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Semiclassical quantization of the relativistic Kepler problem
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Semiclassical quantization conditions are applied to a variety of relativistic formulations of the problem of two
spinless particles bound by a vector or scalar force. The WKB quantization conditions are found to yield the
correct spectra whenever the equations of motion are separable. Miller s new quantum condition, making use

of periodic orbits, is applied to almost circular orbits. It provides an approximate method of quantization for
almost circular orbits in the action-at-a-distance formulation of relativistic charged particles interacting
electromagnetically.

I ~ QUANTUM CONDITIONS

Semiclassical quantization conditions for a par-
ticle bound by a potential have been undergoing im-
provement from their invention by Bohr until to-
day. Three versions are given as illustrations.
The Somme rfeld- Wilson quantization conditions
were assumed without proof:

is the action integral over one periodic orbit, T(E)
is the period, (d,.(E) are the stability frequencies,
and X is the number of turning points in the peri-
odic orbit. (The product v,. = e,T is known as
stability angle, stability index, or stability param-
eter. ) Equation (3) can be approximately invert-
ed to yield a pa, rticularly transparent formula for
the energy E of the bound state:

P„dh=n„h, n„=0,1,2, . . .~ ~ ~

P„dr=(n„+2)l2, n„=0, 1,2, . . .~ ~ ~

J=(I+2)S, I=0, 1,2, . . . .
(2)

This set is correct for separable problems and
gives an angular momentum t which is close to the
correct value [I(I+1)]' 'I. Modern developments
by many authors' have led to a variety of quantiza-
tion conditions for nonseparable systems. One
which is found useful below is due to Miller. ' It
makes use of periodic orbits. For N degrees of
freedom it becomes

n -1
E(E)=2r(n+ — + P (m,.+ )td,.(E)E(E),

j =1

n=0, 1,2, . . . ; m&=0, 1,2, . . . .

where

(3)

C(E)—= S '
p dq

0

J p2dp =nEA ~ n~ = 1,2) 3) ~ . .
0

The integration over z proceeds from a minimum to a
maximum and back to a minimum. The restriction
n„0 is imposed ad hoc in order to avoid a diver-
gent ground state for the hydrogen spectrum. After
the advent of quantum mechanics, an improved
version was derived from the Schrodinger equa-
tion in the %KB approximation:

E=C '
2w n+ +— ( n+22)R(u, (E). .

g=l

Miller has put this equation in words: "The stabil-
ity frequencies (+,.) are the normal-mode frequen-
cies for harmonic perturbation about the periodic
orbit. The total energy E, therefore, is a sum of
contributions: The first term in (4) is the energy
of n quanta in motion along the periodic orbit, and
the ith term in the sum of N —1 terms is the ener-
gy of m,. quanta in the ith normal mode of devia-
tion about the periodic orbit. " Condition (3) is
known to be correct for separable systems provid-
ed the motion perpendicular to the chosen periodic
orbit is harmonic.

II. THE ELECTROMAGNETIC INTERACTION

The electromagnetic interaction is mediated by
a vector field. This fact manifests itself in the
form of the classical Hamiltonian of a particle in
a Coulomb field

If = (p2+~2)1 l2 2i

where c=1. The potential, like the energy„ trans-
forms as the fourth component of a vector. The
Hamiltonian leads in classical mechanics to pre-
cessing ellipses. Sommerfeld quantized these,
using Eq. (1), and derived energy levels which
were later found to agree with the Dirac spectrum. '
This agreement is spurious and results from two
mistakes —neglect of spin and wrong quantization.
If Eq. (2) is used instead, the spectrum is the cor-
rect one for spinless particles in a Coulomb poten-
tial. It is, in fact, the Klein-Gordon spectrum. '
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Its fine structure is related to the fact that the
ellipses precess.

In Table I the classical equations are listed by
name, together with their quantum-mechanical
counterparts. In each case the spectra agree if
quantization conditions (2) are used.

In Sommerfeld's treatment nuclear motion is not
included. He simply replaced the mass m by the
reduced mass p. . This procedure, while correct
for nonrelativistic theory, is wrong for a relativ-
istic calculation. 4 Nuclear motion was correctly
included to order (v/c)' by Darwin' who found, in
addition to the replacement of m by p, , a term of
order n' in the energy. Darwin then quantized his
theory using Eg. (1). If Eq. (2) is used instead, the
spectrum agrees with that of the Breit equation
which is, in fact, the quantum-mechanical version
of Darwin's theory. There is one term in Breit's
result which has no classical limit, the so-called
"Darwin term. " It has the value p,

' n'6„/(m, +en, )n'
and affects only the S wave.

