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The fully relativistic model of the strong interactions between hyperons, described in the preceding paper, is used
to investigate the properties of superdense matter. This model can be solved exactly, and the low-temperature
limit applied directly to construct neutron star models. Our results lead to a significantly higher mass stability
limit (M., = 2.39 M) which has far-reaching implications for black-hole astrophysics. It also yields moments
of inertia well above the observational lower bounds for pulsars. The model predicts a phase transition which
includes nuclear densities, and which has significant implications for the detailed structure of neutron stars.
Despite the low central densities found for stable masses (¢, < 2 X 10'* g/cm®) all members of the first SU(3)-
symmetric octet except the Z~ enter as stable constituents. In addition, quarks may be used as fundamental
constituents for a species of superdense matter applicable to models of the hyperons. Our results indicate that
this approach may be fruitful in explaining such phenomena as precocious scaling and quark confinement.

I. INTRODUCTION

The formalism developed in the preceding paper!
may be used to investigate the properties of low-
temperature systems of strongly interacting rel-
ativistic fermions at and above nuclear density.
Two cases which are of particular interest are
superdense baryon matter, as it is expected to
occur in neutron stars, and superdense quark
matter, as a possible model of the hyperons. The
major formal difference between the two cases
involves the type and number of constituents to
be considered. In our applications to neutron
stars we shall consider a normal Fermi system
of baryons from the first SU(3)-symmetric octet
universally coupled to phenomenological vector
and scalar fields. The zero-temperature equa-
tion of state is obtained for several choices of the
phenomenological coupling strengths, and from it
we construct slowly rotating neutron-star models.
We find a maximum stable neutron-star mass of
2.39Mg, and obtain models with M= 1M having
moments of inertia /= 10* gem?. Our results
are assessed in terms of observational evidence
and current theories of the late stages of stellar
evolution. The implications of the increased up-
per mass limit for relativistic astrophysics are
also described.

As a second application of our approach, we
consider a superdense system of quarks as a
possible preliminary model of the hyperons. The
analysis shows that superdense matter composed
of quarks at zero temperature also undergoes a
phase transition. The two phases differ in density
by at least five orders of magnitude. The higher-
density phase begins well above nuclear density.
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This allows us to interpret the hyperons as quark
droplets which coexist stably with an extremely
dilute quark gas. This preliminary model suggests
that the formation process may be somewhat
easier to handle than complete quark confinement.
Extension of this approach to construct a more
nearly realistic model is discussed.

The notation used below follows that developed
in the preceding paper. When referring to equa-
tions discussed there we shall place a “I” after
the equation number.

II. COUPLING CONSTANTS

In our preliminary approach to the physics of
superdense matter the strong interactions were
assumed to arise from exchange of the observed
mesons needed to fit relativistic nucleon-nucleon
scattering data. This approach, which was based
on observed meson masses and coupling constants
fitted to high-energy nucleon-nucleon scattering
data was found to be unsatisfactory. It did show,
however, that a model of the strong interactions
could be obtained by coupling the baryons via a
phenomenological scalar and vector field. The
restriction to two fields is sufficient since we
consider only spin-3 fermions with local cou-
plings. When this is done, it is no longer obvious
what coupling constants and masses should be
associated with the phenomenological fields.

As should be clear from our discussion of the
density expansion in the preceding paper, the
relation between the meson-exchange parameter
and our phenomenological field couplings is re-
mote at best. Therefore a method for determining
the coupling strengths gs%mp®/us2n* and
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&y mg? /2% appearing in (A1I) must be specified.

Several programs which may be used to fix the
coupling strengths were outlined in Sec. VI of the
preceding paper. The most appealing method
would involve fitting nucleon-nucleon scattering
with the effective Lagrangian. This program has
been carried out by others, and their results may
be incorporated directly to fix the coupling con-
stants and choice of mesons to be exchanged. A
less ambitious, though still predictive, approach
involves the construction of a simple model of
nuclear matter. The coupling strengths may be
fitted by requiring that the bulk binding energy
per nucleon at nuclear density have a specific
value. In this way we find that ggmy%/u¢2n®
=27.04 and gy®mp%/ 1y 27 =19.83 reproduce a bind-
ing energy per baryon of —15.74 MeV at qp,y
=qgp=1.42fm™'. These values correspond to our
best fit model, and will serve as the basis for
much of the remaining discussion.

As emphasized previously, we consider the
principle uncertainty in our approach to be that
inherent in our simplified model of nuclear mat-
ter. Conventional approaches to neutron-star
matter suffer from the limitation of inherently
containing free parameters, many of which are
fitted by independent means. In these cases it is
extremely impractical to examine the dependence
of the resulting equation of state or neutron-star
structure on the fitting program.

In our model all the input uncertainty is lumped
into the two coupling strengths. Furthermore
since our equation of state may be obtained in
analytic form, it is possible to gauge the sensitiv-
ity of the results to variation in these parameters.

The results which we obtain serve as bounds on
our equation of state, and on the maximum mass
and moment of inertia of the corresponding neu-

tron-star models. Since our primary interest is in

massive neutron stars in the vicinity of the stabil-
ity peak, our analysis will focus on the vector
coupling g,*mg%/n?1u,? which dominates the inter-
actions at high densities.

One approach to this question of input uncertainty

follows from the observation that the uncertainties
in the binding energy and density of nuclear matter
lead to uncertainties in the scalar and vector cou-
pling strengths. This will be discussed in the con-
clusion. We find that deviations from our best

fit above are small, and do not alter the qualita-
tive conclusions to be presented below.

