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We discuss symmetry at small distances, focusing in particular on the implementation of the conformal
group. In the framework of a theory which generates strong interactions from a non-Abelian gauge group, we
show that the existence of the axial anomaly—which determines the amplitude for 7°—2y—as well as the
nonrenormalization theorem for this anomaly may be regarded as consequences of conformal symmetry.

I. INTRODUCTION

It has often been suggested that the symmetries
which govern elementary particle interactions are
far more extensive than anything visible to the naked
eye.! However, few attempts have been made to
substantiate such suggestions. The readily appar-
ent symmetry signals are phenomena in the low-
frequency domain. We have in mind orderings in
particle spectra, small renormalization of com-
parative half-lives in superallowed B transitions,?
existence of low-mass zero-spin mesons (near-
Goldstone modes), the remarkable accuracy of
some Goldberger-Treiman formulas, etc. Of
these, the first two signals are such as to indicate
an internal symmetry of the conventional or Wig-
ner-Weyl type, and the last two signals would be in-
dicative of a spontaneously broken or Nambu-
Goldstone symmetry.>

Less readily apparent, but still clearly discern-
ible, would be the spoor of a spontaneously broken
local gauge symmetry or a Higgs-Kibble* realiza-
tion.

The major problem associated with symmetries
that are known to have a low-frequency signature
is the following: Why is the symmetry not masked
completely by radiative corrections? involving the
symmetry-breaking interaction? Is there a higher
symmetry that leads to a diminution, if not can-
cellation, of radiative effects? While systematic
treatments are lacking, answers to such problems
have been given in a few specific cases. (See, for
example, the discussion in Refs. 2, 3, and 4.)

Very little is known about the physical relevance
of symmetries which, by their very nature, can
only make themselves manifest at high frequencies.
We have in mind (a) dilatational' symmetry, which
may or may not have anything to do with the phe-
nomenon of Bjorken scaling® at present enevgies,
and (b) full conformal' symmetry which—despite
heroic efforts by a number of workers®—has
hitherto remained an enigma.

Our purpose in this paper is to examine some
aspects of scale and conformal symmetry in the
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context of a hadrodynamics in which all inter-
actions are generated from a semisimple gauge
group. The genesis of the Bell-Jackiw-Adler
anomaly’ as well as the nonrenormalization theo-
rem?® for the anomaly are tied to conformal sym-
metry. (Our considerations constitute a proof of
the nonrenormalization theorem which happens to
be manifestly free of infrared problems.)

This paper is organized as follows: In Sec. II we
formulate the notion of short-distance symmetry in
the context of the Wilson expansion,® and sketch a
brief argument to indicate that the nature of sym-
metry realization (Wigner-Weyl vs Nambu-Gold-
stone) is irrelevant in discussing this type of sym-
metry. In Sec. III we start with the conventional
wisdom on scale and conformal symmetry and pro-
ceed to formulate, what appear to us to be, the
relevant problems in the study of conformal sym-
metry. The availability of solutions in specific
situations is discussed. In Sec. IV we study the
genesis of the Bell-Jackiw-Adler anomaly, and
the nonrenormalization theorem for the anomaly,
within the framework of conformal symmetry.
Section V is devoted to a summary of the conclu-
sions and an appraisal of the outlook.

II. SHORT-DISTANCE SYMMETRY

For our purposes, the most convenient formula-
tion of short-distance symmetry (SDS) is provided
by the Wilson expansion near the tip of the light
cone (in x space). For a pair of local operators
A and B we have

A(x)B(0) = 3 a,(x,8)0,(0), (2.1
n

where the set of local operators O,(0) is presumed
to be complete and closed, inthe sense that the short-
distance behavior of the product of any two oper-
ators is representable in the form (2.1). It is as-
sumed that the operators O, can be ordered by the
degree of singularity of the c-number functions
which multiply them. The leading operators on the
right-hand side of (2.1) are those which multiply
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the most singular functions; we shall say that O,
leads over O, if @, is more singular than a,. It is
evident, of course,that if naive dimensional anal-
ysis were to hold, ordering as introduced above
would coincide with the ordering of operators by
their physical dimension. Note that operators
which are expected to be dimensionally nondegen-
erate can easily become degenerate in this naive
limit.