Todorov' has derived a quasipotential two-body
equation from field theory. It has a structure sim-
ilar to one-body theory and hence spectra are easy
to find once the Schrodinger equation is solved.
For spinless particles interacting electromagnet:-
ically the spectrum agrees to order n' with
Breit's result. The Darwin term arises from the
commutator of p with A and is treated as a per-
turbation. The quasipotential equation can be used
to find a classical equation by interpreting opera-
tors as c numbers, but as such it does not have .

much physical relevance. Nevertheless, if this
classical equation is quantized semiclassically,
the resulting spectrum is correct.

The spectra which result from Todorov's quasi-
potential theory are identical to those of the rela-
tivistic eikonal approximation. ' This fact allows
interpretation of the results in terms of approxi-
mate summation of "crossed-ladder" Feynman
graphs.

action, then two simple forms of the interaction
are the Yukawa interaction

If —
( p2 p m2 2me2/~)1 /2 (6)

It was independendtly derived from quantum field
theory'~ and from a relativistic classical theory of
particles interacting with fields. ' The fact that the
ellipses remain closed in spite of the relativistic
nature of the calculation was at first surprising.
The equation of motion and the conserved Runge-
I enz vector are given in Ref. 8. When quantized
semiclassically the theory yields the simple spec-
trum

which also follows from the Klein-Gordon equation

(p'+ m' —2rne'/r) g = E'g

as is easily verified by rewriting

2~&(x)y*(x)y(x)

and the minimal scalar interaction

[I+a(x)]'y*(x)y(x) .

The term "minimal scalar interaction" is used in
analogy to the minimal electromagnetic interac-
tion. The minimal couplings are induced by the
substitutions m -m+A and p~-p" +A~ in the free-
particle theory. (We avoid the ambiguous term
scalar electrodynamics. )

The Yukawa interaction yields, to lowest order,
no fine structure. " Its classical limit displays no
perihelion precession. The minimal scalar inter-
action, on the other hand, leads to fine structure
and perihelion precession as a consequence of its
quadratic interaction term.

The classical one-body potential theory corre-
sponding to a massless Yukawa interaction has the
Hamiltonian'

III. OTHER INTERACTIONS

Nonrelativistically all interactions mediated by
massless bosons lead to a I/x potential. Relativ-
istically they lead to different equations of motion
and different potentials.

A classical relativistic theory corresponding to
spinless particles with an interaction mediated by
massless scalars can be formulated in a variety
of ways. This point was emphasized recently by
a number of authors. ' ' The difference between
the two most common versions can best be seen at
the field-theoretic level. ' If g is the field corre-
sponding to charged spinless particles of mass m,
and A. the massless field which mediates the inter-

and comparing with the Schrodinger equation.
The classical one-body potential theory corre-

sponding to minimal scalar coupling is of ancient
vintage. It was considered as a component of grav-
ity and is discussed in detail by Bergmann. " The
Hamiltonian' is given by

H = [p'+ (I —e'/r)']' ~' .

The perihelion moves through —, the general rela-
tivistic amount and in the wrong direction. The
energy can be found as a function of action inte-
grals in a manner analogous to Sommerfeld's
method. 'o If condiditon (2) is used for quantization,
the spectrum coincides with that obtained from the
Klein-Gordon equation with minimal scalar cou-
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pling:

[p'+ (m —e'/r)']y=E'q. (10)

rect nonrelativistic hydrogen spectrum in powers
of n„+ —,'. The formula derived from the Schrbdin-
ger equation is

The spectrum differs only in three signs from the
formula for minimal vector coupling.

A rather artificial interaction, combining mini-
mal vector and scalar couplings, can be adjusted
to give a conserved Runge-Lenz vector and hence
no perihelion motion in the one-particle case. The
only theoretical advantage of this example is that it
permits, unlike the Yukawa case, an action-at-a-
distance formulation" while also exhibiting dynam-
ical symmetry. The classical Hamiltonian is

H=[p'+(m+ oV)']'~' +pV,

where V is the potential and c( and P are constants.
The correct Newtonian limit requires o. + P = l. A

conserved Runge-Lenz vector exists if n =P. The
resulting Hamiltonian is

2 2 1/2 e2H=P+ m-—2

2l' 2g
(12)

The corresponding Klein-Gordon equation is

(E —m)g = tp'/(E +m) e'/r] (-C). (13)

The spectrum can be read off by comparison with
the Schrodinger equation and is listed in Table I.

