in which the soliton has momentum p.

The two sides of (3.34) can be consistent only if the integrands of (3.38) and (3.39) sum to a 5 function,

5(x- y) = s„C (x, v)sC (y, v) + —,I'g;v, (u)1'(y;v, (u)+, ,(,Y~(x;v, ~)is(y;v, ~) .(1 —v')'t' dk 2(u (1 —uv) 2(u

This is to be compared with the known completeness relation for v= 0, namely,
(3.42)

1 " dk
5 (x- y) =—s„y, (x)s,y, (y) + —2(u I;(x,&u) I;(y, (u) +2~K,(x, (u ) Is,(y, (v ) .

77
(3.43)

We shall show that these are the same relation provided we make suitable choices of the normalization
constants in (3.26) and (3.33).

Starting from (3.42), we substitute x =x'(1 —v')'t' and utilize (3.7), (3.26), and (3.33). We find easily,
taking care about what is held constant

~ dk5(x'-y') = S„, j, y(x')S, , ~, y, (y') + i

—2(u'10(X', (u') Io(y', ru')C'(v, +) +2~Y~(x', (u) 1~(y', ~)cs'(v, (u).

(3.44)

It is an elementary exercise in change of variable
to show that

C'(v, &u) = ((u'/(u).

(3.47)

wher e (t' = 0)

= (1- ')'t's„~, y. (x'), (3.45)

An alternative derivation of (3.42) or (3.44)
making use directly of Lorentz transformation of
the fieM operators is left as an exercise to the
reader.

x- vt x'
(1 2)1/2 ) (1 2)1/2 &

VX

(1 — ')'

(3.46)

We also note that since dk~' = dk'&u (dk/~ is in-
variant) we have proved the equivalence of (3.42)
and (3.43) provided

IV. VARIATIONAL PRINCIPLE FOR THE EQUATION OF
MOTION

The general equations of motion of our method,
of which Eq. (2.3) is a special case are derivable
from a variational principle which will prove use-
ful in the sequel. Writing a general state as ~n&,

which includes the momentum p„, we compute by
sum-rule methods the tygce of IIover all included
states and obtain up to an additive constant

Tra= p &nlHln& =p ()&nlzln'& I'+[(p„-p„,)'-2m']I&
nl

&ln'&I' j
n nn'

+2& Q &nlyln'&&n'lyln"&&n"lyln"&&n'"i@In& (4.1)

We require that this expression be stationary with respect to variations of (n(m~n'& and (n~p(n'& subject to
constraints imposed by the commutation relations

5 g [&nlpln"&&n" I win'& —&nlrb'In"&&n" I p~n'&] = 0.
n"

(4.2)

To exploit (4.2), we multiply by a Lagrange multiplier t(n'~h~n&, sum over n and n', and subtract from the
trace of (4.1) to form a master variational principle
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Here the Hermiticity of H implies that h is also an Hermitian matrix. From (4.1) and (4.3), we derive the
"equations of motion"

5 (TrH)/5((n' jr jn) ) =i(nj[h, Q]jn'& =(nj)) ln'&,

5(TrH)/5&n'j(t)jn& =i&nj[v, h]jn'& =[(P„—P„,)'-2m']&nj(P ln'& +n. Q &nj((()jn"&(n" j(Pjn'"&&n" jyjn'&.

(4 4)

(4 .5)

(njHjn'& =0, non', (4.6)

evaluated by sum-rule methods, should provide
the general consistency conditions conjectured in
Ref. 9. This point will be explored briefly in
Sec. V.

We next apply the variational principle in detail.
We first consider the one-soliton subspace in the
limit m/M- 0, v finite. In this subspace the con-
strained variational principle (4.3) can be cast
into a form familiar as the "cranking" model in
many-body theory. " Evaluation of the first term
of (4.3), using the methods of the previous section,
yields

TrX =Q -,' 4 (x, v) (1-v') (- s„')4) (x,v)dx
Q

+ ' U(4 (x, v) ) dx
f

+v' C (x, v) (-s„')4)(x,v). (4.7)

The second term, similarly evaluated becomes

(4.8)

where {P is the momentum density operator

These are the matrix elements of the Heisenberg
equations of motion provided h =H. The equation
(2.3) within the one-soliton sector is then a special
case of (4.4) and (4.5).

