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The extension of relativistic quantum fields to dense systems of fermions strongly interacting via meson

exchange is discussed. The direct application of quantum field theory methods in this context fails. The failure

of this approach leads to an effective Lagrangian based on an approximation scheme naturally suited to high-

density matter. The resulting model can be solved exactly for cold systems, and small temperature corrections

may be added. The applications of this model to neutron stars and problems in elementary particle physics will be

made in the following paper.

I. INTRODUCTION

The observation of exotic astrophysical phe-
nomena during the last decade has stimulated an
interest in the investigation of matter under ex-
treme conditions. In this paper we study what is
c ommonly called superdense matter. ' These are
the states of matter which occur near the limit of gra-
vitational collapse. We are particularly interested
in superdense matter in neutron stars because they
play a central role in current models of pulsars
and compact x-ray sources in binary systems.
In addition, we mention briefly the application of
this kind of matter to models of elementary par-
ticles.

A general feature shared by all previous models
of neutron stars is that the more massive have
average core densities greater than 10" g/cm'.
With few exceptions these models all predict stars
with masses less than 1.4Mo to 1.76MO. These
models are developed from nonrelativistic theo-
ries and are based on our understanding of the
properties of nuclear matter. " A disturbing
feature of this situation is that the high-mass
models involve densities which are above nuclear
density where relativistic effects are significant
and cannot be ignored. It is therefore necessary
to approach the problem from a fully relativistic
interacting many-body theory which incorporates
approximations suited to the supernuclear density
regime.

In this and the following paper we report the
results of a study of superdense matter based on a
fully relativistic phenomenological description of
the strong interactions. The strengths of these
interactions are determined by a fit to a simple
description of nuclear matter, and to one-boson-
exchange potentials which fit high-energy nucleon-
nucleon scattering. These are then employed with-
in the framework of a many-body theory, which

is also relativistic, to calculate baryon composi-
tion and the pressure-energy density equation of
state for stellar matter. The relativistic stellar
structure equations at T =0 are then integrated
using this equation of state; the results are pre-
sented in the following paper.

The predictions of this model differ significantly
from previously described results, ' and stand in
more satisfactory agreement with current evolu-
tionary predictions and observational bounds. The
stability limit against gravitational collapse is
2.39MO. This higher mass limit is particularly
important since it implies that black-hole forma-
tion may be less frequent than current theories of
superdense matter suggest. The moments of in-
ertia for intermediate- and high-mass stars
(&1045 g/cm') bring models of pulsars as rapidly
rotating neutron stars well within the limits set by
observations. " Finally, we note that our model
leads to a picture of compact object formation
which is in general accord with the results of
evolutionary studies. '

The results of our investigations will be dis-
cussed in the following order. In Sec. II we use a
phenomenological Lagrangian to explore the prop-
erties of strongly interacting superdense matter
in the Born approximation. This approach, which
is found to be inadequate, leads to the considera-
tion of an expansion in density rather than in the
coupling constants. This expansion in density then
motivates construction of an effective Lagrangian
which retains the major features of the strong
interactions for densities relevant to neutron
stars. This construction is given in Sec. III. From
this Lagrangian we obtain relativistic finite-density
Green's functions. These are used to obtain ex-
pressions for the baryon effective masses and to
obtain self-consistency conditions on the baryon
number and proper number densities. In Sec. IV
we derive expressions for the chemical potentials,
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pressure, energy density, and speed of sound.
In the following paper' the results of this model

are used to construct neutron-star models and
possible application to models of elementary par-
ticles. We then discuss the sensitivity of our re-
sults in terms of the available methods for deter-
mining the coupling constants. We consider cor-
rections to the chemical potentials and effective
masses due to finite-temperature effects in the
high-density, low-temperature limit in Sec. V.

II. FUNDAMENTAL INTERACTIONS

2(x) = Q Pa(x)(i P' —ma)ya(x)

+ g X t PPSL g X

+ Qz, +s, +z, . (2.1)

Baryons are denoted by &, leptons by I, and
mesons by P. Z~ contains all mass counterterms.