Two-body equations, both classical and quantum-
mechanical, can be constructed as generalizations
of all the one-body theories discussed. In Table I
we list only the quasipotential equation with a Yu-
kawa interaction' which has a simple spectrum
without fine structure. Other two-body equations
and spectra have been considered by Crater and
Naft and by Fronsdal. "

E -n 2 -Q 2

m 2(n„+/+ I)' 2(n„+ ~+I+ —,')' '

To first order in n„+ 2 this becomes
1E —o.' o. '(n„+ 2)

m 2(I+-,')' (I+-,')' (15)

We now apply Eq. (4) to circular orbits. The
first step consists of evaluating the action integral
to find the first term in (4). The condition is

T
4(E)=)( 'J p dr=2'(n+X/4). (16)

[The value of A is found by identifying (2) and (3),
a procedure appropriate to a separable system.
Using (2) we find

e(E)=li'$ (p„drp+D, dr)

=2m(l+-,')+2n(n„+ 2) .

+p —Q

m 2(I+2)' ' (18)

The radial oscillations carry additional energy E„
given by

This can be identified with (3) if r(—= I, m, =n„, and-
X=2. We shall see presently that ~„T=2m to com-
plete the identification. ] With A. = 2, we proceed ex-
actly as in the original Bohr theory. Since fp dr
=2&J, the energy of circular orbits, labeled with
subscript 0, becomes

IV. CIRCULAR ORBITS E„=(n„+ -', )h(u„, (19)

Circular orbits play a very special role in me-
chanics because of their simplicity. In action-at-
a-distance theory, for example, they are among
the very few orbits which have been found. " Un-
fortunately, circular orbits are not allowed semi-
classically because, according to Eq. (2), there
must be zero-point oscillation in the radial vari-
able. Miller's quantization condition (3), however,
is applicable to those orbits which are nearly cir-
cular, i.e., which differ from the circular (period-
ic) orbits only by small perturbations. The per-
turbations are by definition harmonic. In this sec-
tion we examine the semiclassical quantization of
almost circular orbits. Only the electromagnetic
interaction is considered.

Nearly circular orbits are characteristic of high
angular momenta. At the semiclassical level this
means l »n„. In order to test the validity of the
semiclassical quantization we first expand the cor-

~E (n„+ 2) o."
m (I+ ,')'— (20)

Now E =E,+E„, with the two terms given by (18)
and (20), agrees with the approximate expression
(15). This is correct through order I ' and allows
interpretation of the energy in the sense of Miller.

In the relativistic case the correct energy is
given by the Klein-Gordon spectrum which be-
comes, expanded in powers of z„+—,',

where +„ is the stability frequency. In the case of
circular orbits in a 1/r potential it is an elemen-
tary exercise" to show that the stability frequency
equals the orbital frequency co, . This condition re-
sults in closed ellipses for nonrelativistic Kepler
motion and justifies the assumption ~„T= 2m which
we made above. Thus (d„=2mT '=v/r, =me'/J'.
Using the previous result 8= (I +-,')0 we find from
(19)
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m (I+ —,')' (I+ —,)' (21)
T T

de —vl dT

Note that to all orders in ~ the second term is
identical to the nonrelativistic result. In order to
perform semiclassical quantization we need to re-
call some facts about relativistic Kepler motion. '
For circular motion

E,=m(l —v')'/'

Z, = e'/v,

~, = e'(1 —v ')'/'/mv',
(22)

Oeo ~

Furthermore, the stability frequency is co„= coo

(1 —v')'/', resulting in a perihelion advance.
From (22) and J', = (I+ —,')h we find

(23)

Finally, the radial energy is

E„(n„+z)R(u„(n, + z)v' &'(n„+-,')
m m o. (I+-,')'

just as in the nonrelativistic ca,se. The relativistic
corrections in x0 and co„cancel so that the radial
motion does not contribute to higher order in n,
and Eq. (21) is recovered.

Since the quasipotential theory has a structure
like the Klein-Gordon equation, a similar analysis
can be performed for it.