A second approach is suggested by the following
considerations. If we arbitrarily set uy equal to
the observed w meson mass, we find that the
quantity gy®my%/1.,212=19.83 leads to a value of
10.87 for gy?/4n. This falls well within the range
of the phenomenological values for the w coupling

from nucleon-nucleon scattering data [9.05 to
15.3 (Ref. 2)]. In fact, reasonable agreement
with scattering data may be obtained from values
as low as 4.77 or as high as 24.0. We therefore
recalculate the equation of state for these ad-
ditional cases (see Fig. 1): (1) a vector coupling
&v*mg?/uy?n® =45.5 corresponding to gy%/4m= 24;
(2) same as (1) with gg®mp?/ug%m® adjusted to
eliminate the phase transition near nuclear den-
sity; (3) our original value of gs%mz?/Lg?n® and
8y my?/ Ly 21 =9.04 corresponding to the lower
limit g,%/4m=~4.71.

We will discuss in the following section the equa-
tions of state which result for these values. It
is well to stress, however, that such variations
serve primarily as illustrations of the mathe-
matical dependence of P and € on the coupling
strengths and should not be interpreted as cor-
responding to any realizable physical system.
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FIG.1. Dependence of P(€) on scalar and vector
coupling strengths near and above nuclear density.
(a) Best-fit equation of state (27.04, 19.83) (the two
numbers in parenthesis following each entry in the cap-
tion denote values of gg%m g /ug?m and gy ?mp?/uyr?,
respectively); (b) relativistic ideal neutron gas (0,0);
(c) extreme repulsion obtained if vector coupling con-
stant equals maximum phenomenological w meson value
gl /4T =24 (27.04, 45.5); (d) same as (c), with scalar
coupling increased to fit equations of state based on con-
ventional descriptions of nuclear matter for € <10
g/cm? (52.0, 45.5).



3058 BOWERS, GLEESON, AND PEDIGO 12

III. BULK PROPERTIES OF SUPERDENSE MATTER

The results of the preceding paper will be ap-
plied to determine the equations of state for the
T=0 system of leptons and baryons given in
Table I. This is accomplished in two stages.
First, baryon chemical potentials are found from
(4.2I) and (3.27I). Chemical equilibrium con-
ditions then determine the densities at which each
hyperon species appears in the system. Having
found the constituents as a function of total baryon
number density, we construct the ground-state
energy density and pressure equations of state.
Unless otherwise stated, the discussion below
will be based on our best-fit model (gs*mg%/us%n®
=27.04 and gy ®mp%/uy2n% =19.83).

A. Composition of superdense matter

The particles given in Table I selected as the
constituents for our model are the lowest-mass
spin-3 baryons known. Probably the only serious
omission in this set is the A™!; which because of
its low mass and negative charge would be ex-
pected to enter between the A° and Z°2 The in-
clusion of spin-3 particles would require straight-
forward but significant medification to the ap-
proach discussed here. An estimate of the effect
of these missing constituents is given with our
numerical results. Our equation of state yields
matter at low densities, € < 1xX 10”7 g/cm®, which
consists of nearly free protons and electrons. As
the density increases it becomes energetically
favorable for protons to undergo e~ capture, with

TABLE [. Particle thresholds. The columns give
(1) particle, (2) rest mass in MeV, (3) total baryon-
number density (cm™3) for which particle appears in
the interacting system, (4) same as (3) for free parti-
cles, (5) threshold in total baryon energy density
(g/cm?. The proton (my =938.3 MeV) and electron
(me==0.511 MeV) are present from zero density.

Rest

mass 1073% (cm™?) 1071 (g/cm?)

Particle (MeV) Interacting Free Interacting

n 939.6 ~1078  ~107% ~1078

w” 105.7 0.213 0.462 0.369

z- 1197.4 0.245 0.617 0.423

A 1115.6 0.327 1.22 0.577

z0 1192.5 0.511 3.33 0.950

o 1321.3 0.697 3.91 1.43

z* 1189.4 0.712 >6.8 1.48

E° 1314.9 0.951  >6.8 2.14

the simultaneous appearance of a nonzero density
of neutrons. At higher densities these weak inter-
actions result in hyperon production. The basic
processes involved at 7 =0 for an equilibrium
ground state may be written as

B(e™, v,)B’ and B(v,, ¢*)B’ (3.1)

with B and B’ suitably chosen members of the
first baryon octet. Since the decays (3.1) are
weak, the total electric charge @ and baryon num-
ber are conserved, and the change in charge and
strangeness S of the baryons satisfies AS=AQ.
The chemical potentials of the constituent bary-
ons determine the equilibrium composition. In
this sense the pu’s act as particle production
thresholds. This has been thoroughly discussed
in the literature.* The equilibrium conditions on
the p’s which follow from (3.1) are given by
Ambartsumyan.® Two dominant mechanisms de-
termine the densities at which various baryons
appear. The effective masses, which decrease
with increasing density, tend to depress the
threshold of each baryonic species. Owing to the
presence of e~ in the system, the chemical equil-
ibrium conditions have the opposite effects on the
positively charged baryons. Table I summarizes
the order in which the baryons appear. The chem-
ical potentials for individual species are shown
in Fig. 2. We note that the interacting baryons
enter in the same order as they would in a free
hyperon gas. The number density of each species
is shown in Fig. 3 as a function of the total baryon
number density, and the effective masses for
selected baryons are shown in Fig. 4.

