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Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several
problems in black-hole thermodynamics. Jaynes’s maximum-uncertainty method for computing probabilities is
used to show that the earlier-formulated generalized second law is respected in statistically averaged form in
the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a
Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is
used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a
system containing a black hole. As an application we derive the distribution for the radiation in equilibrium
with a Kerr hole (it is found to agree with what would be expected from Hawking’s results) and the form of
the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown
to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the
number of possible interior configurations that are compatible with the given exterior black-hole state. We also
formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability
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distribution among Kerr solution states for an isolated radiating Kerr hole.

I. INTRODUCTION

The many formal analogies between black-hole
physics and thermodynamics,'-* the most striking
of which is that between Hawking’s classical theo-
rem® that “black-hole surface area cannot de-
crease” and the second law of thermodynamics that
“entropy cannot decrease,” make the attempt at a
physical synthesis of the two disciplines worth-
while. Essential to the success of such a program
is a version of the second law relevant to systems
containing both matter and black holes. Earlier!s%
we conjectured that this generalized second law
(GSL) must take the form “black-hole entropy S,,
plus common (ordinary) entropy exterior to black
holes S, never decreases,”

6

AS,=AS, +AS,>0, 1)

where S is given in terms of black-hole surface
area A by

Spm=nktA (2)

(units with G=c=%=1 are assumed). Here 7 is the
Planck area (2.6 X 10-%¢ ¢m?) and 7 is a numerical
constant of order unity to be determined by inde-
pendent arguments (see Sec. II).

The GSL is designed to replace the ordinary
second law, which is transcended in the presence
of a black hole because the common entropy in-
terior to the hole is unobservable by exterior ob-
servers.>” (Note that it is not claimed that S,,
equals the interior entropy.) On the other hand,
the GSL makes a stronger statement than the area
theorem. The theorem requires only that A not
decrease. The GSL demands that if exterior en-
tropy is lost into black holes, A increase suffi-

12

ciently for the associated increase in S to, at
least, compensate for the decrease in S.. That
this actually happens has been verified for the case
of the infall of a small entropy package into a ge-
neric stationary black hole.”

The area theorem, based as it is on a classical
energy condition,’ is expected to be violated by
some quantum processes.® By contrast the GSL,
being an intrinsically quantum law,!*” could be ex-
pected to fare better. And indeed in the astonishing
quantum process of spontaneous radiation by a
Kerr black hole® discovered by Hawking,'° the
area theorem is flagrantly violated, but the in-
crease in exterior entropy due to the radiation is
expected to suffice to uphold the GSL.!° This con-
firmation of the validity of the GSL for a process
not even dreamt of at the time of its inception is
striking evidence of the versatility of the law and
of the physical meaningfulness of the concept of
black-hole entropy which underpins it. In view of
these developments, the time appears ripe for con-
sidering black-hole thermodynamics from a sta-
tistical viewpoint with the ultimate purpose of
clarifying the statistical significance of black-hole
entropy.

We make use here of traditional methods of sta-
tistical thermodynamics to treat several intercon-
nected problems in black-hole thermodymaics.
Using Jaynes’s information-theory approach for
computing entropy,'* we show explicitly in Sec. II
that the GSL (in a statistically averaged form) is
respected by the process of spontaneous radiation
by an isolated Kerr black hole, as suggested by
Hawking.'® By the same approach we show in Sec.
III that the GSL in averaged form is also respected
in the case of a Schwarzschild hole immersed in a
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blackbody radiation bath regardless of the latter’s
temperature.

In Sec. IV we generalize the principle of maxi-
mum entropy to embrace black-hole entropy. As
an application we determine the probability distri-
bution for radiation in thermodynamic equilibrium
with a Kerr hole and the associated probability
distribution for the various Kerr solution states
of definite mass. In Sec. V we show that the same
results follow directly from a statistical interpre-
tation of black-hole entropy as the natural loga-
rithm of the number of possible interior configura-
tions of the black hole which are compatible with
the exterior state in question.»® Finally in Sec.
VI we formulate the black-hole analog of Jaynes’s
maximum-uncertainty principle for computing the
best probability distribution, and apply it to the
determination of the probability distribution over
Kerr solution states of an isolated radiating Kerr
hole.