The term Cl represents the meson exchanges
among the hadrons. In the density range of inter-
est, e -10"-10"g/cm', the important exchanged
mesons are the a, q, p, &u, &, and Q. Because
of charge constraints the presence of the leptons
has an important effect on the relative concentra-
tions of the other species, but their interactions
with the baryons are negligible. The interaction
term can then be written as

BoP
(2.2}

The I'» ~ include pseudosealar and vector cou-
plings, and the strengths g» & may be fixed by
requiring that (2.2) reproduce the nucleon-nucleon
scattering data in the Born approximation.

The two-point functions are defined in terms of
the elementary fields by

G~&a'(x x') = i(Tfa(x)ga-(x-')) (2.3)

In a field-theoretic approach to many-body theory
the boundary conditions which reflect the finite
density and temperature of the system are most
naturally incorporated through the use of Green's
functions. The relativistic formulation of this
problem has already been discussed. "

It is natural, in formulating a model of super-
dense matter, to try to include a large fraction of
the known particles and resonances as possible
constituents. A reasonable trial group might in-
clude the first SU(3)-symmetric octet of baryons,
the electron and muon, and low-lying mesons.
Adopting these as fundamental fields, the system
can be described by the Lagrangian density

(2.5)Po+E
p

—ie

where n~(p) is the T =0 Fermi distribution step
function, and all other variables have their usual
meaning. ' The number of baryons N in a system
of volume V is related to the Fermi wave vector
by

3«2N/V =q (2.6)

Standard perturbation theory applied to a model
of this kind leads to baryon self-energy diagrams
such as those shown in Fig. 1. Tadpole diagrams
[Fig. 1(a)] vanish identically for the exchanged
mesons discussed above, since a non-vacuum-
valued quantu~ number is carried by each. To
lowest order, the self-energy contains only bubble
diagrams and G~&a'(p, q~) will be given by'

([p&- X&"(p, q )]- [m. +~"'(p, q )]]

xG&a&(p q~) =1, (2.V)

where If & ' and && ' contain a contribution from
each of the exchanged mesons. In each of these
self-energies we can uniquely separate out a finite-
density-dependent part:

4"'(p q ) =Ps."'(p')+4&"(p, q ),
r"'(p, q~) =mas,"'(p')+r"'(p q ).

(2.8)

(2.9)

D„& '(x —x') = i (T—&p~(x)p~(x'}), (2.4)

where the angular brackets denote a suitably de-
fined relativistic thermodynamic average. ' At
zero temperature the latter is over the baryon
N-body ground state, and & is the time-ordering
operator. The equations of motion for D„' ' and
G~( ' which couple to higher-order N-point func-
tions are generated from (2.1) in the usual way.
Approximations must be made if we are to solve
these equations. One approach is to solve the
Green's-function Dyson equations truncated to
second order in perturbation theory.

The appearance of real mesons in the system
would introduce complications. Being bosons, they
may form condensates, which would require the
incorporation of non-normal ground states. These
effects may be included in our approach. However,
their presence is not expected to alter the struc-
ture of neutron stars in the density range of in-
terest. We therefore set Z~ =0 in (2.1}and con-
sider only virtual mesons, described by the usual
vacuum propagators, in this calculation.

The noninteracting spin-& baryon propagator cor-
responding to a finite-density & =0 system is

$ p q
P'+ m 1 —n~(p) n~(p).""'= 2E, P -E-+i. P Z- i.+

P — p P
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FIG. 1. Typical low-order irreducible self-energy diagrams resulting from (2.1) for exchange of vector, scalar, or
pseudoscalar particles [diagrams (a)-(d)]. Leading-order contributions to the expansion in density are given in (e) .

G(s) (p ~ )
(ps fF)a8

F(KB & F D(p ~ } r

where the denominator is given by

D(p, ) =(p'l. 1-~.(p')]- '(p, q, )]'

(2.10)

—f. I pl [I -&,(p')] -2'g(p, ~F)}'

—(~sl:I+s, (p'}1+~x(p,~F)]'. (2.11)

The term ~& represents the three-vector magni-
tude of && (p =1,2, 3}. The excitation energies
p'= p'(qF, p) are obtained as solutions of

D(p', p, e, ) =o, (2.12)

and the chemical potential (equal to the Fermi
energy at T =0) is given by

v(e, ) =p'(lpl =eF, eF). (2.13)

The solutions of (2.12) for pseudoscalar, scalar,
and vector mesons have been investigated nu-
merically for densities &(&F/ms -1). Low-density
expansions have also been made for the region
gF/ms «1. We find generally that (a) the terms
S, (P2) are sensitive to deviations away from the
mass shell; and (b) &&, &z, and &z, though strong-
ly density-dependent, beat against one another in
such a way that their leading-order contributions
cancel.