B. Pressure and energy density

The ground-state energy density is obtained from
(4.61). A particular baryon will contribute a term
€®) to the total ground-state energy only when the
number density n causes the chemical potential
u(B) to exceed its production threshold. Once the
total ground-state energy density € =p,;¢® has
been found as a function of n, the pressure is
obtained from (4.7I) by numerical differentiation.
Alternatively (4.4I) and the self-consistency
condition (3.271) may be used. The first approach
is numerically the simplest and has been followed
here. Representative values of €, P, and n are
presented in Table II and Fig. 5. For energy
densities 13.40 <log,,€ <14.11 the slope of P(e)
is negative, and for 13.64 <log ,€ <14.23 the sys-
tem pressure is negative. Throughout this density
interval the system contains no hyperons. The
dip in pressure indicates that the system posses-
ses two different phases. The pressure P, at
which the phase transition occurs is determined
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by the usual Maxwell construction. P, may be
found by two equivalent means as illustrated in
Fig. 6, which shows P versus 1/z and p versus
P. In terms of the specific volume 1/n, P, is
determined by the requirement that the integrals
de(l/n) from a to b and from b to c along the
curve P(1/n) be equal (the region P<0 is to be
included). Alternatively, P, may be found as the
point where the curve for the baryon chemical
potential u(P) intersects itself, as shown in Fig.
6(b). For present purposes ((P) may be replaced
by w™(P) in determining P,.° We have calculated
P, both ways and find by each method log,, F,
=30.336. The phase transition occurs over the
density range 3.44x 1012< €< 1.72X10* g/cm®.
The bulk modulus of the fluid in each phase is
proportional to the slope of P(€). According to
the standard convention the high-density phase
will be called a liquid while the lower-density
phase will be called a gas. A detailed discussion
of the ordering properties of the fluid in each of
these phases is outside the scope of the present
investigation. Therefore we will retain the simple
classifications above for each fluid phase.

At low densities the equation of state approaches
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FIG.2. Baryon chemical potentials in superdense
matter vs (total baryon number density)/3. Arrows on
the abscissa indicate hyperon thresholds. The chemical
potentials of all similarly charged baryons are equal.
The chemical potential for Z ~ below threshold has not
been shown. The coupling constants (27.04, 19.83) cor-
respond to best fit.

a free gas. The attractive interactions dominate
above the transition region until €= 1.82x 10
g/cm?, at which point repulsive effects become
significant. At higher densities repulsion domin-
ates, and asymptotically P—- € as discussed pre-
viously. Hyperon production sets in at the Z~
threshold, which occurs for €=4.23X10* g/cm?;
the last hyperon in the octet appears when €
=~2.14X10% g/cm?®.

C. Finite-temperature corrections

An additional feature of our model is that low-
temperature corrections which depend only on
the T'=0 equations of state may be easily obtained
as described in the preceding paper. Using our
best-fit model we have calculated the low-temper-
ature changes in the chemical potential and ef-
fective mass for a neutron gas. The results are
presented in Table HOI.

logyng (cm

1 1 i
38.0 38.4 388
logon (cmi®)

FIG. 3. Particle number densities vs total baryon
number density, both in cm™. The hyperon concentra-
tions rise rapidly from zero once their thresholds are
exceeded. The p~ concentration drops to zero for
logjgn, = 38.6. At higher densities there is a tendency
for the »’s to approach the same value. The actual
threshold density for each hyperon is given in Table I.
The coupling constants (27.04, 19.83) correspond to best
fit.
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D. Variation of coupling strengths

In order to gauge the sensitivity of our results
to the choice of scalar and vector coupling
strengths we have recalculated P(€) in the three
separate cases discussed in the close of Sec. II.
These are illustrated in Fig. 1 along with our
best fit a, which has been described above. Curve
b is a free gas of neutrons.

Curve c corresponds to the case (1)
(gv2mg%/uy?n?=45.5 and gs®mp*/ug?n?=27.04). We
observe that at high densities the differences be-
tween a and c become quite small, but that c is
well above a free gas even at relatively low den-
sities. In particular, there is no evidence of the
dominant attractive forces which bind nuclei for
€ ~10™" g/cm3. Although this is not the stiffest
equation of state which could result” in principle,
it is highly likely that reasonable physical theories
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would lead to softer results.

A more nearly acceptable alternative may be
reached if the scalar coupling is also increased.
The physical motivation in doing so is the simple
fact that the attractive interactions dominate in
the neighborhood of nuclear density. Curve d
results if we require that our equation of state
reproduce the equations of state obtained by more
conventional methods applied to the regime of
nuclear density. This corresponds to case (2)
(gv2mp®/uy?n®=45.5 and gg*my?/ug?n® =52.0). The
vector coupling is identical to that used for case
(1). Although the fit to conventional equations of
state is reasonable for € < 10* g/cm3, the cor-
responding coupling strengths would not be ex-
pected to lead to a sensible description of nuclear
matter. Notice that there is no phase transition
in this case, since in this region the repulsive

TABLE II. Equation of state. The first three columns give the baryon energy density €
(g/cm?®), pressure P (dyn/cm?), and total number density #» (cm™3). The last three columns
give the proton, neutron, and Z~ chemical potentials (MeV) in the system. Several entries
are given in the region of the phase transition; these values of the pressure, indicated by an
asterisk, were replaced by 2.16x 10%° for the present calculation.