II. THE GSL FOR A BLACK HOLE RADIATING IN
ISOLATION

The increment in black-hole entropy of a Kerr
black-hole solution is related to the increments
in its mass M, angular momentum along the sym-
metry axis L, and charge @ by*

AS,,=(AM - QAL - 3AQ)/ Ty, (3)

where © and & are the rotational frequency and
electric potential of the hole, respectively,'?:!3
and

. h(Mz—LZ/Mz—Qz)”z
o 32mM[M - 3Q%/M + (M*? - L*/M*® - Q*)'/?] °

(4)

Interpreting S,, seriously as entropy means inter-
preting T, as black-hole temperature.'*®* The very
literal character of this temperature is nowhere
clearer than in Hawking’s process of spontaneous
emission of thermal radiation by a Kerr hole.!®

Hawking has shown that for a Kerr hole formed
by collapse, quantum theory indicates that at late
times the hole emits all types of quanta to infinity
at a uniform rate. Into each mode of radiation
specified by frequency w, azimuthal angular mo-
mentum quantum number ., and charge €, the
mean number of quanta emitted is

()=T(e*#1)™", ®)

where I is the absorptivity of the hole for radiation
in the given mode (the fraction of radiation it ab-
sorbs),

x=(h’w— ﬁmﬂ—€¢)(477Tbh)'l ’ (6)

and the upper (lower) sign corresponds to a boson

(fermion) mode. As stressed by Hawking, the
spectrum (5) is just the one expected for an ordi-
nary body with absorptivities I' at temperature
4nT,,. The thermodynamic'® and quantum®® ap-
proaches thus agree in ascribing to a Kerr black
hole a temperature of the same form, an agree-
ment which justifies the choice n=1% in (2). This
unambiguous way to fix n is to be contrasted with
the earlier heuristic approach,® which arrives at
a value an order of magnitude smaller.

During the radiation process the area of the hole
can decrease so that the area theorem can be vio-
lated. However, the radiation entropy increases.
Given the analogy between black hole and hot body,
one can expect that just as for the latter the body’s
entropy plus the radiation entropy increases. An
argument like this is implicit in Hawking’s sugges-
tion'® that the GSL is respected in the black-hole
radiation process. Here we shall prove this result
explicitly, not only for its intrinsic interest but
also to introduce some concepts for later use.

By conservation of energy the mean change in
mass of the black hole in a certain time interval
is

AM=- Z(n)hw, (1)

where the sum extends over all modes outgoing
from the hole in the given time interval and # is
given by (5). Analogous expressions can be given
for AL and AQ. From (3) it then follows that the
associated mean change in black-hole entropy is

(ASyy== " xT(e*+1)". (8)

We now proceed to calculate the radiation entropy
generated in the same time interval. Each radia-
tion state is uniquely specified by the set of occu-
pation numbers of the various modes {n}, it will
occur with some probability p;,, which is subject
to the normalization condition

2 bwm=1, )

{n}

where the sum runs over all distinct sets {#} which
are relevant. The entropy of the radiation can be
written in the familiar form?!

§== 2 PimlNPim - (10)
{n}

Unfortunately, the original quantum treatment of
the problem'® does not determine the Dy, but
only the mean occupation number for each mode

Dby =@, (11)

{n}
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where the prime indicates the particular mode in
question and (»’) is again given by (5). According
to the principles of information theory, as applied
by Jaynes'! to situations like ours (even nonequili-
brium ones), the “best” (or least biased) probabil-
ity distribution one can choose is that which maxi-
mizes S subject to whatever information is known.
Here this information is given by (9) and (11).