For the dominant exchanges of n and p we found
several additional features. For some range of
the renormalized coupling constant g„» a ghost
develops and solutions to (2.12) are not found for

The terms S, and S, represent the elementary-parti-
cle self-energy which survives at zero baryon density.
These terms are divergent, and are renormalized
by subtraction to the baryon physical mass.
Although S, and S, are not explicitly density-depen-
dent, there is an implicit dependence, since they
are sensitive to the value of p' which is driven off
the mass shell by the density effects.

The excitation energies and chemical potentials
of the baryons may be obtained from the poles of
GFs'(p, &F). In the interest of simplicity let us
discuss the exchange of only one meson. We find
that

real values of p . For sufficiently weak coupling,
solutions are found in the density range considered
(0.05&qF/m„&1.0). The leading-order terms in
the m-exchange model yield attractive nucleon-
nucleon interactions. However, these terms can-
cel in (2.12), and the next-order terms corre-
spond to an effective increase in the value of P'.
In fact, the chemical potential p is greater than
that of a free gas at the same density. Analysis
of p exchange leads to much the same conclusion:
Leading-order effects tend to cancel, and higher-
order terms yield a chemical potential for vector
exchange which lies below that of a free gas, which
is the opposite of the expected result of repulsion.

A model based on exchange of observed mesons
in the Born approximation is clearly inadequate. '
At the very least we should retain terms repre-
senting fourth-order processes [Figs. 1(c) and
1(d)] in a calculation of the Green's functions.
Analysis of these terms for baryons shows that
they have leading-order density dependence pro-
portional to baryon numbers density. Furthermore,
in the density range of interest for massive neu-
tron stars the dominant term in each is, to within
a density-independent factor, the same as the tad-
pole term [Fig. 1(a)]. In fact the finite Nth-order
contribution should also show a density dependence
at most proportional to q~' in this range.

These observations suggest that the model ob-
tained by expanding in powers of the renormalized
coupling constants of observed mesons should be
replaced by one which leads to an expansion in
density, as illustrated schematically in Fig. 1(e).
The first term in this series is formally equivalent
to the tadpole graph which was discarded previous-
ly. Moreover, this simple term is proportional
to the leading-order corrections from the higher-
order expressions in Fig. 1(e). Thus we approxi-
mate the interactions due to meson exchange in
superdense matter by expressions proportional
to the primitive tadpole diagram represented in
Fig. 1(a). The constants of proportionality may be
determined phenomenologically, as will be dis-
cussed in Sec. VI. Since we treat only spin-&
baryons the only phenomenological fields of inter-
est are the scalar and vector fields.

When the self-energy corresponding to Fig. 1(a)
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is examined for these cases it is found to be re-
pulsive for vector exchange. Scalar exchange
produces attraction in the lower-density region,
but becomes repulsive at larger densities. The
system treated in this fashion thus enjoys all the
expected behavior for the exchanges studied, and
does not suffer from the difficulties of nearby
ghost states with their associated anomalous prop-
erties.

III. PHENOMENOLOGICAL MODEL

The analysis of the previous section suggests
that we consider as a model of the strong inter-
actions in superdense matter the baryons coupled
via a vector and a scalar field which have vacuum
quantum numbers. A universal SU(3}-symmetric
coupling will be assumed. The effective Lagran-
gian density then has the form

&(x)=/4 (x)(iP'-~ )0 (x)-g [Z 0 (x)0 (x)e.(x)+r 0 (x)r„4,(x)e"(x))
B B

+-,'[s, y, (x)8&'y, (x) —i&.,my, (x) ] —,'E&'"(x—)E„,(x)+-,'»„'y„"(x)y„(x)„, (3.1)

where

F""(x)= s"4 v(x) —s '4~v(x) (3.2)

The counterterms have been dropped since all expressions to be considered below are finite. Accordingly
we understand m~ to represent the baryon physical masses.