V. ACTION AT A DISTANCE

T ~

p qdt=
0

If the energy is conserved, this becomes

(24)

54(E) =ET+ L dt .
0

We now replace the last term by the Fokker action,
so that g(E) becomes

An old and frustrating problem is the quantiza-
tion of classical acti.on-at-a-distance electrody-
namics" (Wheeler-Feynman theory). To date, the
only thing which has been achieved is the quantiza-
tion of circular orbits by means of Eq. (1), i.e. ,
Bohr quantization. " Recently, almost circular or-
bits have been worked out in the classical theory. '
We can now go one step further: We can apply Eq.
(4) to perturbed circular orbits. Since the action
integral underlying Whee/er- Feynman theory, the
Fokker action, is not of the Hamiltonian type we
must first identify C. In a Hamiltonian system

+e 5(z„')z/', z, „dT, d ~, . (26)

The Fokker action describes two particles with
masses ~n~ and m, and opposite charges intera, cting
via & the sum of retarded and advanced Lienard-
Wiechert potentials. In (26) 7 is proper time,
z'=dz "/d7', z~, =z~~ —z,", and z'(7') label the world
points of the particles. The limits of the double
integral must be carefully adjusted so that a full
period is covered in spite of the restriction on the
range of integration imposed by the 5 function.
For circular orbits the total energy is '

E = m~ (1 —v~')'/'+ m, (l —v, ')'/' . (27)

The binding energy is defined by

g 0™e4(1 2)&/2 (29)

Now we assume

Z=(I+-,')@ (30)

and read off the energy levels for circular orbits
from a, plot of J vs 8 for circular orbits.

In order to find the stability frequency it is use-
ful to find the parameter 4v from (29). A plot of
&u„/&u, vs 4v' provides u„aafsunction of the un-
perturbed orbital frequency +0." This quantity,
finally, can be found from x, = v/v„also plotted
as a function of 4v . The resulting value for m„can
now be inserted in Eq. (4) to complete the calcula-
tion.

This simple result is a consequence of the relativ-
istic virial theorem. " If (26) is evaluated for cir-
cular orbits, the first three terms cancel. The
last term becomes exactly 2', where J is given
by Schild. " This result, which is not trivial,
means that quantization of C(E) is equivalent to
quantization of J, just as in the Hamiltonian case.
It lends credence to the naive Bohr quantization of
circular orbits.

In the limit m~/m, —~ the relativistic Sommer-
feld theory is recovered. In the limit v «c the
Darwin equation is obtained. These two limits
serve as useful checks on the complicated problem
of almost circular orbits in the full theory. In
Sec. II we saw that semiclassical quantization is
correct for both.

We have now assembled the tools for applying
Eq. (4) to almost circular orbits. Consider the
case m~ =m, =m. Equation (27) becomes

2)1/2
1'
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VI. SUMMARY

The spectra for the nonrelativistic spinless Kep-
ler or Coulomb problem, and for the separable
formulation of the relativistic problem, are cor-
rectly reproduced by semiclassical quantization
with the WEB quantum conditions (2). Since the
quantum field theory is fairly mell understood in
these cases, this fact will be useful in the estab-
lishment of a rigorous transition from field theory
through quantum mechanics to classical mechan-
ics. Miller s new quantum condition (3), applica-
ble to both separable and nonseparable problems,
makes use of periodic orbits. Applied to the sep-
arable relativistic equations and circular orbits,
the correct spectra are found only in the limit of
small radial oscillations, i.e., in the limit of al-
most circular orbits. The leading term and first
correction in an expansion in powers of ~„=—n —l —1

are obtained in the semiclassical treatment.
The action-at-a-distance formulation of the rel-

ativistic two-body problem is not separable and not
even Hamiltonian. Nevertheless, Miller's quantum
condition, together with the classical determina-
tion of almost circular orbits, provides a method
of quantization. In the case of circular orbits,
without radial oscillations, the new quantum condi-
tion agrees with the naive Bohr quantization, pro-
vided, of course, Eq. (2) is used instead of Eq. (I).
This circumstance strengthens the speculation"
that Bohr quantization can be used for very tightly
bound systems and provides a method of estimating
the first correction to it. In the elucidation of the
meaning of quantized action-at-a-distance theory
an important question will be the interpretation of
multiple stable modes of radial oscillations which
appear at high energies. "
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