Thus our probability distribution is determined
by the variational principle

5 [' Zp(n)]‘np(n)_ Z anlp(n}

{n} mod {n}

-(a=-1) Z P(n)] =0, (12)

{n}

where a-1 and the 8 (one for each outgoing mode)
are Lagrange multipliers. Varying all the p (ny iD=
dependently we get

pm=e ] e, 13)

an expression which agrees with that which follows
from a recent full quantum treatment of the prob-
lem (see Appendix for details). Substituting this
into (10) and using (9) and (11) we get for the radia-
tion entropy

S=a+ Y B (14)

where, as before, the sum covers all the modes
outgoing from the black hole in the time interval in
question. Combining this result with (8) and using
(5) we get

(AS,)=(AS,)+AS,

= a+ E T(B-x)(e*F1)-*. (15)

We shall now show that every term in this expres-
sion is positive; this will establish the validity of
the GSL in averaged form for the process in ques-
tion.

First, we determine ¢“ by substituting (13) into
the normalization condition (9) and remembering
that » can take values from 0 to « for boson
modes, and from 0 to 1 for fermion modes. Thus

e*=T[ @-e®*J] @+e). (16)

bos fer

Similarly, substituting (13) into the mean occupa-
tion number condition (11) and using (5) and (16)
gives the implicit expression for the g

(ePx1)"t=T(e*F1)-. am

We must now make a detour and consider the
separate problem of scattering of a radiation mode
off the hole. For a boson mode with x > 0 the hole

absorbs some (or all) of the incident quanta, i.e.,
0<I'<1; it follows from (17) that 8= x> 0. By
contrast, a boson mode with x <0 is superradi-
ant,'®® i.e., it is amplified by the hole upon scat-
tering (stimulated emission) so that I"'<0. Since
the right-hand side of (17) is positive, >0 again.
Thus, for all boson modes 8>0. This is crucial;
otherwise the sums (9) and (11) would clearly di-
verge, as they would be sums of terms increasing
without bound as the » increase. Also, we can now
see from (16) that a is a sum of positive terms,
one for each mode.

Fermion modes cannot superradiate; the Pauli
exclusion principle forbids stimulated emission.
Hence for all such (0 < I'<1)itfollows from (17) that
B>x. We thus find that for all types of modes
B-x>0. In view of this, it is now clear that each
term in the sum in (15) is positive since I' and
e*¥1 always have the same sign.

We have shown that

(AS)=(AS,)+AS, >0, (18)

where the average is over the distribution Dy
Thus we find that in the Hawking process the GSL
is respected on the average; the radiation entropy
generated exceeds the mean decrease in black-hole
entropy. This is the most one can show, for the
GSL is a statistical law susceptible to violation by
statistical fluctuations.’

III. THE GSL FOR A BLACK HOLE IN A RADIATON BATH

We noted earlier” that if a Kerr hole is placed
in a blackbody cavity of temperature T sufficiently
low in relation to T, then the flow of radiation
from the cavity into the hole (lower to higher tem-
perature) will violate the GSL unless some process
generates entropy outside the hole. We suggested
a complicated mechanism to accomplish this. Now
that we know about spontaneous black-hole radia-
tion, a simpler resolution of the difficulty becomes
possible, as mentioned by Hawking'®: The GSL
may be upheld by the generation of radiation en-
tropy by the hole itself. We shall now show that
indeed the change in radiation entropy plus the
mean change in black-hole entropy is non-negative
for all values of 7.

The following proof applies only to the case that
the hole is of the Schwarzschild type (®=§=0),
and that the cavity is uncharged and nonrotating.
As is well known, the mean occupation number for
a mode of frequency w of the blackbody radiation
is

my=(’F1)", (19)

where
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y=hw/T. (20)

When the mode scatters on the hole, the mean
number of quanta absorbed is a fraction I of the

() given by (19). The mean number of outgoing
quanta is a fraction 1 - I of that () (scattered) plus
the number given by (5) (spontaneously emitted).'*
From (3) and (7) we can write the mean change in
black-hole entropy over a certain time interval as