A more appropriate effective Lagrangian, which is consistent with our earlier statements about the non-

observability of the meson degrees of freedom, should contain only baryon fields. A nonlocal Lagrangian,
equivalent to the above, is

&(x) = QV~(x)(iP'- m )4,(x)

did, '7(, (x)4(x)&(x- ()y, (()0, (h)+ d(Z 'T(&, (x)r„(,(x)&""(x—t')7(, (()y„g ($) . (3.3)
aa'—

The &'s appearing in (3.3) are the time-symmetric
vacuum two-point functions for phenomenological
scalar and vector fields. We thus retain the role
of the mesons as mediating the interactions without
allowing their presence as physical particles. "
The Lagrangian (3.3) thus emphasizes the fact that
we no longer consider the interactions as resulting
from the exchange of observed particles. There-
fore analogies between our scalar or vector fields
and observed mesons are at best a convenient de-
vice for fixing the scale of these couplings. A
functional variation of the thermodynamic. average
of this Lagrangian yields the equations of motion
for the baryon Green's functions. These are

(iP'- mB)G~(B&(x —x')

+ P gv2 Jt
d4 $4 (x ()y& G(BB & (x( xlg-)y~

B

(3.4)

where we have defined the four-point function by

GB(BB'(xy, x'y')

-=(1&i)'&T((& (x)0 (y)7(& (y')7(& (x')), (3.6)

and the notation ( signifies that the time compo-
nent is infinitesimally earlier than $.

The Hartree-Fock approximation to (3.4) results
if we set

G" '(xy x'y'}=G' '(x —x')G' '(y —y')

—G(B'(x -y)G(B'(y'-x')t&

(3.6)

The notation in the last term reflects the fact
that the two-point functions are diagonal in the
baryon index. This term leads to self-energy con-
tributions like the bubble diagram shown in Fig.
1(b), while the first term leads to tadpole dia-
grams [Fig. 1(a}]. Motivated by the discussion of
the previous section, we retain the first, or Har-
tree, term in (3.6), since it represents the leading-
order correction in powers of the density. The
resulting equations of motion become
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(ip' —m )G' '(x-x')

='(*-*')»2 q*'Jq'q&(»-()G" '(q-q )»q'f q'q&(»»q)»&" '(q q)»" -Gr"(»-»').

(3.7)

A substantial simplification results if we consider (3.7) in momentum space. Using

and

d4
G' '(x-x') = t e (2'" * 'G' '(P)

(2v)'

e- (k (2-2') g (12)
d4k

(2v)4

(3.8)

(3.9)

for the scalar and vector propagators, it immediately follows that

2 4q

+ Bi P.&2 ~27T)

—rr' „', J( (q
)r»'"")»(r»G»" '(q, q„», q ))IG' '((r, q „q l.

(3.10)

The factors -p~ ' and -p~ are the &' =0 scalar
and vector propagators, and the traces over G~
and y'G~ ' have been shown explicitly. The fac-
tors e" " specify the integration contour in the po

plane, and result from the temporal constraint on

$ in (3.7}. The density dependence of GF )(p,qFB,qF„)
has been explicitly exhibited. It should be empha-
sized that each baryon Green's function depends on
its density p» and, through the interactions, on
the density of all other baryons actually present
in the system. The latter are collectively denoted
by q~. The terms in curly brackets are the vector
and scalar self-energies, which we denote by

and

g d g—i~( B & =, lim I e'""tr[G' '(q)],+ J (2)()'

(3.11)

2
[ d4

i&( ' =, lim lr
e'"" tr[y'GF '(q)].~»', -. & (2~)'

(3.12)

In terms of ~&B ' and ~~ ' the Green's functions
are given by

G(B) )
i (f ~F ) ~ P™B+S

F (i
(pO g(B))2 p2 ())) g(B))2

(3.14)

where the obvious notation &( ' = QB ~( B ' has
been used for scalar and vector self-energies of
the baryon &, and explicit dependence on all baryon
densities has been dropped for notational sim-
plicity. The finite-density boundary conditions
are introduced through (2.5) and Dyson's equation

G"'(P) =~"'(P)+S"'(P)~"'G' '(P) (3 15)

Denoting the excitation energy and effective mass
for each baryon by

SB(p) =—(p'+m, B2)~', (3.15)

(3.17)m, B=nZB gZ~

the finite-density baryon Green's functions are

p ))2 Q (g( BB') +iraq(BB')) G(B)(p) 1
B'

(3.13)

The last equation may be inverted directly to ob-
tain
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The zero-temperature distribution functions and
the Fermi wave vector of the baryon B are defined
according to

n'B'(p) -=8(q —p),

q); B' =—3()'N~/V .
(3.19)

(3.20)

The total number of baryons in the system is given
by

B
(3.21)

We observe that the three terms in the propagator
(3.18) correspond to (1) positive-energy excita-
tions above the filled Fermi sea, (2) positive-
energy excitations below the Fermi sea (holes},
(3) and negative-energy excitations. The ground
state is devoid of physical antiparticles, although
they may contribute through virtual states.