7 (cm™3) € (g/cm®) P (dyn/cm?) w (MeV) u" (MeV) uE” (MeV)
1.396x 10%° 2.340x 10 3.810x 1028 938.2 940.0 oeo
2.837x 10%° 4.755x 101 1.159x% 1029 938.1 940.3 cee
6.637x 1085 1.113x10%2 4.251x 102° 937.9 940.7
1.142x 1036 1.914x 1012 9.465x 10%° 937.6 941.0
2.053x 108 3.443x 1012 2.165x 1030 937.0 941.5
3.981x10%8 6.681x 1012 5.107x 1030* 935.9 942.2
7.533x 10%6 1.265x 10% 1.014x 1031 933.7 942.7
1.372x 10%7 2.305%x 10% 1.431x 1031 930.1 943.0
2.108x 10%7 3.542x 101 9.347x 1030% 925.9 942.8
2.580x 1037 4.335x 108 4.798% 102%% 923.2 942.6 see
3.981x 1037 6.688x 10% —4.673x10%1* 915.6 941.7
1.010x 10%8 1.695x 10 —2.086x 103 1% 887.9 941.4
1.027x 10°8 1.723x 101 2.818x 1030 887.3 941.5
1.032x 10°8 1.732x 101 1.132x 1031 887.1 941.6 oo
1.049x% 1038 1.760x 101 3.790x 10%! 886.5 941.7
1.088x10°8 1.825x 101 1.088x 1032 885.2 942.2 e
1.175x 10%8 1.972x 10 3.216x 10°2 882.4 943 .4 oo
1.354x 10%8 2.272x 101 1.027x 103 877.7 946.9
1.625x 1038 2.730x 101 3.036x 10%3 873.4 955.4 .ee
1.781x10°8 2.996x 101 4.868x% 10°3 872.7 962.3
2.091x 10°8 3.530x 10 1.041x 1034 875.8 980.4 cee
2.464x 10°8 4.184x 10" 2.102x 10%4 888.8 1010 1131
3.051x 1038 5.261x 101 3.790x 1034 930.2 1048 1165
3.757x 1038 6.621x 101 7.290x 1034 1003 1111 1220
4,438x 10°%8 8.021x 101 1.264x10%5 1094 1193 1292
5.507x 10°8 1.044x 10% 2.514x 10%5 1264 1349 1434
5.919% 10°8 1.146x 101 3.102x 10%° 1333 1413 1493
6.633x10°8 1.333x 101 4,265x% 10°° 1456 1529 1601
7.623x 10°8 1.617x 101 6.137x 10°° 1630 1693 1756
8.719x 108 1.966x 101 8.520% 1035 1820 1875 1930
1.000x 10%? 2.419x 10%° 1.177x 1036 2044 2091 2139
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interactions are dominant. It is found that a
slight further increase in the scalar coupling to
8gs*mg%/.g?m? 2 55 leads to a narrow phase transi-
tion near nuclear density.

Finally, we consider the relatively weak cou-
pling g,°mg®/u,21® =9.04 corresponding to case
(3). The equation of state is qualitatively similar
in appearance to curve (a). However, the phase
transition which develops is extremely broad.
The high-density segment of P(¢) is nearly paral-
lel to (a) but is shifted to the right by about an
order of magnitude. The low-density branch
corresponds to densities less than or equal to
those expected to occur in the center of massive
white dwarfs. Clearly the model will not repro-
duce the properties of nuclear matter, and in all
likelihood would predict that no stable neutron
stars exist. Since this is in obvious contradiction
with astrophysical observations we must conclude
that the model based on interpreting the pheno-
menological scalar and vector fields as, in some
sense, equivalent to exchange of observed mesons
of scalar and vector character is incorrect.

376 38.0 384 38.8
logon (cm-3)

FIG. 4. Representative baryon effective masses
(MeV) vs total baryon number density (cm™), To the
scale of the figure the effective mass of the nucleons
are equal. The upper curve is for the Z~, Note that
the baryon m, ’s shift together. The physical rest
masses are denoted on the ordinate. The arrow on the
abscissa corresponds to nuclear density. The coupling
constants (27.04, 19.83) correspond to best fit.
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IV. NEUTRON STARS

The T'=0 equations of state discussed in Sec.

III have been used to construct model neutron
stars. We present masses, radii, and moments
of inertia for slowly rotating neutron stars based
on our best-fit model, and compare these with
current results.

The method of constructing fully relativistic,
slowly rotating neutron stars at zero temperature
is well known. This procedure, including a de-
tailed discussion of the numerical program, has
been reviewed by Arnett and Bowers.? The essen-
tial steps are the following: Einstein’s equations
for a stationary axially symmetric rigidly ro-
tating medium are expanded about the nonrotating
solution.® The star’s angular velocity is assumed
to be @< @, =(MG/R®)*/2. Expansions in (Q/Q,)
are obtained for the moment of inertia I, the
gravitational mass M, andthe mass M,=n N, where
m, is the atomic mass unit based on C** and N is
the proper baryon number.'® To within limits
set by the uncertainty in any recently constructed
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FIG.5. Equation of state: (a) Baym-Bethe-Pethick and
Baym-Pethick-Sutherland equation of state; (b) results
of this calculation using coupling constants (27.04, 19.83);
(c) free neutron gas. The horizontal line corresponding
to logyyP =30.34 represents the phase transition region.
The curve labeled “b” asymptotically approaches P =ec?.
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equations of state, including the present model,
the corrections to M; and M, resulting from ro-
tation are not significant, at least for values of
the angular velocity 2 as presently observed in
pulsars. For the pulsar in the Crab nebula Q.
is approximately 200 sec™!. The moment of in-
ertia, however, does contain terms proportional
to /9, which have been retained.

