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Magnetic charge and the charge quantization conditions
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Two viewpoints concerning magnetic charge are distinguished: that of Dirac, which is unsymmetrical, and the
symmetrical one, which embodies invariance under charge rotation. It is pointed out that the latter is not in
conflict with the empirical asymmetry between electric and magnetic charge. The discussion is based on an
action principle that uses field strengths and the vector potential A as independent variables; a second vector
potential 8 is defined nonlocally in terms of the field strengths. This nonlocality is described by an arbitrary
vector function f"(y), subject only to the restrictions„f"(y) = 8(y) and the additional requirement of oddness,
in the symmetrical formulation. The charge quantization conditions for a pair of idealized charges, a and b,
are inferred by examining the dependence of the action W on the choice of the arbitrary mathematical
function f, and requiring the uniqueness of exp f iWJ. For the unsymmetrical viewpoint the half-integer
condition of Dirac is obtained, e,gb/4m = ~~, while the symmetrical formulation requires the integer condition
(e,gb —ebg, )/4m' = n. The Dirac injunction, "a string must never pass through a charged particle, " is criticized
as unnecessarily restrictive, owing to its origin in a classical action context. As simplified by a restriction to
small momentum transfers, permitting the neglect of form-factor and vacuum-polarization effects, the
dynamics of a realistic system of two spin- — dyons is shown to involve the same interaction structure used
in the idealized discussion.

INTRODUCTION

Interest in magnetic charge has revived recent-
ly,

' in contexts that are characterized by such
terms as non-Abelian gauge fields, broken sym-
metry, color, . . . . It is not my intention to com-
ment on this class of speculations. I wish only to
review and attempt to clarify earlier remarks' on
the troublesome charge quantization condition
since they are sometimes misunderstood and be-
cause my own views have appreciably altered.

The original work of Dirac' pertained to parti-
cles with electric charge (e) in the presence of
magnetic charge (g) and inferred the charge quan-
tization condition (K=c = 1, rational units)

eg/4tt = ',n, n =0, +1, +2, . . .-.
This statement incorporates the usual concept of
an absolute distinction, not subject to continuous
variation, between electric and magnetic charge.
However, the general form of the Maxwell equa-
tions
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admits the one-parameter rotation group described
by

J,- cosPJ, + sing/

sin@2, + c-os'„,
F—cosgF + sing *F,

as supplemented by the statement produced with
the aid of the iteration property of the dual:

The corresponding invariant form of the charge
quantization for two particles, a and b, is

(e.gb —ebg. )/4n =n,

where, for the moment, it suffices to say that n
assumes discrete values, including zero, with
n, —1 the magnitude of the smallest nonzero pos-
sibility. It is remarkable that this symmetrical
viewpoint does not conflict with the empirical
asymmetry between electric and magnetic charge.

To see this we make an invariant distinction be-
tween small charges, which are such that

(e.'+g, ')/4tt & n„
and large charges, which obey

(e, '+g, ')/4tt ~ n, .

(The known unit of pure electric charge is com-
fortably small, es/4s = o. «1.) Now apply the
charge quantization condition to a pair of small
charges, and note that

4n' 4g
(8)

from which it follows that the left-hand side van-
ishes. Hence, if only small charges are admitted,
all possible two-dimensional points with coordi-
nates e„g, must occupy a single line. And, by a
conventional choice of coordinate system, this ab-
solute line can be made the axis of pure electric
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charge, thereby reducing to zero all magnetic
charges. In this viewpoint, then, what is special
about the world thus far disclosed by experiment
is simply that no large charges have yet been pro-
duced. Incidentally, the geometrical inequality
contained in Eq. (8) informs us that the minimum
strength of a large charge, specifically, one that
does not lie on the line of small charges, is ac-
tually given by

(e,'+g, ')/4m &n, '/a» 1.

In the following discussion we shall consider both
the unsymmetrical and the symmetrical view-
points, although it is the latter, with its possibil-
ity of dyon fractional charges and the associated
dynamical model of hadrons, that I support.