The baryon number and proper number densities
n' ' and n' ', defined by

n' ' = ((t)B~(x)gB(x))

and

=-i lim tr[y'O'B)(x-x')]
x'~x+0

(3.22)

ilim t-r[G~(B)(x -x'}]
x'~x+0

d4 .~0ilim-, e'2 "tr[G~B'(P}],
(2(()4

are related to ~y ' and ~$ ' through the GF ' as in

(3.11) and (3.12}:

(3.23)

g(BB') g~ n(B')
F (3.24)

and

2
g (BB') gS —(B' )

s 2 n (3.25)

Through (('B(P} and m, B, as given in (3.16}and

(3.17), the n and n are themselves functions of the
~'s.

In evaluating (3.11) and (3.12) we have dropped
infinite terms which arise from the number density
of filled negative-energy states. The appearance
of these terms is a direct consequence of the form
of our Lagrangian, and may be eliminated at the
outset in either of two ways: (1) by normal order-
ing the Lagrangian, or (2) by defining the physical
number densities as the difference between n or
n and the corresponding quantity at zero density.
In either case we find that the appropriate pre-
scription' to take the place of (3.11}or (3.12}is to
replace the factor e'2 " by 2(e(2 " + e '2 ").

The solutions for the Green's functions will be

complete if they are required to self-consistently
reproduce the n' ' and n'B'. Using (3.18) in (3.22),
it immediately follows that

n(B) q 3/3' (3.26)

8 2B D 2 ~F2B F2B
qF, BS~B™,B ln2r me. B

(3.27)

To complete the solution we require that n'B' [or
equivalently m, B =mB —(ge'/)), ,2)n( '] be given by
this transcendental algebraic equation. It is easily
shown that in the low-density limit (q„/mB-0)
m, B approaches mB and n' ' approaches n' '.

The consequences of (3.27} are significant: In
the high-density limit (qB B/mB-~) the number
density n' '-~. However, the only consistent
solution of (3.27) in this limit is m, B-0. It will
be observed that this does not occur in the absence
of the self-consistency requirement, "since then
n' ' goes asymptotically as @F2. Because n' ' is
proportional to ~~ and enters only as a correction to
the physical mass, we may interpret (3.27) as a self-
consistency condition on the effective masses m, B.

For a system .comprised of N different types of
baryons there will be N conditions of the form
(3.27). Each is an explicit function of one baryon
mass m, B, and an implicit function of all others.
Equations (3.27} therefore represent a set of cou-
pled transcendental equations for the m, B. The
relative simplicity of (3.27) is dependent on the
fact that in this model both self-energies ~B~ and
~~ are independent of external momentum. Gen-
erally speaking, they could contain explicit depen-
dence on the baryon four-momentum. The self-
consistency conditions would then be replaced by
a coupled set of transcendental integral equations
whose solution would be extremely difficult, even
by numerical means.

We conclude this section by emphasizing that
the results above are fully relativistic, as regards
both finite density and strong-interaction effects,
and treat the baryon physical degrees of freedom
consistently throughout.

IV, EQUATIONS OF STATE

The formal Green's-function approach developed
in the previous section will be used below to study

This is identical to (3.20) and shows that the num-
ber density of each species is automatically self-
consistent. Thus (3.22) is a trivial constraint and

simply serves to define QF B. The proper number
densities (3.23) lead to the consistency condition

(B) tFBpdpm
hB(P)
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the bulk properties of a system of superdense
matter. To this end we review the physical infor-
mation contained in the baryon Green's functions.
We then fit the parameters of our model to nuclear
matter.