It is furthermore amusing to observe that con-
sequent upon the identification h =H, (4.3) can be
interpreted as a variational principle for the trace
of the quantum action in which s, (p has been replac-
ed by (-i)[Q,H]. This observation renders our
result somewhat less surprising.

The variational origin of the equations of motion
guarantees that a consistent solution of these equa-
tions and of the commutation relations within a
given subspace renders the Hamiltonian diagonal
within the same subspace. The statements

(4 .9)

The equality (4.8) is again confined to the limit
under consideration as the reader will verify.

Adding (4.7) and the term (4.8) arising from the
constraints, the variation can be performed and
leads to Eq. (3.6).

Several conclusions can be drawn from (4.7)-
(4.9):

(i) The summation over v may now be discarded
and we have as a result the "cranking" variational
principle

(
5

l (k& —v'
J 4(x, v)p'4)t'X, v)

l
=6(JC- v(P& =0.

(4.10)

This simple "cranking" form of the variational
principle applies only to the translation of the
soliton and does not extend to the higher sectors
where excited states are included.

(ii) The implication that there is indeed a trial
state for which (4.10) is the functional can be read
off from the considerations found in Refs. 6-8.

(iii) By scaling arguments a virial theorem can
be derived from the variational principle as has
been shown by Goldstone and Jackiw for the soli-
ton sector. Beyond the one-soliton sector a more
general virial theorem can be obtained by the same
method if all matrix elements including those which
arise from the bound and continuum states are re-
scaled and then varied simultaneously. In Sec. V
we shall derive this virial theorem in a different
way by using the equations of motion.

To carry these considerations further to the
sectors of Hilbert space, which include the excited
states, we first examine the contribution to the
variational principle of the bound excited state.
To consider the change in soliton energy due to the
inclusion of this state, we in turn calculate the
contribution to the various terms in&. Using the
reasoning and notation of Sec. III, the term —,'g2

changes by

2&pjv'jp& = kg[E*(q)—E(p)]'j&pjyjq*&j'=-
J dxX (x,v, (us)[vp+tu(1-v')~']'X(x, v, ~).

bound
a

Substituting Eq. (3.31) and remembering that Y' is now real and has a definite parity, we obtain

2
-', ()rlii'I)r[ =-,' 'Ch)'(r;vrd ) (v')r'+ ), )'(rrrra )

(4.11)

(4.12)
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The remaining terms in & are similarly evaluated to yield

2 2
-', (Pl (6„6)'lP) =! (dxF, (xvvt)(, P"'v("', F(x;v, vtt), (4.13)

( pl ](()6)l])p„„=-m' J dx F' (2 v vd) + 6 2 J dx F' ( x v)x26(xv). (4.14)

From Eqs. (4.12-(4.14) we can obtain the contribution to the soliton energy as well as to TrR, i.e., to
the variational principle, in the space of the soliton and the bound excited state. The latter is found by
first summing each term over p and then subtracting twice the sum of (4.13) and (4.14) from twice (4.12).
This gives

(Tvd! =-g (dxF (xvvp)[ll —v')P' —2m'+6266(xv)] F(xv vd) v f dxY(x;vvtr)vx F(x;v 62).
V

(4.15)

(The reason for the factor of 2 is that there is an equal contribution from terms where the trace is over
the momenta of the bound excited state and the soliton is the intermediate state. )

As remarked above, the constrained variational principle (4.3) is equivalent to an unconstrained varia-
tional principle of the trace of the quantum action. Indeed if (4.15) is varied with respect to Ys it gives the
correct equation of motion for Ys, Eq. (3.32).