Model neutron stars based on other published
equations of state have been surveyed.® The nu-
merical structure program empioyed here is the
same as that used by Arnett and Bowers. Thus
our results may be compared directly with the
other models as reported there.

In order to construct neutron-star models an
equation of state is needed which covers the den-
sity range €, se€<e€_ ., where €, is generally

(a)

(b)

FIG. 6. Maxwell construction. (a) Schematic plot of
total pressure P vs 1/z. The dashed line represents
the equation of state in the phase transition region. (b)
Baryon chemical potential p vs pressure P. The thermo-
dynamically realized state corresponds to the lowest
value of u. The transition pressure P, is determined by
the intersection of the u curves for the liquid and gas
phases.
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expected to be in the range 10'°-10% g/cm3. The
surface density €, has been taken as 7.86 g/cm?
(the T'=0 density of Fe®®). Our equation of state
could be used throughout the density range above.
However, the properties of low-density cold
catalyzed matter in neutron stars are well under-
stood. According to current theories, as sum-
marized in Table IV, the least reasonable equa-
tion of state at low densities is that of a gas.
Therefore we patch to more nearly realistic low-
density models below the phase transition.
Specifically, the results of Baym, Pethick, and
Sutherland!! (BPS) have been used for € <2.20

X 10" g/cm®. For densities €>1.72x10* g/cm?
our results have been used.

Selected neutron stars are given in Table V.
Each is parametrized by its central density €, .
The mass Mg is shown in Fig. 7 along with models
based on the equations of state of Pandharipande'®
and Cameron, Cohen, Langer, and Rosen
(CCLR).* The latter treat the interactions non-
relativistically. Figure 8 gives M, as a function
of €, for the same equations of state. The hori-
zontal mark in Fig. 8 gives M, corresponding to
M,=1.41M;, and represents the mass of a super-
nova remnant favored by present evolutionary
studies.’® Stable neutron stars are those for which

TABLE III. Temperature corrections to #m, and p4 for
neutrons. The coefficients A and B are derived in the
previous paper, and have been evaluated for our best
fit to nuclear matter as described in Sec. II. Also given
is the T=0 neutron chemical potential.

dp,x fm™)  uy (MeV) A (MeV™) B (MeV™}
0.056 80 939.7 1.541 X102 1.664 X102
0.1420 940.0 2.466x101  2.664 x10!
0.2272 940.4 9.630 1.041 x10?
0.3124 941.0 5.084 5.504
0.4260 941.8 2.715 2.947
0.5680 942.6 1.499 1.635
0.7100 943.0 9.272 x10"1  1.018
0.8520 942.9 6.095x10"1  6.758 x10™1
0.9940 942.2 4.129%x10"!  4.642x107!
1.136 941.2 2.822x107!  3.234 x107!
1.278 940.5 1.910 x10~!  2.252 x1071
1.420 941.4 1.259 %1071 1,547 %1071
1.562 946.1 7.915x1072 1.038 x107!
1.704 958.8 4.616 %1072  6.739x1072
1.846 985.9 2.386%x1072  4.216x1072
1.988 1035 9.885%x1073  2.560 x1072
2.130 1113 1.997x1073  1.546 x1072
2.272 1220 —2.017x1073 9,596 x1073
2.414 1355 —3.911x107%  6.256 1073
2.556 1516 —4.749%x1073  4.300x1073
2.698 1701 —5.077x107%  3.100x1073
2.840 1908 ~5.154x107% 2,323 x1073
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TABLE IV. Composition of cold matter as expected for neutron stars.

p (g/cm?)

Composition

104 - (7 x10%)
(7 x108) — (4 x101)

Normal nuclei and nonrelativistic e~

Relativistic €~ and Coulomb lattice of increasingly

neutron-rich nuclei

(4 x101) — (2 x1014)

Neutron drip; accumulation of free neutrons and nu-

clear clusters.

>2x101
>3x10M

Clusters dissolve ; n, p, and €~ Fermi fluids

Hyperon production

dM/de,> 0 for both M, and M. Configurations
beyond the mass peak are gravitationally unstable
and are expected to become black holes.

The maximum stable mass at T=0 has, accord-
ing to our model, a gravitational mass M;=2.39M
and M, =2.89M,, and a central density €,=2.00
x 10" g/cm3. This represents an increase of as
much as 60% over values recently reported in
the literature. If supernova remnants are in fact
limited to masses M, lying in a narrow range
about 1.41Mg, then the increased maximum mass
is expected to have a dramatic effect on the pre-
dicted ratio of neutron stars to black holes pro-
duced by supernova. In essence, our increased
M, .. implies that few black holes would be ex-
pected to result directly from the late evolutionary
stages of isolated stars, and it may reduce the
number of neutron stars in close binary systems
which become black holes as a result of mass
transfer.