We develop our formulation of SDS by requiring,
first of all, the following: If the symmetry group
is G, and if A, B, and each of the O, are well-
defined tensor operators under G, then the leading
O, on the right-hand side of (2.1) are the ones
which occur in the Clebsch-Gordan decomposition
of A® B under G. In other words, operators which
do not occur in the Clebsch-Gordan series, and
which are therefore generated by the action of
symmetry-breaking spurions are presumed to be
unimportant in the short-distance limit. For our
purposes, this last statement is the operational
content of the statement that all symmetry-break-
ing is stemming from (generalized) mass terms.®

Next, we observe that information about the
nature of the underlying symmetry is coded in the
c-number functions a,. Starting with this obser-
vation we can examine the validity of a conjec-
ture'® that was inspired by the work of Weinberg
on spectral-function sum rules'*: A¢ small dis-
tances the Nambu-Goldstone way mevges with the
Wigner-Weyl way; one can talk of symmetry with-
out specifying the nature of the vealization. To
see this, let us start with a Nambu-Goldstone re-
alization, with the spontaneous-breakage mecha-
nism triggered in the usual way via explicit intro-
duction of o-like fields. All Green’s functions of
the theory are then festooned with tadpoles, and
the renormalization-group equations for the a; may
be written in the form?*?

L‘ Eaﬁ + B(g)% = 70,(8) +va(8) +7a(8) - %(g)”?a%] n

=0. (2.2)

Here, we have simplified matters by assuming
that the theory contains just one coupling constant
and a single o-like field. The notation is as fol-
lows: W is the mass scale introduced to define
the Green’s functions of the theory, v is the vac-
uum expectation value of the o field, and

8O = i, (2.9)

we) =G (=0, Aor B), 2.9
/2

Falg) =TI 2 (2.5)

din p.
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Here Z; is the constant which renormalizes the
operator labeled by the index ¢ and Z is the wave-
function renormalization constant for the g-number
part of the o field.

Equation (2.2) can be readily solved:

a"=(u2x2)7('°°’/2eXp{—f ['y(g‘)_'}/(gw)]dt%(tn(gym’

(2.6)
where Y=Yo, =Ya ~7B>
L £ do’
tE—Eln(xzp.z):jg m‘},-), 2.7)
T v [ -
p== exp{ fo [1 +vc@Jdt}, (2.8)

and $, is an arbitrary function. We have assumed
that there exists an ultraviolet-stable zero of 3 at
g=8. so that F~g.. as x2~0.

Observe that the positivity condition

1+7,(8)>0 (2.9)

guarantees the vanishing of p, and hence freedom
from tadpoles, in the short-distance limit, In
other words, Eq. (2.9) ensures the merger of
Nambu-Goldstone and Wigner-Weyl realizations
at small distances. For theories quantized in a
Hilbert space with a positive metric Eq. (2.9) is
always valid and this merger always takes place.
For other theories, and this includes all gauge the-
ories, Eq. (2.9) canbe checked only if some reliable
procedure for calculation of y is available. If the
interactions are generated via a semisimple gauge
group the theory may be'® asymptotically free and
one might be able to use perturbative arguments
to verify Eq. (2.9).

To summarize: Within the framework provided
by the Wilson expansion, a sufficient condition,
for the short-distance merger of Wigner-Weyl and
Nambu-Goldstone realizations of symmetry, is
that the (¢-number part of the) triggering field of
the latter realization admit of a K4llén-Lehmann
representation.