(AS,)=Y" xT[(e?*1)* = (e*¥1)"*], (21)

where the sum runs over all modes that scatter
off the hole in the given time interval. Expression
(21) takes absorption and spontanecus emission in-
to account.'*

The associated change in exterior common entro-
py is the entropy of the radiation outgoing at some
large distance (scattered and emitted) minus the
entropy of the blackbody radiation incoming at that
distance. The latter entropy can again be computed
by the method used in Sec. II. It is given by an ex-
pression like (14) together with (16), with the p’s
determined by a condition like (11) together with
(19). Not surprisingly, they turn out to be just the
y’s. Therefore, the incoming entropy is

AS;=Y [*ln(l Fe?)+y(e?*1)"']. (22)

We follow the same procedure for computing the
outgoing radiation entropy. The parameters ana-
logous to the B’s, which we call y’s, are deter-
mined by the following generalization of (17):

(e’F¥1)t=(1-D)e*F1)"*+I'(e*F1)L. (23)

The first term on the right-hand side is the contri-
bution of scattering, and the second is that of
spontaneous emission.'* The outgoing entropy is
given by

AS, =Y [Fln(t Fe) +y(e”¥1)*]. (24)

We will now show that each mode’s contribution
to (AS)=(AS,)+ AS - AS, is non-negative because
it has a unique extremum, a minimum, with re-
spect to T at T'=T,, which vanishes. For this pur-
pose we need several intermediate results. First,
from the definitions of x, y, and y, (6), (20), and
(23) respectively, it is clear that for each mode

y=y=x at T=T,, (25)

and nowhere else. For the Schwarzschild case
x>0 always, so that superradiance is absent;
therefore, for every mode 0<I'<1. It then follows
from (23) that ¥ has a value intermediate between
x and y. Differentiation of the relation (23) with
respect to 7' (which we denote by a prime) followed
by replacement of (e?¥1)-! from (23) itself shows
that

Y'=1-D)y' at T=T,,. (26)

Now we return to our main problem. Construct-
ing (AS,) from (21), (22), and (24) we see by vir-
tue of (25) that at 7=7,, this quantity vanishes
mode by mode. Taking the derivative of (A Sy
with respect to 7" we get after some cancellations

(A8 =Y frlle’s 1)) = (y - D)(e*¥1)"*]"}.

27)

This can be simplified by means of the derivative
of (23) to yield

(ASp'== 3 (y=Ty—y+Txly'eX(e?1)-2.

(28)

Let us focus on a single mode’s contribution to
this sum. It can vanish only where y=(y - I'x)

X (1-TI)%, or, equivalently, where y —y=TI(x - y)
X (1-Ty'. But y must lie between x and y. Hence,
the two sides of this relation have opposite signs
and cannot be equal unless they both vanish, which
is true only when x =y =y, i.e., only when T=T,
according to (25). Thus each mode’s contribution
to (AS,) has a unigue extremum with respect to

T at T=T,,. Taking one more derivative of (S,,),
and evaluating it at 7=T,; with the help of (25) and
(26), we get

(AS)"=3"[1- (1= TRl(y (e 71)2e”

at T=T,,. (29)

Since 0<I'<1, it is clear that each mode contri-
butes positively to (AS,)".

Our conclusion, then, is that each mode’s con-
tribution to (AS,) has a unique extremum with re-
spect to T at T'=T,,, always a minimum, which
vanishes. Hence each mode contributes positively
to (AS, for all T, except at =Ty, where (AS,)
=0. Thus the GSL in averaged form is obeyed:
The mean change in black-hole entropy plus the
change in exterior entropy is non-negative for all
T and vanishes only when the black hole has the
same temperature as the cavity. Note that the
limiting case 7'— 0 corresponds to an isolated black
hole, a case we dealt with in more generality in
Sec. II.