Examination of M and R for models in Table V
shows an interesting feature. As the mass de-
creases, the model radius R increases until the

average density of the star falls below € ~8x 104
g/cm3. It then decreases with decreasing M until
the average € enters the phase transition region.
For €=2.2x10% g/cm® we again find that R in-
creases as M decreases until the mass minimum
is reached. The interval dM/dR >0 corresponds
to the region where the bulk modulus is large due
to the steep slope of the P versus € curve. In
fact the star distributes mass in this region as
if it were nearly incompressible, the added mat-
ter primarily extending the surface while having
a small effect on the central density.
Representative energy density profiles are
shown in Fig. 9. Also shown are mass fractions
for selected models. Of the top three curves, the
middle one corresponds to M, ,.. In these models
more than 95% of the stellar matter is at den-
sities greater than nuclear, corresponding to the
highly incompressible fluid phase. For this
reason the phase transition and the low-density
portions of P(e) have little effect on the structure.
The density profiles are nearly flat out to » =R
and then drop nearly vertically to € =€¢;. The

TABLE V. Slowly rotating neutron stars. The columns give (a) central density (g/cm?),
(b) gravitational mass in solar units (Mg =1.987x10%g), (c) mass My in solar units (see

Sec. VII, (d) radius (km), (¢) moment of inertia (gcm

2), and (f) binding energy per baryon

(MeV /baryon).
€, 1 €p
(g/cm?) Mg/Mg Mp/Mg R (km) (gcm?) (MeV/baryon)
2.000 x101° 2.39 2.89 11.42 3.05 x10%° 172.0
1.500 x1015 2.33 2.81 11.89 3.13.x10% 167.1
1.259 x1015 2.24 2.68 12.14 3.05 x10% 159.3 v/
1.000 x1015 2.02 2.36 12.37 2.70 X104 142.2
8.000 <1014 1.68 1.91 12.40 2.12 x10%° 118.8
7.499 x101 1.57 1.76 12.36 1.92 x10%° 111.2
6.402 x101 1.28 1.41 12.16 1.45 x10% 94.1
6.310 x1014 1.26 1.38 12.14 1.41 x104 91.5
5.623 <101 1.06 1.15 11.90 1.10 x10% 79.2
4.000 <104 0.540 0.564 10.78 3.93x104 45.8
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lower three curves correspond to models which 3
do feel the phase transition, and are sensitive

to the equation of state at low densities. The

profiles are remarkably flat up to the phase

transition, drop rapidly through this region, and

then develop a low-density envelope which balloons

to large radii. The latter is due to the BPS equa-

tion of state. The sharp falloff in density makes 2k
it possible to clearly distinguish the inner core
with € 2 1.7X10* g/cm? from the envelope for
which € 2.2x102 g/ecm3. The high-density
portion of the profiles are extremely flat out to
the transition region, and account for nearly all
of the mass of the star.

Moments of inertia have also been calculated |+
for the neutron stars in Table V. We find that
the maximum moment of inertia occurs at €, of
1.5x10%* g/cm?®, and has the value I, =3.13
x10* gem?. Furthermore stable models with
masses in the range M= 1M, have moments of
inertia greater than 10* gcm?. The maximum
moment of inertia occurs at lower density than o .
M_ .. as shown in Fig. 10. Also shown are mo-

My/Mg
T

L il 1 A 1
14 15 16
3 T T T T T logge. (g/cm3)
FIG.8. M, vs €, for slowly rotating neutron stars.
The treatment follows Fig. 7, except that the CCLR
- c - results have been omitted. The slash corresponds to
M, =141M,.
b
2+ 1 16
15
o | p
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14
[ Q :
= £
2
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22
z
" E
ol . 10
9
1 L 1 1 |
14 15 16 r (km)
log,pec (g/cm®) FIG. 9. Energy-density profiles for selected neutron
star models (left-hand side scale). Note pronounced core
FIG. 7. Mg vs €, for slowly rotating neutron stars. for intermediate mass models. Three gravitational mass
Curves (a) and (b) are described in Fig. 5. Curve (c) fraction curves are also shown (right-hand side scale).
represents the CCLR equation of state. The horizontal The arrow indicates the corresponding density profile.
slashes indicate the mass M corresponding to a rem- The extended envelopes are seen to contribute negligible
nant mass M ,=141M,. Curve (a) for €, >1015 g/cm? mass to the system.

is obtained from Pandharipande’s equation of state for
hyperon matter.
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ments of inertia based on the nonrelativistic equa-
tions of state of Pandharipande and of CCLR.

The two dashed horizontal lines in Fig. 10 rep-
resent the region in which Trimble and Rees™
place the lower bound on the moment of inertia
for the pulsar in the Crab nebula. Their estimate
is based on the nebula’s luminosity. Consider-
ations of additional observational data'® suggest
that the lower bound may approach 10% gcm?,
in which case most neutron-star models based on
nonrelativistic equations of state could be ruled
out since they tend to yield I, < 10** gcm?. In
fact, the relatively high values of I for our model
appear to be favored by estimates based on cur-
rent observational data.

Our equation of state contains several features
which bear directly on the internal structure of
neutron stars. One is the clear distinction be-
tween the core and the crust. This follows from
the essentially discontinuous change in density
at the phase transition, which occurs over nearly
two order of magnitude in density and at a pres-
sure which corresponds closely with the pressure
associated with neutron drip. In our model the
phase transition is clearly identified with the for-
mation of nuclear matter—a highly incompressible

455

450}

2)

log,I (gcm

44,51

44.0 L

Mg/ Mg

FIG.10. Moment of inertia vs M;. Treatment follows
Fig. 5. The + denotes the model with M,=141M,.
The range in the lower bound on I, is shown by the
dashed lines.
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fluid—and therefore changes the usual mechanism
for the smaller phase transition known as neutron
drip. In our case the lattice of nuclear clusters
is no longer viewed as vaporizing into a nucleon
gas phase, but directly dissolving into the nuclear
fluid as density increases. This direct, single
transition from crystallized nuclear clusters into
nuclear fluid provides a marked distinction be-
tween the low-density matter in the envelope and
the high-density core. The development of an
outer phase is thus a natural consequence of the
physics of the core. This modified picture of
neutron-star structure will have far-ranging con-
sequences for such phenomena as star quakes,
couplings to magnetospheres, possible differen-
tial rotation rates, and the dynamic formation
process itself.