III. DILATIONS AND CONFORMAL TRANSFORMATIONS

In canonical field theory, with manifestly re-
normalizable ccuplings, the generator of dilata-
tions is associated with a current

D>\=x“0w\, (3.1)

where 6, ) is the symmetric Gursey-Huggins form'
of the energy-momentum tensor. (In terms of D,,
the dilatation-generator D= [D d%x.) Also, the gen-
erators of special conformal transformations are
associated with the currents
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K= (228 qy = 2x4%,) 0. (3.2)
Combining Eqs. (3.2) and (3.1) we obtain
MK yn=—2x,0 "Dy, (3.3)

a result which embodies the Mack-Salam theorem®
In canonical, renormalizable field theories the
extension of the Poincaré group with the dilatation
group induces invariance under the full conformal
group SO(4, 2) ~SU(2, 2).

This section is devoted to the following question:
To what extent can one salvage the Mack-Salam
theorem in a real anomaly-infested world?

Consider first the group of scale transforma-
tions. The anomalies which preclude a straight-
forward implementation of the dilatation group, in
quantum field theory, are made manifest by the
Callan-Symanzik equation's

[ui +B(gh -y ()| T =T (3.4)
o g

Here I''™ is an amputated #-point Green’s func-
tion, I‘(A") an “n+1 point” Green’s function obtained
from I'™ by including a term

a= [ asx: 6, We": (3.5)

in the defining chronological product. (Note that
the double dots indicate the soft part of the normal
product. See, for example, the discussion by
Schroer.’®) In writing (3.4) we have assumed, in
the interest of simplicity, that there is just one
field, one mass scale, and one coupling constant.

Now, in a canonical scale-invariant theory 4, g,
and vy all vanish. In the real world we can justify
the neglect of A at high frequencies, at least for
nonexceptional momenta, via the Weinberg theo-
rem'’; however, nothing so innocuous can be used
for discarding the anomaly functions 8 and .

The solution of Eq. (3.4) can be written as

I‘(")(gxl, EXyy o.ny X3 8)

~erieepl-n [ 6@ - st

0
%5 Z(¢)) (in the limit of £-0),
(3.6)
where D is the canonical dimension of I™ and

Z(t) is defined by

£(t) do’
g
t=-1In|g| = f . 3.7
€=/ 5@ @7

Three cases need to be distinguished:

(a) Thetheoryisata Gell-Mann-Low®fixed point,
g=8c, l.e., B(g)=0.

(b) The theory is in the domain of attraction of

XM (x,, x,, ...,

a nontrival ultraviolet-stable fixed point.

(¢) The origin is ultraviolet-stable and the theo-
ry is in the domain of attraction of the origin.

In each of these cases the scaling limit is at-
tained at small distances but not with normal phys-
ical dimensions; it is important to bear in mind
that even in case (c) the dimensional anomalies
leave a nonvanishing trace and the naive scaling
which would be possible if the theory were free—
instead of just asymptotically free—is never at-
tained.

We have, in essence, reviewed the conventional
wisdom for the scale group in order to ask the
right questions for the full conformal group. Two
of these warrant explicit statement:

1. Is there a “sensible” differential equation,
analogous to Eq. (3.4), for special conformal
transformations?'® (By sensible we mean an equa-
tion that will permit us to study the existence, and
the possible onset, of the conformal limit at small
distances.)

2. Is the conformal limit attained in cases (a),
(b), and (c) discussed above?

A detailed discussion of these questions is re-
served for a future publication; in the present
paper we confine ourselves to the following re-
marks.

For case (a) the conformal limit is attained to
the same extent that the scaling limit is attained,
i.e., with anomalous dimensions. In a sense,
therefore, the Mack-Salam theorem goes through.

For case (c) a weak form of the Mack-Salam
theorem is immediately obvious: The theorem is
operative for those Green’s functions that do not
involve dimensional anomalies. This means, in
particular, that all Green’s functions involving
weak and electromagnetic currents attain the con-
formal limit if the strong interactions are gen-
erated in an asymptotically free way.

It is worth noting that the conformal symmetry
alone can only determine the #-point Green’s
functions (# > 4) up to arbitrary functions of har-
monic ratios. However, in case (c) the Callan-
Symanzik equation determines these functions
uniquely.