1IV. GENERALIZED MAXIMUM-ENTROPY PRINCIPLE
FOR EQUILIBRIUM SYSTEMS

The GSL in averaged form has been validated for
a variety of situations (Secs. II, I and Ref. 7), so
we may well rely on it in general. It states that
the mean change in generalized entropy S, (the
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mean change in black-hole entropy plus the change
in exterior common entropy) is non-negative. The
mean of AS,; implied here is to be calculated with
the probability distribution for the exterior matter
or radiation states as this relates to the state of
the black hole through the conservation laws [see,
for example, the derivation leading to (8)]. Al-
ternatively, one could define the associated prob-
ability distribution for black-hole states and use it
to calculate the average (AS,,) and the average
(ASp). The fact that (AS,) is non-negative indicates
that, for a system in thermodynamic equilibrium
containing a black hole, (S o should be a maximum
for the given total energy, angular momentum,
and charge. This observation serves to motivate
the following generalized maximum-entropy prin-
ciple (GMEP): The probability distribution for a
system in thermodynamic equilibrium containing
a black hole is that which maximizes (S,)=(S,,)
+S_ subject to the relevant constraints.

Let us illustrate this principle by considering
the problem of a Kerr hole formed by collapse
which is enclosed in a container with walls that
perfectly reflect all the relevant radiations. The
hole will radiate spontaneously an average of
T'(e*¥1)"! quanta into each outgoing mode according
to (5). The quanta go out, are reflected by the
walls, return, and scatter off the hole. The hole
returns a fraction (1 - I') of them into the outgoing
mode together with an average of I'(e*1)~! freshly
emitted quanta. The process repeats itself. In the
limit the mean number of quanta in each mode is
given by

y=(e*F1) [T+ (1 -T)T+ (1~ TPT+...].
(30)

For a nonsuperradiant mode 0<I'<1, so the series
converges to unity and the limiting ¢) is just the
standard Bose (Fermi) one for temperature T,,.
For superradiant modes I'<0, so the series diver-
ges. This is not surprising. Those modes are
amplified at each scattering and grow indefinitely
so long as the superradiance condition is satisfied.
We reach the conclusion that the black hole even-
tually reaches thermodynamic equilibrium only
with the nonsuperradiant modes in the container.
Let us now see what account the GMEP gives of
the equilibrium subsystem black hole plus non-
superradiant modes by itself. Each possible state
of the radiation in these modes is specified by a
set of occupation numbers {#} and occurs with some
probability p,, subject to the constraint (9). Owing
to drainage into the superradiant modes, the total
energy of our equilibrium subsystem decreases
secularly in time. But we can still think of this
energy as well defined at any given instant. The

energy is shared between black hole and radiation
in accordance with the probability distribution
D(ny- Similar statements can be made about angular
momentum and charge. The black hole, then,
cannot be regarded as having definite M, L, or
@. Rather, it can be in a number of different Kerr
black-hole solution states® of definite M, L, and @,
each one occurring with some probability P,,, .
For convenience we shall think of the spectrum of
M, L, and @ as totally discrete. There are indeed
some quantum reasons for this viewpoint.*®

The entropy of the radiation is given as usual by
(10). The mean black-hole entropy is clearly given
by

(Sun) = Z PyroSm, L,Q), (31)

MLQ

where S, (M, L,Q) is the black-hole entropy of the
Kerr black-hole solution with parameters M, L,
and @. The sum in (31) runs over the entire al-
lowed spectrum of M, L, and @, but only for

M <M,, where M, is the time-dependent total en-
ergy of black hole plus radiation in nonsuperradiant
modes. It is clear that each P, , equals the sum
of the p(,, for all the radiation states which can co-
exist with the given Kerr solution state, i.e., radi-
ation states with occupation numbers satisfying

M=M,~- Znh’wzo,

(32)
L=L,- Znﬁm, (33)
R=Q,— ) ne, (34)

where the sums go over all the nonsuperradiant
modes, and L, and @, are, respectively, the (time-
dependent) total angular momentum and charge
shared by the black hole and the radiation in these
modes. We can thus write the GMEP in the parti-
cular form 5((S,)+S,) =0, or