Experience with neutron stars based on non-
relativistic equations of state indicates that an
increased maximum stable mass due to increased
repulsion is associated with a reduction in core
density. Associated with this is a tendency toward
fewer hyperon species. In the CCLR model
(M,,.x=2.45M and €, =1.99X 10" g/cm?®) the only
hyperons which actually contribute to the equation
of state are the =, A% and A~, the latter of which
enters essentially at maximum mass. The re-
maining hyperons in the octet appear at signif-
icantly higher densities corresponding to unstable
stellar equilibrium. Our equation of state shows
nearly the same degree of repulsion as found in
CCLR, and the maximum-mass model occurs at
practically the same density (e,=2x10% g/cm3).
However, all members of the octet, with the ex-
ception of the =% contribute to the structure.
This may be understood by examining the way
in which the scalar and the vector interactions
influence the equation of state and the particle
thresholds. The relative stiffness of the pressure-
energy density curve is due almost entirely to
the vector coupling, which dominates the scalar
attraction above € =2X10* g/cm®. The thresholds,
however, are most strongly influenced by the
self-consistency requirement which drives the
heaviest baryon’s m, asymptotically to zero with
increasing density (me' z-~400 MeV when € ~2
x10% g/cm?®) as shown in Fig. 6. This effectively
increases the number of species that occur at a
given density.

A complete analysis of the relation between
observational data and the structural implications
of this model are beyond the scope of this paper
but will be reported elsewhere.

V. CONCLUSION

When the scalar and vector couplings were fitted
to nuclear matter in Sec. II we observed that the
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greatest uncertainty in our model reflected that
which was inherent in our description of nuclear
matter. There we assumed Eg=-15.75

MeV /baryon at a nuclear density parametrized

by qry=1.42fm~'. However, these values depend
on the way in which the bulk properties of nuclei
are extracted from experimental data. Values of
E 3 used in published models vary in the range
-15.3>Ez>-16.5 (Ref. 16). Quoted values of
g,y are equally uncertain."

In order to test the sensitivity of our model we
varied our values of Ep and gp y by +2% and re-
determined gs2/ug? and g,%/uy%. The variation
in binding energy at fixed ¢,y leaves the coupling
constants unchanged to three significant figures.
Thus to within the limits of currently accepted
values these variations may be ignored. Varia-
tion in gp,y has a more significant effect on the
equation of state. A 2% uncertainty shifts the
value of the vector and scalar couplings by about
5%. We estimate that the neutron-star stability
limit will also change by about 2%, but in the
direction opposite to gz, y. Therefore the 2% un-
certainty in ¢ y implies approximately a 0.05M
uncertainty in M .

We have included the baryons from the first
SU(3)-symmetric octet as possible constituents in
our treatment of superdense matter. Threshold
considerations show that the lowest-mass pion-
nucleon resonances should also be included. It is
most likely that of these only the A~ and A° need
to be considered. The former probably enters at
about the same density as the A° while the A°
would be expected to follow the Z°2 We have not
included these resonances for two reasons: (1)
kinematical complication associated with spin—%
propagators and (2) these couplings lead to
phenomenological tensor-meson exchange which
would be difficult to determine from the physics
of nuclear matter. We do not feel that a detailed
treatment of these added constituents would
greatly modify our general conclusions. For
models with €,<5x10™ g/cm?® the results of Sec.
IV would remain unchanged. For models having
higher central densities we can estimate the pos-
sible importance of the resonances by treating
them as additional fermions in the system. Ex-
perience with neutron-star models shows that the
addition of a few extra fermion species results in

a pressure decrease typically on the order of 10%.

Non-normal ground states such as supercon-
ductivity, superfluidity, pion condensation, fer-
fomagnetism, and crystal structure may play an
important role in determining the properties of
superdense matter.'”® These effects may be in-
corporated in our approach by modifying the
boundary conditions imposed on the Green’s func-

tions. It is probable that the first two effects have
only a small influence on P and € for static con-
figurations, and thus should not produce sub-
stantial changes in our mass limit. Arguments
based on nonrelativistic models of normal super-
fluids scaled to the regime of nuclear densities
imply®® that if super effects do arise, the gap in
the excitation spectrum should close when the
density reaches 10*° g/em3. Since the maximum
central density obtained in our model is 2x10%
g/cm3, it is possible that these effects persist
into the core. Because at least seven baryons
enter at these densities, it may be possible that
each contributes a super phase.

Pion condensation and related phenomena?°®
are also interesting processes since the reactions
e —~m +v, and -7 +v, can occur at high
densities and can carry off an impressive fraction
of the star’s energy. Physical 7~ can be pro-
duced only when u,=pu,-. Using the physical
value of the pion mass as the chemical potential
of a T'=0 condensed boson state p, would have to
exceed 140 MeV for production to occur. At all
densities in our model 1 ,< 125 MeV. However,
it should be clear from our results that there are
possible interaction effects which could sub-
stantially reduce the pion effective mass. The
universal scalar-meson coupling would have an
effect on the m-meson propagators similar to that
found in the case of the baryons. The baryon m,’s
were decreased by about 800 MeV at densities on
the order of 10* g/cm3. It is not difficult to
imagine that the pion effective mass, even if
coupled weakly, may be greatly reduced at sim-
ilar densities. As this happens the e” and p~
decay modes shift towards pion production. Real
7~ will then appear as a condensate, reducing the
system pressure. Since this will only affect the
lepton pressure, which is neglibible compared to
the baryon pressure, 7~ condensates will not have
a large direct effect on static neutron-star struc-
ture. Table VI summarizes the important physical

TABLE VI. Summary of neutron-star structure. The
three models listed are (a) the critical model represent-
ing the most massive stable neutron star, (b) the model
having maximum moment of inertia, and (c) the model
whose “remnant” mass M=1.41Mg .