By summing (4.12), (4.13), and (4.14) the bound-state contribution to the soliton energy is found to be

2

&P]l26]lP) = —' J(dxFx(x;v xd) ((1vv')P' — '2mvCP6Xv&)xv'v6", F(x;v ~). (4.16)

Because Ys is a solution of Eq. (3.32), the expression (4.15) vanishes for each v separately. This can be
used to rewrite the energy contribution in a simpler form

l ]p&„26„,p=(p( (v' —d)]p&, =&plv'Ip&, , = dxF (xvrv ) (v'p'+ 1,)
F (xvrv ). (4.17)

At the same level of approximation we must also include the contribution from those continuum states
which consist of a soliton and a meson, Their contributions can be computed in a manner completely
analogous to the bound-state contribution. We shall only quote the results here. With the notation of Sec.
III, we find for the individual terms which make up the Hamiltonian density

—,(Plm'~P&, .„,=-. Q dx Y(x;v, ~) v'P'+, , ; Y(x;v, ~),2 2 (4.18)

2 (Pl (s &f&) Ip)„„, = —Q &fxY(x;v, &) p'+ I, , Y(x;v, (u), (4.19)

(])&~U(y)~P),.„, =-m'Q dx Y'(x;v, (u)+3xg &fxc'()&, v)Y'(x;v, &v). (4.20)

The variational expression can be formed as before including a factor of 2 and we obtain

&fx Y(x;v, u)) —(1-v')p'+2pp3'- 6X4'(x, v) + I, F(x;v, «&).
1 —v' (4.21)

Variation of (4.21) gives again the correct equation for Y(x;v, &v), (3.24). The contribution of the soliton-
meson states to the soliton energy is then found by adding (4.16)-(4.20)

(p~X~p),.„„, =-', Q ] &fx Y(x;v, &v) (1+ v')p-2m'+ 6]&e'(x,v)+(g', , Y(x;v, &v)
, (1+ v')(I-uv)'

, (1-uv)'
dxF(xiv, tv) v p +tv

) ) F(xiii, tv),
1 —v

(4.22)
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where in the last equality we again used the fact that for a solution of Eq. (3.24), (4.23) vanishes identically
and we have

to

(4.23)

Let us notice finally that because (4.1.5) and (4.21) depend on@(x,v) to this order Eq. (3.6) is generalized

((I —v')e„'+2m' 2-XC'&x, v) —6Z[Y~ (x;v, (u)+f (d&/2m)r'(X; v, (u)]] @(X,v) =0. (4.24)

The terms in square brackets in (4.24) are the "one-loop" contributions and must be renormalized.

V. FURTHER COMMENTS

In this section we shall round out the material already presented by some additional remarks. In part
A we derive a virial theorem and in part B we establish the proper Lorentz transformation properties of
the soliton. Finally in part C we comment on consistency relations guaranteed by the variational principle.

A. Virial theorem

For the soliton sector a virial theorem was derived by scaling arguments in Ref. 9. By starting from
the equations of motion we shall now extend this to the space which includes, besides the soliton also the
excited bound and one-soliton-one-meson states. Multiplying the equations of motion (4.24), (3.24), and

(3.32) by B„g(x,v), B„rs(x;v,~), and B„r(X;v,(()), resPectively, they can be written as

(1—v')[B„C (x, v)][e„'e(x,v)] = ' s' [B„4(x,v)],
BU(y, r„Y)

BC),v

BU($, Y~, Y)
( —v )[Bgrs(xi v)(dg)] [(Bg +~ )Y~(x) vq(()s)] =

Br (x v ) [B~F~(x)v)((h)] i

(5 1)

(5 .2)

(1 —v')[B„Y(x,v, (u)] e„'+ 1, r(x, v, (d) = ' s'
[B„Y(x,v, (v)] .(()2(1 -uv)' BU(p, rs, Y)

1— B ) v)(d
(5.3)