8 piml=Inp, +S,(M,L,Q) - (a=1)]=0,
{n} (35)

where M, L, and @ are given by (32)-(34), and
a-1 is a Lagrange multiplier.
Independent variation of the p,, gives

Py =€ “exp[S,, (M, L,Q)], (36)

where « is to be determined by the normalization
condition (9). For radiation states with 2 n7iw
<M,, |2 nim| < |L,|, and |Y ne|< |Q,| we can
expand the argument of the exponential in (36) about
M,, L,, and @,. Using (3) to compute the neces-
sary derivatives we get

Piny ocexp(— an> s 37)
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where the T\, @, and & that come into the x are
computed with the instantaneous values of M, L,,
and Q,. The distribution (37) has the Boltzmann
form for temperature T,,. The mean occupation
numbers that follow from (37) are identical to
those given by (30) which were inferred from Haw-
king’s result. This agreement lends support to our
formulation of the GMEP.

Let us now compute the P,;,. Each one is the
sum of the p,, for all radiation states that can co-
exist with the given Kerr solution state. According
to (36) and (32)-(34), all these probabilities are
identical. Let g, , be the number of radiation
states in question. Then

Pyro=8uree *exp[S,(M,L,Q)], (38)

where it is understood that M < M,.

Although we shall not attempt to calculate the
ZuLg here (we do this in Sec. VI), it is physically
evident that this factor should increase rapidly as
M decreases, i.e., as more energy is available for
the radiation. By contrast the exponential in (38)
increases rapidly with M. The P,; ., being the
product of a factor which increases rapidly with
M and one that decreases rapidly with M, will have
a sharp peak at some M below M,. Thus, although
a Kerr black hole in equilibrium with radiation
does not, rigorously speaking, have a precise
mass, it does have a fairly sharply peaked distri-
bution of possible masses.

V. INTERIOR CONFIGURATIONS OF A BLACK HOLE

Statistically, thermal entropy can be regarded
as the natural logarithm of the number of possible
distinct microscopic configurations of the system
compatible with the macrostate in question.'® In
introducing the black-hole entropy,!*® we suggested
by analogy that it may be interpreted as the natural
logarithm of the number of possible distinct in-
terior configurations of a black hole compatible
with the exterior black-hole state (for example,

a Kerr solution state) in question. We shall now
find support for this conjecture in that it leads
very directly to the results. we obtained in the pre-
ceding section.

For this purpose we again consider a Kerr hole
in equilibrium with radiation in nonsuperradiant
modes within a container. Each distinct “micro-
state” of the system consists of a radiation state
specified by occupation numbers and an interior
black-hole configuration. We make the traditional
postulate that all microstates of a system in equili-
brium are equally probable (equal a priori proba-
bilities).!® It follows that the probability of a rad-
iation state regardless of which interior configura-

tion it goes with must be proportional to the num-
ber of configurations compatible with it, or, equiva-
lently, compatible with the Kerr solution state asso-
ciated withthat radiation state. By our conjecture
this number is just the exponential of the black-
hole entropy of the Kerr solution state. We thus
recover our previous expression (36) for p,,. The
results (37) and (38) that follow from it are ob-
tained just as before. We see that indeed a black
hole in a given Kerr solution state behaves as if

it can be in any of a number of equally probable
interior configurations, with the logarithm of this
number giving the black-hole entropy. An inter-
esting way to look at these interior configurations
in a particular model of collapse has been given by
Gerlach.'”

It is interesting to contrast the approaches of
Sec. IV and the present section, which both lead to
the same results. In Sec. IV we use a principle
motivated by the GSL. It treats the black hole as
a black box, and does not attempt to give an inter-
pretation to S,,, but simply takes it as a property
of the exterior state of the hole. In the present
section the GSL does not come ininany way, butS,
is given a statistical interpretation in terms of
the black-hole interior. No two approaches could
be more dissimilar, and the agreement between
their results speaks for the self-consistency of the
ideas we have made use of.