M/Mg R (km) 10~%(g cm?)

Critical model 2.38 11.42 3.05

Maximum moment
of inertia 2.33 11.89 3.13

Remnant model
(Mp=1.41M¢o) 1.28 12.16 1.45
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parameters for selected neutron-star models.

The strongly interacting particles are another
candidate for a physical realization of cold super-
dense matter. There are clear experimental
indications that these hyperons are composed of
a sea of objects which interact locally with an
external current, have spin % and obey statistics
which are either Fermi or para-Fermi.?! These
objects, called quarks, carry with them the in-
ternal symmetries which are manifested by the
strongly interacting particles. They are expected
to be confined within the hyperons by interactions
very similar to those which manifest themselves
between the hperons. They are confined at en-
ergies and densities which are clearly relativistic.
Furthermore, there are indications of phenomena
in particle physics which require a many-body
theory for their description.?® It is therefore
appropriate that we discuss the applicability of
our approach to this problem. The study of super-
dense matter yields predictions which cannot be
obtained from the study of systems comprised of
only a few particles.

Only a slight modification of the formal approach
which we have developed to treat superdense mat-
ter in neutron stars will be required in order to
develop a preliminary model of the hyperons. In
fact the formal approach of the previous paper
may be carried over directly to describe a simple
quark model of the hyperons. In order to explore
the feasibility of this approach we take as ele-
mentary constituents three quark species, each
having mass my=6 GeV.?®> We assume that each
quark species couples with a universal scalar
and vector coupling to baryon number with
strengths determined by our previous analysis.

In treating the many-body aspect of the problem,
the quarks are described by the usual Fermi
many-body propagator (2.5I) with my replaced by
mg. The effect of para-Fermi statistics would
lead only to a change in the degeneracy factor of
order unity. Each type of quark is thus considered
to have kinematic and collective properties sim-
ilar to that of a massive spin- fermion. The
model is now completely specified.

Proceeding as in Sec. VI of the preceding pa-
per, we solved for the quark binding energy which
reached its minimum value Egz=-535 MeV for a
quark number density n~7xX10% em™3%. This is
nearly 40 times the number density for which the
nuclear binding energy is a minimum. The quark
effective masses m, 4 and the chemical potentials
were found to have the same qualitative appear-
ance as those of the baryons. The decrease in
m, o is impressive, reaching a value m, o =1100
MeV at minimum binding energy. This effect
alone could provide the explanation for the pre-
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cocious scaling observed in the high-energy
phenomena .

Finally, we obtained the equation of state which
is qualitatively similar to our hyperon equation
of state. Further analysis, though, yields a
Maxwell construction which occurs at a negative
critical pressure. This is indicative of a system
possessing a single condensed phase. It is pos-
sible that an analysis at finite temperature would
produce two stable phases similar to our baryon
results. The lower-density phase would be iden-
tified as an interacting quark gas, and the high-
density phase, a fully condensed liquid, would be
the only one surviving at T=0. The minimum
density for liquid quark matter in the model is
7.0X10% g/ecm3.

In order to apply the model to hadronic matter
it will be necessary to investigate these phases
in detail. We have in mind a liquid-droplet pic-
ture with the droplets being associated with bary-
ons in equilibrium with a quark gas phase. The
preliminary analysis above indicates that this
simple picture is not consistent. The model
indicates that a fully condensed fluid phase is the
natural T =0 state of a quark sea, and that cold
droplets can be produced only by some additional
formation mechanism. In other words, we find
that quark confinement appears to be less difficult
to explain than the formation process. However,
if we construct a droplet of liquid quark matter
at the minimum stable density and confine it to
a volume derived from the proton Compton wave-
length, the enclosed mass is 2.7X107%* g. It is re-
markable that this corresponds roughly to a pro-
ton mass.

In order to obtain complete quark confinement
within the droplets we would require additional
physical mechanisms. One possible mechanism
would utilize surface binding. It is notable that
this is the mechanism of nuclei formation. Our
model of nuclear matter is also found to possess
only a liquid phase at zero temperature. A con-
sistent description of atomic nuclei would then
require the incorporation of additional formation
mechanisms. A second and more interesting
mechanism can be inferred from our discussion
of pion condensation in neutron stars. If the
meson exchanges which are responsible for our
fundamental interactions are also composed of
quark constituents coupled universally to baryon
number, these mesons will have their effective
masses reduced significantly, possibly even to
zero. In this context the vector-meson octet
could provide us with a candidate for a Yang-Mills
non-Abelian vector vector gauge field. This field
would be the source of an infrared catastrophe,
and could thus lead to complete confinement. A
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fuller treatment of the implications of our model
of superdense matter to elementary particle
physics will appear separately.

A final observation concerns the applicability
of our approach to symmetry-breaking effects
and the masses of elementary particles. The
formalism includes finite-temperature effects,
and may be used to study particle effective masses
at high densities and high temperatures. In this
regime it is possible that m, approaches zero,
and that a critical temperature exists below which

specific masses “freeze out” to form a particle
spectrum. Examination of these problems will
require additional development of the finite tem-
perature effects on the meson propagators.
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