IV. THE AXIAL ANOMALY

We restrict our discussion to a specific dynami-
cal situation. We assume that weak and electro-
magnetic interactions have a common origin in a
gauge group realized in the manner of Higgs and
Kibble. Furthermore, we assume that strong
interactions are generated via a semisimple gauge
group which commutes with the weak-electromag-
netic gauge group and remains unbroken. Even in
this model our results are complete only in the



12 SHORT-DISTANCE SYMMETRIES, THE AXIAL ANOMALY,... 3095

situation in which the strong coupling is such that
the theory is in the domain of attraction of the
origin. [This permits us to expand the relevant
Green’s function in powers of g, the invariant
coupling constant defined in Eq. (3.7).] Several
authors have speculated that the situation envis-
aged here may, in fact, correspond to physical
reality.*

The internal hadronic group relevant to our con-
siderations is ’

G =SU(3),® SU(3)z ® SU(3)c, (4.1)

the first two factors corresponding to the usual
chiral group and the last factor is the so-called
“color” group which is gauged to generate strong
interactions. (Our discussion is without prejudice
to the possibility—which seems well nigh to be a
certainty—that the actual internal hadronic group

J

aBy(

is larger than G.) All vector and axial-vector

currents, in the following discussion, are pre-

sumed to transform as (8,1, 1,)®(1, 8, 1) under G.
Consider now the three-point function

Ll (x,3,2) =0 T{V ¢ (x)V 2 (AL (2)} |0,
(4.2)

where L, v, X are Lorentz indices and «, 8, y are
SU(3) indices (1-8).

The Callan-Symanzik equation tells us how
T(x, v, 2) behaves when x -y, x — 2~ 0 at the same
rate. The case corresponding to x—y—-0and x -2
-~ 0 at different rates can be analyzed by the oper-
ator-product expansion (OPE) of Wilson. We find
that T(x, y, 2) is conformal-symmetric'® in the
short-distance limit and may be written as fol-
lows®%21:;

(x=9)°"(y=2)°(z =)

o _Nad*PYy
T‘”?{(x, Y, Z) ‘Wl'rr(ysyp'}’p')’u 707)\)/1') [(x_y)z_ie]z[ (y_z)z_i€]2[ (Z _x)z_ie]z

+C€uy2p[005)0%(x = 2)0%(y = 2) = 8(,) 6%y — 2)0%(x - Z)]}- (4.3)

The first term in the curly brackets in Eq. (4.3)
is manifestly identical to the expression for the
triangle graph in massless free spinor theory, the
second term—enclosed in square brackets—is a
contact term permitted by conformal symmetry
and parity. Note that the normalization constants
N and ¢ are not specified by the conformal group
per se. (However, readon.) Note also that the con-
tact terms play the role of counterterms that are
needed to give meaning to the triangle graph. (The
i€ prescription in the two-point function is not
sufficient to specify this graph; the ambiguities
can be seen most clearly in momentum space,
where they stem from the fact that the graph has
a superficial linear divergence and different rout-
ing of the internal momenta will lead to different
results—results which differ by polynomials in
the external momenta.)

Next, we note that it is impossible to choose ¢
so that the vector and axial-vector currents are
simultaneously conserved-——unless we are willing
to set N=0. In other words, the constraint of con-
formal symmetry forces the chiral group to yield—
if the theory is to be nontrivial.

If N#0 and we insist that conservation of the
vector current be sacrosanct, the numerical val -
ue of ¢ is specified and is such that conservation
of the axial-vector current breaks down. The
continuity equation relevant to 7°—2vy takes the
form

824 :N<£;>F“,,F'“" , (4.4)

r

where F,, is the electromagnetic field tensor and
F,, is its dual.

Finally we discuss the magnitude of the constant
N. Since the conformal-symmetric solution for
T“J"f; (x, v, 2), displayed in Eq. (4.3), must satisfy

the renormalization-group equation, we have
) 87,
[ 55+ Bl g [N =0. (4.5)

Observe now that N is dimensionless and, there-
fore, cannot depend on u; if we make the innocuous
assumption that it is differentiable at g=0, Eq.
(4.5) implies that

N(g)=N(0)=1. (4.6)

Equation (4.6) establishes the nonrenormalization
theorem for the axial anomaly. This theorem is
here seen to emerge as a consequence of conformal
symmetry implemented within the framework of
the renormalization group.