If (5.3) is integrated over meson momenta and if these equations are then summed, a first integral can be
obtained immediately as the right-hand side is just dU/dx. The result is

(1 —v'){ [B„(j))(x,v)]' +[B„F~(x,v, (u )]'] +~'re�(x, v, ~)

+
2

(1—v')[B„Y(x,v, (v)]'+ 1, Y'(x, v, (d) =U((})),rs, r). (5.4)

Taking this equation in the rest frame, integrating over all space and performing an integration by parts
in the derivative terms, we arrive at a virial theorem

dx p, (x)(—B,')y, (x)+ r„(x,(v )(-B„'+~')Ys(x,~,)+ ( (dk/2~)r(x, ()( vB„'+(u')r(x—, (u) = dxU(p, Y~, Y').
I

(5.5)

From the above derivation it is clear that this virial theorem can be readily extended if higher excited
states are included.

B. I.orentz transformation properties

If the soliton is to describe an extended particle we have to insist that its energy and momentum trans-
form like the components of a vector. That this is indeed the case we shall now show.

The mass of the soliton is defined as the expectation value of the Hamiltonian density in the rest frame.
If excited bound as well as one-soliton-one-meson states are included, it is no longer given by (2.21), but
rather by

m =& Oi X(x, f)i 0)

= ' w (.g)( —a,*)(.(g)+ r.,g, ~)( —a, '+~,')y~(x, ~)+ l( (dk/2w)vg ~)[( s)+up]vg, -)I, ,' (5.6)
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where again the volume has been taken to be unity and the virial theorem (5.5) has been used to eliminate
the integral over the potential.

Let us then compute the energy of a soliton moving with momentum p. Using (3.8), (4.16), and (4.22) and
[by means of (3.26), (3.33) and (3.4V)] expressing all quantities in the rest frame we find

S =(pie(x, t)ip&

= —,
'

(1 —v')'/' dx y, (x)( —8„')y, (x)+ Y2s(x, 1v)( —s„'+~')Yos{x,~)+ (dk/2x)YO(x, (u)(-s„'+1d2)YO&x, (o)

V2+(1-v')'/' U(y, , Y2s, E;c)+( ),2/ 2 dx y, (x)(-S„2)y,(x)+ Y2s(x, ~)(-S„'+ 111'') Y2s(x, ~)

2

(1 v2)1/2 (1 v2)1/2 I

+ (dk/211)YO(x, (v)(- s„2+(u2)Y2(x, (d)

(5.7)

where the virial theorem (5.5) and (5.6) have been
used. The soliton momentum can be evaluated in
the same way and using (4.9) we find

.'(Pl I,1/(x-, t-), s,p (x, t)},IP&

U2tT22(x, t)U2 = 1,[T20(x', t')-2vTM(x', t')1

+v'T„(x', t')] . (5.13)

Similarly we find for the momentum density

(ply (x, t)lp&= —(1- v')'"&0(U,'T„(X,t)UJO&, (5.14)

Mv
2)1/2 ' (5.8) with

X(x, t) = T„(x,t)

=-,'112(x,t)+-,'[S„y(x,t)]'+ Ug),

T„(x,t) =T„(,t)
= —,'[x(x, t), s„y(x, t)}„

T„&,t) =-:"(,t)+-.'[s.y(, t)]'- U(y)

(5.9)

(5.10)

(5.11)

Let U~ be the unitary operator which mediates the
Lorentz transformation from the rest frame to the
frame where the soliton has momentum p. With
the normalization explained below (3.41), we find

(PI X(x, t)IP& = (1-v )'/ (0(UJ T„(x,t)U, I 0&, (5.12)

where

Energy and momentum of the soliton therefore
do transform as appropriate for a particle.

Desirable as this result is, it has to be recon-
ciled with the fact that K(X, t) and the momentum
density 5' are elements of the energy-momentum
tensor, and thus transform as a tensor of second
rank. To understand why there is no inconsistency,
let us calculate the energy (5.7) and the momentum
(5.8) in a different way. We do this first for the
energy density by evaluating it in the rest frame
and then boosting to a frame where the soliton
moves with momentum p.