A. Physical information contained in G„~)(p)

Inspection of (3.18) shows that the excitation
energies of the system as given by the poles of
Gz' '(p) are

g {p) g (B) ~ (p2 +)&) 2)l/2 (4.1)

Since the self-energies are real, the excitations
have an infinite lifetime, and represent eigenstates
of the effective Hamiltonian obtained from (3.3)
treated in the Hartree approximation. In accor-
dance with (2.13) the chemical potentials of the

baryons are given by

)1(B) g(B& + (q
2 ~V&) 2)l/2 (4.2)

The chemical potentials determine the equilibrium
concentrations for the baryons in the system.

B. Bulk properties determined by GF (p)

We have already discussed the number densities
n(B& and )2(B& as determined by (3.22} and (3.23).
The chemical potential {4.2) and ))(B& constitute
N-2 of the N equations of state needed for a com-
plete thermodynamic description of the system.
Of the remaining two, the temperature is trivial:
T =0. The final equation of state is given by the
pressure,

q~ B d (B)' n(B& "
dq

B P d~g2B

= —i lim g lt d p, ' ', e'2 " tr[y'GvB'(p)].,+ B J (2n)'

(4.3a)

The summation includes only those baryons actual-
ly present in the system at a given density. Equa-
tion (4.3a) involves an integration over densities,
through p,

' ', which is not always convenient. An

alternate expression for I' which involves integra-
tion over momenta follows from the stress-energy
tensor. As shown in the Appendix, the total baryon
pressure ls

g (B)

=-i lim e""d o

,+ (2s)'

tr[)y p+g(B& +~op(B&]G(B)(p)

(4.3b)

When using {4.3b) the effective mass entering
through G„'B' and ~s( ' is constant so that the mo-
mentum integrations may be carried out analyti-
cally. Equation (4.3a) requires that m, B be known
for each value of p(B). The Green's function is
given by (3.18}, so that (4.3b) yields

p(B) 2 p ~ ~(B)(p) v n(B) p )2(B)(p) Zs )((B) ~ 2IB )2(B)(p)
d~h h2 2 ( d,3p dP m

(2)()' SB(P) &(v' (2s)' &(s' (2s) 8B(P)

~(B)2 gS ~(B)3 1 Z ~ P dP
2

2&1
2 3v2

'

(p2 + ))2 2)1/2

( ~(B) 2)) )((B)] gV ))(B)2 gS )2(B)2
3L e B +

3~ 42 3 p
2 (4 4}

where s(B& is defined below. Equation (3.27}has
been used to introduce the term m, Bn(B&/3. A

term corresponding to the infinite pressure of the
filled negative-energy states is included in (4.3b),
but is easily removed by the method described in

Sec. III. The result, Eq. (4.4), is finite.
All of the equations of state are now known, at

least in principle, and the thermodynamic poten-
tials could be found. However, it is more direct
to proceed with the Green's functions. The ther-
modynamic potential which we need to complete
our analysis is the ground-state energy density,
which is just the expectation value of the Hamil-

e = (e,IXI 4, )

~ (B) (4.5a)

d4P o~(B) =-—lim e". "
2 „,+ (2v}'

«r[(~W, +~ p+~.)G."'(p)].
(4.5b}

In addition to the physically occupied positive-

tonian. We show in the Appendix that the ground-
state energy is given by
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energy states, the equations above contain con-
tributions from all filled negative-energy states,
and these are removed as before. Notice that the

physical mass )))s enters in the trace in (4.5b).
The last equation may be applied directly to

G~(s) (P}, and leads to

e =;
@ @ [p (p —Z„)+p +mern, s](s) d'p &7'(p} 0 0 (s) 2

~F,B g(B) e,B g I 21 ~F,B F,Bm n +g
6&2 & 4+2 F,B F,B e,B

eeB

m„B' eFB+ &gB
+

4 2 ~FB FB B ~FB FB4n ' ' 2 ' ' ' 2 PBe
(4.6}

, s(e/n)
Bn

(4.7)

Finally consider the speed of sound v, defined
thermodynamically by the derivative at constant
entropy,

v,' =— (sp/so), , (4.8)

for a system consisting of one baryonic species.