ACTION

An unsymmetrical, and provisional, but conve-
nient action expression that yields the pair of
Maxwell equations is

W= (dx)[J,"A„+J"B„—,F"'(&„A—,—&,A„)+gF"'F„,],

tions produce the relation

F„„(x)=(S„A, s-,A„)(x)

+ dx' * ~x-x'J ~x' —,x —x'J qx'
(15)

the dual of which,

*F„,(x) = "(s„A, &,A„)(x)

~[(dx')[f „(x x)Z.-,( x) f.(x x')Z.„(x )],
(16)

leads to the second Maxwell set. Another conse-
quence of Eq. (15) is the construction

A, (x) = — (dx')f"(x x')F„,(-x') +S,X, (x),

the analog of (14).
The analogy between (14) and (17) is not an actual

symmetry in the sense of the charge rotation (8) un
less

(10) *f'(y) =f"(y) = f'( y). -- (18)
where A and F are subject to independent varia-
tions and B is defined as

B„(x)= (dx') *F„,(x')f'(x' —x)+&„x (x), (11)

Then, despite its unsymmetrical appearance, the
action expression (10) is invariant under the
charge rotation. To verify this, consider the in-
finitesimal rotation

in which X is arbitrary and f'(y) obeys

&.f'(y) = ~(y). (12)

6J,' = 5QJ 5J = 5(bJ„—5F =6/ *F, 5A =6$B,

We shall also introduce

*f'(y) = f'(-y), &, "f'(y) = ~(y),

so that (11) is presented alternatively as

B„(x)= —
~I

(dx') +f'(x x') +F„,(x')+-S„X (x).

(14)

The stationary requirement on A variations di-
rectly yields the first Maxwell set, while F varia-

which is completed by

r
&B„(x)= &Q (dx') *f'(x x')F„„(x')—

r
=5& -A„(x)+ (dx')(~f"-f')(x-x)F„„(x),

~J

(20)

where gradient terms have been omitted. The re-
sponses of the individual pieces of 8' are

r
6 )f (dx)(Z, A+J B) =5/ (dx)(dx')J" (x)("f" f')(x x')F„,-(x'), — (21)

dx —~ I'"'~A —~A =-& dx J A+J B, (22)

and

dx —,
' Z~'Z„, =O 2 dx J A — dx dx' J~ x + ' — ' x-x'S'„, x'

= 6Q 2 (dx)J, B + (dx) (dx')J,"(x)(*f' f")(x x') *Fq,(—x'), - (28)

where the last form involves the analog of (15),
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*p„,(x) = (s„B —B„B,)(x) —
J

(dx') *[*f„(x—x')J,„(x') —*f„(x—x')J, „(x')].

The average of the alternatives in Eq. (23) combines with the other contributions to give

()w=5(-', J (dx)(dx')('f' f')(x —x-')[J (x)F„„(x')+z (x) "F„„(')],

(24)

(25)

which indeed vanishes under the circumstances of
Eq. (18).

The action expression (10) was characterized as
provisional, for it cannot be applied as it stands
to point charges, which constitute the only possi-
bility for a consistent theory of electric and mag-
netic charges. The mathematical difficulty is, of
course, the singular nature of the self-action for
an individual charge. A simple device to allevi-
ate the problem is based on the following replace-
ment, which is applied to all the terms of (10):

(dx)G(x)H(x) - Jr (dx)G(x)H(x + A.)

f (y)= d& '[6(y —&) -~(y+h)) (29)

In the following, differences of f functions are
written as

(30)

where the surface integral extends over the area
bounded by the two paths. The analogous state-
ments for functions that obey the symmetry re-
striction of (18) are

(dx)G(x + X)H(x). (26) 5f „(y) =S"m„,(y), (31)

Here, X is an arbitrary spacelike displacement
that eventually tends to zero, and +X indicates the
equally weighted average of the two possibilities.
The formal action property of W-W(X) is not af-
fected by this replacement, the field equations be-
ing retained intact, 4 and the now finite self-actions
of the charges, more precisely, their real parts,
can be deleted without ambiguity. (The precise
philosophy that underlies this incision need not de-
tain us. ) The only consequence in an equation like
(25) is conveyed by the replacement x -x'

X -X'hA, .

which, despite the use of the 5 symbol, is not lim-
ited to small changes; the surface integral con-
structions of the antisymmetrical tensor m~, (y)
are exhibited in Eqs. (28) and (30).