VI. JAYNES’S MAXIMUM-UNCERTAINTY PRINCIPLE
FOR BLACK HOLES

The GMEP is of use only for equilibrium sys-
tems. Something else is needed for nonequilibrium
situations involving black holes; for example, one
problem is determining the distribution P, , for
a Kerr hole radiating in isolation. We may here
be guided by Jaynes’s maximum-uncertainty prin-
ciple, already applied in Secs. II and I, which
states that the best probability distribution one can
assign to the states ¢ of a system is the one which
maximizes the information theoretical uncertainty
(or entropy),

S=-3_ pnp;, (39)

subject to the known information. This principle
is supposed to apply to nonequilibrium systems,
as well as to equilibrium ones. For the latter it is
identical to the usual maximum-entropy principle.
Here we would like to formulate a Jaynes-type
principle for a Kerr hole by itself.

The states ¢ of which the principle speaks are
the elementary states of the system. For a black
hole these would be the interior configurations and
not the Kerr solution states, which are classes of
interior configurations. Nevertheless, since only
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the Kerr solution states are externally observable,
it is advantageous to reexpress S in terms of the
Pyo- It seems reasonable to assume that all in-
terior configurations for a given Kerr solution
state are equally probable—they all share the same
dynamical quantities M, L, and @ and consequently
are totally equivalent to an exterior observer. In-
deed this view is consistent with the results of
Sec. V. If so, for given M, L, and @

Pi=PMLQ/NMLQ s (40)

where N,; o is the number of interior configura-
tions corresponding to the given Kerr solution
state. Substituting this into (39), remembering
that InN,,; o =S,,(M,L,Q), and summing over the
N, .o identical terms for each Kerr solution state,
we get

§=- Z PyrolnPyro+ Z PyroSwmM,L,Q).
MLQ ¥LQ
(41)

The first contribution is the uncertainty as to
which Kerr solution state the black hole is in; the
second represents the uncertainty intrinsic to the
Kerr solution states themselves. It is important
to stress that the uncertainty to which Jaynes’s
principle refers is something more than ¢S,,) which
appears in the GSL or the GMEP.

Let us apply the Jaynes principle to the determi-
nation of the distribution P, , for a Kerr hole
radiating in isolation. That the hole cannot have
definite M, L, and @ follows from the fact that the
energy, angular momentum, and charge radiated
are subject to a probability law (13). However,
since Hawking’s result (5) allows the determination
of the mean energy, angular momentum, and
charge radiated, we can regard (M), (L), and (@)
as known information. The problem then reduces
to determining the distribution P,;, which maxi-
mizes

S+ Pyl - a- uM+vL+0gQ), (42)
MLQ

where 1 - ¢, — u, v, and o are Lagrange multi-
pliers used to introduce all known information as
constraints. Variation of each P, , independently
gives

PMLQ = e-a-u.MwLwQ exp[sbh(M9 L; Q] ’ (43)

where the @ is to be determined from the normali-
zation condition, and the pu, v, and o from the con-
dition that the mean values of M, L, and @ be as
prescribed. This all can be done rigorously only
if the spectrum of M, L, and @ is known.

Instead of taking this approach we shall adopt a
simpler one based on the physical expectation that

the probability distribution should have a fairly
sharp peak at some values M=M,, L=L,, and @
=@Q,. This will guarantee that the black hole has
rather well-defined mass, angular momentum,

and charge. Expanding S,, about M,, L,, and @,
with the help of (3), and requiring that terms linear
in M, L, and @ in the exponent be absent (so that
P, ;o can have a peak), we get the conditions

p=Ty"t, (44)
v=QT,,"*, (45)
o=0T, ", (46)

where the quantities on the right-hand sides are
evaluated at M,, L,, and @,, which should be close
to (M), (L), and (Q), respectively. It follows that
the true parameters of a Kerr hole in isolation are
not M, L, and @, asisusually said,® since they are
random variables, but rather T,;, @, &, which are
associated with (M), (L), and (@).