An alternate expression for the pressure, which
follows from the first law of thermodynamics, uses
the ground-state energy density and is

Then I' and & are functions of gF, and

(sP/sq~),
(s e/sqz),

n d)). /dq~
p, dn/dq~ ' (4.9)

as follows from (4.3a) and the definition of the
chemical potential p —= (&e/&n), . Equations (4.2)
and (2.6), the self-consistency relation (3.27) for
m„and straightforward algebra lead to the follow-
ing expression for the adiabatic speed of sound:

1 qp'+ (g F'/uv')(q~'&p/~')+ (gs'/ 9')(~.'qy'/~'~~)(&l&)
3 q~'+ m, '+ (g„'/pP) (q~'h~/3))')

(4.10)

m, ~F eF + ~F

Ale

2 m2&S ~e &F
n EBS~

(4.11)

(4.12)

In the high-density limit we find that A and &-1,
and consequently

(4.13)lim v,2 =1.
qF /mB~~

Inspection of (4.13) shows that this is in fact just
the asymptotic sound speed for a pure vector cou-
pling g~ =0. The scalar coupling (g„=0)would

yield an asymptotic sound speed o,'- 3 equivalent
to that of a relativistic free gas. It is notable that
without the self-consistency imposed on m, by
(3.27}, the scalar and the vector coupling would

separately have the same limit (4.13). The limit
(4.13) is significant since it shows that a consis-
tent treatment based on Lorentz-invariant nonlocal
interactions at the Lagrangian level automatically
yields results consistent with macroscopic caus-
ality.

V. FINITE- TEMPERATURE CORRECTIONS

Applications of superdense matter may be made
to systems with some finite temperature. For in-
stance, matter inside neutron stars will not be in
its ground state during the initial formation pro-
cess. Current evolutionary models suggest that
the dense core will cool rapidly. Except for a
short period following collapse, the matter will
be at nearly zero temperature. " It is therefore
reasonable to assume that such systems will have
temperatures satisfying kT «)). (where )), is the
baryon chemical potential) when densities ~ e„.
We present below the lowest-order temperature
corrections to our model, restricting attention
to a single-component system. The inclusion of
additional components offers no formal obstacles
and may be achieved by a straightforward exten-
sion of the method discussed below. The expan-
sions about T = 0 used below do not limit the rela-
tivistic nature of the interactions or the kinemat-
ics of the system. Our results therefore repre-
sent temperature corrections to a fully relativis-
tic system.
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The finite temperature of the system will be in-
corporated as boundary conditions on the fermion
Green's functions which follow from the effective
Lagrangian (3.3). As a result of finite tempera-
tures, fermions will not be restricted to their
lowest possible energy states. Instead they will
occur 1n the energy state p with probabllkty of oc-
cupancy given by

In general integrals over nF (p, 8) must be evalu-
ated numerically. However, we shall assume that
kT « i1 (semidegeneracy), and expand about the
T =0 solutions. " If we make the change of vari-
able p=(g2-m, ') ' and define x=—9(Z»+g —i1) we
obtain

n =,—, (x+pi1 -pZ»)
P 2s2

1
nF(f1' P) = s(20-2) (5 1) [(x+Pp, PZ, )2 m, 2P2]" „+1

The finite-temperature Green's function for fer-
mions is thus given by (2.5) with nF (p) replaced
by (5.1).

This method of introducing boundary conditions
is completely equivalent, at least for low temper-
atures, to the one employed by Bowers and Zim-
merman in terms of the elementary Lagrangian
(2.1) and the Green's functions. The latter quan-
tities contain suitably defined thermodynamic av-
erages, a specific representation of which has al-
ready been discussed. The same thermodynamic
averages for fermions are used here. The chem-
ical potential g entering through (5.1) is a function
of temperature T =(Rk) ', where k is Boltzmann's
constant, and is determined by the number density
through

[(u-Zv)'- m.'] ' 2(V- Zv)'- m. '

(5.6)

Proceeding in similar fashion, the proper number
density may be expressed as

[(x+PV PZV-)' P'm-']'"
d

+
me
2p2

(5.5)

where o. —=8(m, +Z» —p. ). We shall assume that
n(0, as is true at T =0. As long as this condition
is satisfied, a- -~ as T-O, andn may be ex-
panded about T=O. Retaining lowest-order terms
we find that

n =2, nF(p, 6).d'p
2g 3 (5.2)

which is, to lowest order in the temperature,

me(P v [(+ Z )2 m 2]1/2
2&2 v e

The analysis of Sec. IV is applicable to finite-tem-
perature systems if (5.1) is used. In particular,
the Green's function follows from (3.18) if nF(f1)
is replaced with (5.1). Note now that Zs and Z»
will depend on 8. Equation (3.22) now gives

d'f
n =2 Jl, (exp[P[ZV+g(p, P) -g]}+1) ',

(5.3)

while the proper number density is, from (3.23),

me
1

I1 —Zv+[()t1 —Zv) ™8]l
me

me(P —Zv)'
[( —,)'-,']'"" ' ' (5.8)