The explicit dependence of W(X) on the f function
is contained in the J B term. A change in the
choice of f induces

6W(&) = — (dx)(dx') *F„,(x)5f"(x -x'+]).)J'„(x'),

(32)
which is not restricted to small changes since all
f dependence is concentrated in 6f. The introduc-
tion of (31) converts 6W(X) into

CHARGE QUANTIZATION

The basic realization of a function f that obeys
Eq. (12) is given by

6W(&) =a (dx)(dx')(s„*p„, +s, +y,„+s„*~„,)(x)

x m"" (x —x' k X)J'"„(x')

= --'.
JI (dx)(dx')~„„.J,'(x) ""(x-x'~~)J'„(x )

where the $ integration follows some path from the
origin to infinity. Different paths produce differ-
ent functions and we shall indicate specific choices
by the superscripts (1) and (2). The difference of
two such functions is

(dx)(dx')J,"(x) *m „„(x-x'+ X)J"(x').
~I

We now insert a point-charge realization of these
currents

d&„.(&l&4)6(y —$)

«„.6(y —h), (28)

J,"(x) = g e, ds ' 6(x -x, (s)),dx,"(s)
a ~oo

J'(x') =Q g„ds' ', 5(x -x,(s')),, dx,'(s')
~ao ds'

and get

(34)
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5W(A. ) = —Qe,g~ dx,"dx~*m„,(x, —x~sA. )
a,y

e,g, /4rr =n;

if this special situation is disregarded, we get

(40)

= —Q e~gg p +doing m ~q(x~ —xg + A. )~
g Q

e,ga/4m = n. (41)

(35)

der,","=dx,"dx,' —dx,'dx," .
In the symmetrical formulation, for which m»(-&)
=m„„(y), 5W(A) can be written in terms of the ro-
tationally invariant combination of charges:

5W(X) = ——,
' g(e,g, e,g.—) Jl —,'*do.","m„,(x, —x, ~X).

a, b

(37)

We first examine the unsymmetrical viewpoint,
where (28) is appropriate,

5W(X) = —P e,g, —, *do,"~'do&,6(x, —x, + A. —().
(38)

The product of orthogonal area elements defines
a four-dimensional element of volume for the vari-
able x, -x, + X —$, where we now make a particu-
lar choice of +X or -A. That variable may, or
may not, pass through the origin in the course of
the integration, correspondingly yielding 1, or 0,
as the integral of the 5 function. Consider, for
definiteness, this situation. The two paths being
compared are straight lines in the 12 plane, de-
viating by the angle 9. The excursions of the vari-
able $ in this plane are measured by the area ele-
ment da». Perpendicular to the latter is *do,",
=do,", , and this integration over the appropriate
5-function factors picks out the situation(s) where
x,' —x„' = 0, x,' —x,' = 0, assuming, for simplicity on-
ly, that A. lies in the 12 plane. At each occurrence
of this situation, should the two-dimensional vec-
tor (x, -x, + X), , lie within the triangle of vertex
angle 6), the complete integral would equal unity;
otherwise, it would equal zero. As for aA. , one
must also recognize the possibility that, for one
of these choices, the integral equals unity while
the other yields zero. Thus, the basic values of
the four-dimensional integral are 1, &, 0, with the
possibility of p dependent on the finiteness of the
A. displacement. On singling out a particular gQ

pair, the uniqueness of W(X), mod2v, correspond-
ing to the physical significance of expjiW], re-
quires that

(e,g, -e,g.)/4n =n (43)

This is (5) with n restricted to integer values, so
that n, =1. (The use of the strict construction of
the limit X- 0, as described in the preceding para-
graph, would further narrow n to the even inte-
gers. )

STRINGS

The original Dirac formulation has been promi-
nent in recent developments, which makes it de-
sirable to point out, again, the unnecessarily re-
strictive nature of the dictum "a string must never
pass through a charged particle. " To set the scene
for this criticism, consider the part of the action
(10) that depends explicitly on the coordinates of
the point charges, as contained in the current con-
structions of Eq. (34). The response to a variation
of these coordinates is

5W=+5
Jl dx."[e,g, (x.)+g.a„(x,)]

(44)

In the past, I have insisted that no anomalies
should be tolerated during the limiting process
X- 0, an attitude which results in the integer quan-
tization condition (40). Yet, it was always appar-
ent that this injunction might be unnecessarily
strict, since the theory ean be completely free of
nonphysical elements only when X attains its null
limiting value. Thus, it would suffice that the cir-
cumstances for which the A. displacement is signif-
icant be a set of measure approaching zero in
that limit. En this more permissive view, to
which, in keeping with the times, I now subscribe,
the Dirac quantization condition (1) is correct for
the unsymmetrical formulation.