The quadratic terms of the expansion make
P,1q into a trinormal (tri-Gaussian) distribution
in the variables M- M,, L - L,, and @ - @,. The
dispersions of these quantities are found to be

AM=(8Ty,~*/oM) 12~ /2~10"% g 47)
AL=(8QT,,"*/0L)"* 1 ~n* 2 (M)~ ((M)/10"° g)7,

‘ (48)
AQ=(88T,,"1/8Q)" 12~/ ~12¢. (49)

It is curious that AM and AQ are the same for
black holes of all sizes. Both AM and AL exceed
by the large factor M/10"° g the quantum-level
spacing of the corresponding quantities obtained
by one line of reasoning, !> whereas AQ is always
several elementary charges. Thus, the discrete
nature of the quantum spectrum of Kerr solution
states cannot manifest itself directly for a Kerr
hole in a “natural” state. Nevertheless, the width
of the distributions of M, L, and @ is tiny in re-
lation to the (M), (L), and (@) corresponding to

a macroscopic black hole.

The parameters T, @, and & clearly vary in
time for a radiating black hole. Their evolution
can be determined from the rates of change of
(M), (L), and (@) which one can calculate from
Hawking’s results.

We recall that the probability p, of an interior
configuration is the fraction exp(-S,,) of the P, o
for the corresponding Kerr solution state. From
(43) it follows that

pi=e exp[- (M- QL - 3Q)/T,,]. (50)

We see that this probability distribution is of the
(canonical) Boltzmann type for temperature T,,.
Probabilities of those configurations with high
masses, or with angular momenta or charge of
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opposite sign to the angular velocity or electric
potential, respectively, are strongly suppressed.
This is physically appealing; for example, a Kerr
hole with positive electric potential should contain
negatively charged interior configurations only
with fantastically small probabilities.

Although we have developed the previous ideas
for an isolated hole, they should be valid also for
a hole in a c¢ontainer in equilibrium with its own
radiation. In this latter case the mean mass, an-
gular momentum, and charge of the hole can be
regarded as known—they are just the total mass,
angular momentum, and charge of the black hole
and radiation in nonsuperradiant modes minus the
mean values of these quantities for the radiationit-
self. Sincethelatter depend on the size of the contain-
er, T,,, §, and & should also depend on it. Com-
paring (43) with (38) we can see that

EuroxeXpl— (M- QL - 8Q)/Ty,] . (51)

This gives the number of radiation states that can
be associated with the Kerr solution state de-
scribed by M, L, Q.
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APPENDIX

Wald'® has implicitly given an expression ob-
tained by a full quantum treatment for the probabil-
ity that a Schwarzschild hole emits » bosons into
a given mode:

m!

= -mhw /T M
p"ocZe @/Tpn(l - T) "n!(m—n)!'

m=m

(A1)

We shall show that this formula is equivalent to
that given in Sec. II of the present paper.

From (13) it follows after summation over all
modes except that in question that the probability

that the black hole emits » quanta into that mode
is

ppce™, (A2)
where according to (17) for bosons
e=Te*[1-(1-De=]". (A3)

We shall make use of the expansion (good for
|2 |<1)

©

1

— -n=1_ _—m'__.. me-n

(1-2) > Ton e (A4)
m=n

which follows from n-fold differentiation of the

expansion

(1—z)'1=f:z"‘. (A5)

Taking z = (1 - I)e"* in (A4) and using this in con-
junction with (A3) we get

e-B(n+1) = I'm-rle-x(nd)

=-(m=n)x m!
X% (1= T)mergmimm Y e T (A6)
m=n

Therefore,

ppcePr=ef>T

m!

X Z e ™1~ I‘)'"'"n—!(m_—n)! .

(A7)

With the Schwarzschild value x = 7w/7T this is just
the expression given by Wald, since the factor
e®~T is independent of #, and is eventually ab-
sorbed in the normalization factor.

Thus the information theory approach of Sec. II
yields, already in closed form, the same probabil-
ity distribution that is obtained from a full quantum
treatment of the problem.
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