For the scalar field the symmetric energy-mo-
mentum tensor has the form

UJT2, (x, t)Up = 1,[- vTO2(x', t') + (1+ v2)T2, (x', t')1

&~l T„(s,t )I u&

'M=(1-v')'/' ~2~- dxU(p. , Ys, Y) +
( 2)1/2

(5.16)

where again all quantities have been expressed in
the rest frame. The first term vanishes by virtue
of the virial theorem (5.5) and so does the second
term in the rest frame where v =O. Thus

&OIT„{,t)lo& =0, (5.17)

and we recover (5.V) and (5.8) from (5.12) and
(5.14). Thus (5.17), which is a consequence of the
virial theorem (5.5), guarantees that the expecta-
tion value of the energy and momentum density

—vT„(x', t')] . (5.15)

It can readily be verified that &0~ T„&x,t)~0& van-
ishes and since (0~Too&x, t)(0& =M it is necessary and
sufficient for the energy and momentum density
(5.12) and (5.14) to transform like a vector [cf.
(5.V) and (5.8)] that (0]T»&x, t)~0& vanish. This is
indeed the case by virtue of the virial theorem
(5.5) as we now show. From (5.11) we find with
the help of (2.17), (4.12), (4.13), (4.18), and (4.19)
and using the definition (5.6) for M



does indeed transform like a vector as is required
by the interpretation of the soliton as a particle.

C. Consistency conditions

The equations of motion (2.1), (3.24), and (3.32)
for the various matrix elements of the field opera-
tor investigated in this work can be derived by
taking matrix elements of the Heisenberg equations
of motion for these operators as has been shown

in Ref. 9. In Sec. IV we pointed out that these same
equations can be derived from a trace variational

&ni +in'& = 0, (5.18)

That our solutions do indeed satisfy these con-
sistency conditions we shall now briefly illustrate
for & pi Xg, t)i p*) .

To that end we evaluate the various terms of the
Hamiltonian and find

principle, which also guaranteed that the solutions
of these equations would render the Hamiltonian
diagonal in the space considered. This gives a
set of additional conditions satisfied by the solu-
tions of the equations of motion, namely,

—,'&pl~'(x, f)l p& =-,' g [&pl)) (x, t)lq&&ql~(x, t)l p+&+&pl)) (x, t)lq*&& q*l)) (x, t)I p*&]. (5.19)

Observing that )p»& differs from (p& only by surface oscillations we replace in the second term

&q*l~ (x, f)lp*& = &ql~(x, f)lp& (5.20)

The expression (5.19) can now be computed by the methods shown in Sec. III and the two terms are found

to be equal. In the notation of that section we find

—,'&P)m'(x, t)iP& = dyX(y;v, (u)(vP)[vP-(()(i-v')'~']e(y, v). (5.21)

The rest of the Hamiltonian is evaluated in the same way, familiar by now, and we obtain

P

&pl3C(x, f)lp*& =
( dyX(y, v, ~)[(I+v')p~ —vcr(I —v'P~'p-2nP+2ae'(x, v)]4 (y, v). (5.22)

With the help of (3.6) for @(x,v) this can be rewritten as

(('I»(»&)lp ) = J' ayx(»v, »)v[av() —v(( —a) ~ ]jim(y v')'. ' (5.23)

But this vanishes as it is precisely the orthogonality relations which follows from the equation of motion
(3.30) for X and the one for (p(p) which is just (3.32) with (v =0. In an analogous way it can be shown that
the Hamiltonian is diagonal between the soliton and the soliton-plus-one-meson states.

In conclusion, we believe that we have illustrated amply for the example chosen how to build a quantum
field theory directly from the field'equations and the commutation relations. In further work, we shall
show how to extend our concepts to other models and to more complicated parts of Hilbert space.

*Work supported in part by the Energy Research and
Development Authority.
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