In the symmetrical formulation, where 5W(X) is
given by (37) and m„,(y) by (30), the presence of
two disjoint areas, each with the weight factor &,
replaces (39), for A. =0, with

(42)

or

e,g, (1, —,') =2nn, (39) where
with n an integer. If the special situation produc-
ing 2 is taken seriously, the quantization condition
reads

do,"= 5x,"dx," —5x,"dx", .
On introducing (15) and (24), this becomes
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5W = P ', d-o,""[e,F„,(x,) +g, *F„,(x,)]
a

—Qx.g, f da ",fx.)x x.,)-
a,b

+Qg, e, d(x.", *f„(x,—x,),
a&

and here

doa"'~ = *d'Oa "CfX~, (47)

spin--, dyons, under conditions of sufficiently
small momentum transfer that physical effects
associated with vacuum polarization and charge
form factors can be omitted. The motion of the
individual dyons in a given electromagnetic field
is described by Green's functions that obey

X' —.Xx' -eA (xx) )lBx-(x ))+'xx G, )x', x")

= 5(x' x"), (50)

is a directed three-dimensional element.
These variations are relevant to the derivation

of equations of motion for the charged particles,
where only field strengths should intervene. To
achieve this, Dirac insisted that the additional f-
dependent terms in (46) must vanish. Thus, if no
point $ along the integration contour of (27) is al-
lowed to coincide with a value assumed by x, —x„
these unwanted terms will disappear. But suppose
such a coincidence does occur'? Consider first the
unsymmetrical situation in which particle a is
electrically charged, and we examine this con-
tribution to 5W of a magnetically charged particle
Q

~

where a charge matrix of eigenvalues +1 is im-
plicit in e and g. In a matrix notation, this equa-
tion is written

or

with

ys e-&S"
3p

(52)

P =y (P - eA gB) +—m .

The analogy between P and a Hamiltonian is used
in deriving the proper-time equation of motion

-8 gg dO'ag4E~6 xa —X~— (48)
dx"

= —[x" e]=y"
KSS 1

(54)

The integration element for the variable x, -x, —$,
do,"),dg&, is an infinitesimal four-dimensional vol-
ume. If, in the course of the integration, x, —x~
and $ become equal, the change in W will be finite,
of magnitude e,g, = 2))'n, according to (41), and

exp[iW] remains unaffected. In the symmetrical
formulation, where *f„=f„, the last terms of (46)
read

We also exploit the significance of the matrix of
exp(-is, H) as a transformation function,

&x ~e-"'~x-&=&xs, )x-o&,

and apply the differential action principle'
Sj

6(x's)~x" 0) = -i x's, ds5II x"
4 p

(56)

—Q (e,g, —e,g, ) J
do)', f„(x, -x,),

aP
(49)

to changes of the vector potentials,

6(x's,
~

x"0)

and the nonzero contribution associated with a par-
ticular pair of particles is similarly measured by
—,(e,g, —e,g, ) =2mn, as given in Eq. (42). Evident-
ly, the same charge quantization conditions, ex-
pressing the uniqueness of exp[iW], should be and
are encountered whether one examines the change
of the f function for fixed-particle trajectories or
varies the trajectories for a given f function.

REALISTIC SYSTEM

=2 XS~I

4p

4x dx
ds e 6A +g 6B x0 . 57

ds ds

The latter is also presented in functional notation
as

1

( )
(x's, ix"0)

dx~
x's, dse 5 -x s x"0 58

p dS

The discussion thus far given is an idealized one,
abstracted from the special dynamical features of
particular types of particles. Accordingly, it
would be instructive to indicate, at least, how the
charge quantization condition enforces the consis-
tency of the theory for a realistic system. To that
end, but minimizing the difficulty of a fully gener-
al discussion, we consider the interaction of two

1
(x's, ix"0)i 58~ $

dx"
x's,

i dsg 5(& —x(s)) x"0 . (59)1 J

The current expressions appearing here, which
resemble (34), are incomplete, however, for they
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are not conserved. Thus G„=exp[iW. .]O,"';.,l.~", ';.,I (67)

dx"„J dse ~ 5(g -x(s))
p

= -e[5(f -x(s, )) —6(] x(0))] (60)

r
4(x') = (dh)[e&„(()+gB,($)]f"($—x'), (63)

and analogously for x". The f function appearing
here obeys (12) and can be exhibited, similarly to
(27) but with notational changes, as

dx"f"(( -x') = ds 6(& —x(s)), x(s, ) =x',
GS

(64)

along with'

r D

f"($ -x")-= ds 5(( -x(s)), x(0) =x";
J „ds

in these expressions x'(s) is numerically valued and
the two paths are arbitrary. When the gauge-in-
variant transformation function is used, Eqs. (58)
and (59) retain their form, but the proper time
parameter now ranges from -~ to +~. The fol-
lowing remarks refer to the gauge-invariant
Qreen's functions that are constructed as