Note added in proof . It should be stressed that
conformal symmetry is here a property of the
“summed -up” theory; it does no# hold order by
order in the ordinary coupling constant. The situ-
ation is analogous to that for the anomalous alge -
bras discussed in Ref. 24, except that here the
symmetry-violating graphs make their appearance
in fourth order. That the parameter N should equal
unity, in an asymptotically free theory, is pretty
much self - evident; the “formal argument” leading
to Eq. (4.6) is included only for the sake of com-
pleteness.
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V. COMMUTATOR ANOMALIES

Following Ref. 21 we may parametrize the anom-
alies, associated with the names of Schwinger?®?
and of Johnson and Low,? through the relevant
terms in the Wilson expansion:

(guuxz‘zxuxy)

27%(= x% +iexy)?

—vad aﬂyng EuupcAl(O)xo
2m2(-x2 +iex,)?

EEEIN (5.1)

V(%) VE(0) =Sy, 8P

Similarly one can define Sp4, Kaa, and Ky,.
(Sya =0 by parity.) The terms indicated by dots in
Eq. (5.1) are such that their singularity structure
or their transformation property makes them ir-
relevant for our purpose. For a more complete
display of terms in the Wilson expansion, see for
example, Ref. 24.

Assuming that the “triple-point” limit in Eq.
(4.3) can be taken sequentially (e.g., y —~z followed
by x—=19), Egs. (4.2), (4.3), (5.1), etc., lead to the
Crewther® formula

N=SyyKya . (5.2)

‘Equation (4.6) above implies, however, that the
conformal group actually leads to the stronger
formula

SyvKya=1. (5.3)

Note that in an asymptotically free theory* Ky,
=1 so that Sy, also equals unity; this, of course,
is just the content of the so-called parton model.

VI. CONCLUDING REMARKS

We have presented a formulation of the notion of
short-distance symmetry within the framework of
the Wilson expansion and have shown that the na-
ture of symmetry realization, Wigner-Weyl vs
Nambu-Goldstone, is irrelevant for this type of
symmetry. This permits us to discuss scale and
conformal symmetry without getting involved with
spectral problems and entities such as “dilatons.”
Furthermore, since we insist only on symmetry
at small distances, our discussion bypasses com-

pletely the usual conceptual difficulties that have
afflicted many of the proposals, which have been
made in the past, to investigate the physical rele-
vance of the conformal group. For example, one
need not worry about any possible clash with the
principle of causality.

We have also discussed the question: When does
the underlying dynamics permit the theory to
achieve conformal invariance at small distances?
For asymptotically free theories a sufficiently
definitive answer is available; for situations in
which the theory is in the domain of attraction of
a nontrivial fixed point, the question is under study
and will be discussed elsewhere.

If the theory is such that the conformal limit is
indeed attained at small distances, the symmetry
picture which emerges is quite striking. The con-
formal group clashes with the chiral group, the
latter yields, and an anomaly is generated. The
proper orientation of the anomaly is fixed by the
electromagnetic gauge group. Furthermore, not
only does the conformal group engender the anom-
alous continuity equations, it is also responsible
for the nonrenormalization theorem which prevents
the metamorphosis of these equations into relation-
ships rendered useless by radiative corrections.
(Without freedom from incalculable radiative cor-
rections, one could never use the anomaly pre-
diction for 7°-2y to rule out certain gauge theo~
ries and models of hadronic structure.)

We note, also, that the conformal group relates
the lack of closure of the U(6)® U(6) algebra?* of
Feynman, Gell-Mann, and Zweig to the deviations
of the Schwinger anomaly from the parton model.

It would be surprising indeed if a structure as
rich as that furnished by the conformal group did
not have implications, of physical relevance, other
than those outlined in this paper.
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