G, s(x', x"),„„=i
v p

ds, (x's,
I

x"0);„,. (66)

The Green's function that describes the situation
of interacting dyons a and b is presented symbol-
ically in'

5
s(" i 6g„($)

= -e[5(( -x') —5(( —x")](x's,lx"0), (61)

which relates the nonconservation to the gauge
variance of the transformation function, and of
the Green's function. What is missing is an elec-
tromagnetic model of the source, describing the
history of the conserved charges before they ap-
parently appear at x", and after they seem to dis-
appear at x'. This is effectively introduced by
considering the gauge-invariant combination

(x's, lx"0);„„=exp[i/(x')](x's, lx"0) exp[-iP(x" )],

(62)

where

where W, b is the part of the action expression of
the preceding sections associated with two distinct
current distributions, J, I, and J, I„and

a n
8($) 6g(() 9 gg($) '

5 (]) 1

the fields A($), 8($) are set equal to zero after the
differentiations. The effect of these differentia-
tions is to introduce exp[iW„] into the over-all
matrix element as an ordered operator, with the
functional derivatives replaced by particle opera-
tors, in accordance with the gauge-invariant ex-
tensions of Eqs. (58) and (59). The current ex-
pressions thus obtained have just the form of (34),
and their operator aspect can be removed through
the evaluation of the matrix element as an infinite
product of infinitesimal transformation matrix
elements, yielding a functional integral form. The
result is an interaction factor having precisely the
structure used in the preceding discussion of the
charge quantization condition. Of course, one
would want to supplement this highly formal dis-
cussion with an explicit verification, which inevi-
tably involves an approximation scheme. The most
immediate one is a high-energy eikonal approxi-
mation' to the individual Green's functions in (67),
which effectively results in the arbitrary particle
paths of the functional integration being replaced
by straight-line motion. The details are left to
the reader.

A.dded note. At long last there is experimental
evidence for the existence of magnetic charge.
P. B. Price„E. K. Shirk, W. Z. Osborne, and
L. S. Pinsky [Phys. Rev. Lett. 35, 487 (1975)] have
detected a very heavily ionizing particle that has
all the characteristics of a particle with magnetic
charge g= 137e, or in rationalized units, eg/4m = 1.
That is the smallest magnetic charge permissible
in the symmetrical formulation, and twice the
magnetic unit of the unsymmetrical Dirac version.
While this does not prove the validity of the sym-
metrical viewpoint, as the discovery of magnetic
charge g=-', (137e) would have disproved it, it does
lend considerable support to the symmetrical for-
mulation and encourages the serious study of the
dyon model of hadronic phenomena. Since the
smallest magnetic charge resides on a dyon, the
observed particle should also carry a fractional
electric charge, 3e or 3e in magnitude. That can-
not be verified from the present data, but might
be tested when such a particle is observed coming
to rest.



MAGNE TIC CHARGE AND THE CHARGE QUANTIZATION. . . 3111

*Work supported in part by the National Science Foun-
dation.
For example, Y. Nambu, Phys. Bev. D 10, 4262 (1974);
G. 't Hooft, Nucl. Phys. 879, 276 (1974).

2J. Schwinger, Phys. Bev. 144, 1087 (1966); 173, 1536
(1968).

3P. A. M. Dirac, Phys. Rev. 74, 817 (1948); Proc. B.Soc.
Lond. A133, 60 (1931).

4Compare Bef. 3.
5The concepts used here are fully developed, for simple

physical contexts, in J. Schwinger, Quantum Kinema-

ties and Dynamics (Benjamin, Beading, Mass. , 1970).
6The alternative procedure, in which a compensating

charge runs from x" to x', is less convenient here.
This is the immediate generalization of Eq. (5-2.12) in
J. Schwinger, Particles, Sources and Fields (Addison-
Wesley, Beading, Mass. , 1973},Vol. II. See also
Chap. 7 of Ref. 5.

Such techniques are discussed by H. M. Fried, Func-
tional Methods and Models in Quantum Field 7.'heory
(MIT Press, Cambridge, Mass. , 1972).