Although m, and p. are functions of temperature,
their 7=0 values are to be used in the last term
of (5.7) and (5.8). The latter equations may be
used to show that to lowest order in T,

2
{. d'P m, (P)

~' (2~)' g(p, P)

&&(exp[t}[Z +g(P, P) -V])+1) ', (5 4)

v(P) = u(")+&P ',
m. (p) =m. ( )+op-2.

(5.9)

(5.10)

where m, (P) =ms —(gs2/p, s2)n(6) and ms is the bar-
yon physical mass. At T = 0, m, (~) and g(p, ~) re-
duce to (3.16) and (3.17). The last equation rep-
resents the finite -temperature self -consistency
condition and reduces to (3.27) at T =0. Equation
(5.3) defines p, . Since the two self-energies Z»
and Z& are each functions of n and n, we see that
the latter are now coupled.

m, 112(2qF'+m, ')
S~ 6q„S„ (5.11)

We then substitute (5.9) and (5.10) into (5.8), use
(5.11) to simplify the result, and find, to lowest
order in T,

Substituting (5.9) and (5.10) into (5.6) and retain-
ing lowest-order terms leads to the following re-
lation between A and B:

(Zs /6ps )m f(qs)
I+ (g '/2v'p ')[g~„+(2m, 'qF/gF) —3m, 'ln i (qF+g„)/m, i]

' (5.12)
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where

f(q„) -=1+m,2/2q~2. (5.1$)

2 2
lim m, (P) =m, (~) 1+

qP/mB~ ~ Sgp

2. 2p 2

Iim ~(p) = ~(")—
q~/mB~ ~ 3Q'p

(5.14)

(5.15)

For fixed q~, finite-temperature corrections tend
to increase m„but the coefficient of P

' tends to
zero with increasing q~. Etluation (5.15) shows
that the temperature dependence at high density is
independent of the interactions; the latter enters
only through p, (~).

Once m, is know at T =0, the coeQicients A and
B may be found at each value of q~.

VI. DETERMINATION OF COUPLING STRENGTHS

Our model contains four quantities g» gz, p» p&

which have yet to be specified. Inspection of (3.10}
shows that these enter as the pairs gv2/p„2 and

g22/p22 so that we actually are dealing with only
two adjustable parameters. The model has a sim-
ple physical interpretation. If p~ & p&, the scalar
attraction will dominate at relatively low densities
with the vector repulsion becoming important at
higher densities. We fix the two parameters in
our theory in at least two ways. Ideally we would
fix the two parameters in our theory by requiring
that it reproduce observed properties of cold mat-
ter at densities &&10"g/cm'. As a consistency
cheek we eouM then extrapolate down to the re-
gime of nuclear density and compare our results
with those obtained from nonrelativistic phenom-
enologieal models of nuclear matter. Unfortunately
no terrestial system exists which can be used in
this way. The closest candidate is data from high-
energy scatter ing which does not correspond to the
relevant density regime (strictly not statistical
finite-density systems) or to zero temperature

All quantities appearing in (5.11)-(5.13) are evalu-
ated at T = 0, and are thus known.

The analysis above shows that the vector coupl-
ing does not affect the low-temperature correc-
tions to m, or to p, . We also see that the temper-
ature dependence of m, results entirely from the
scalar coupling, and that m, (p) =ms if g2 =0. When

go =0, 8 =0 and (5.11) equals the coefficient of the
lowest-order temperature correction to the chemi-
cal potential of a free relativistic gas of fermions. "
We thus see that the vector coupling has no effect
on the chemical potential to lowest order in 7.'. '

Next consider the high-density limit of 8 and A.
Recalling that m, (~)-0 and p(~)-qz, in this
limit we find

e -nmB
B (6.1)

yield a binding energy of —15.74 MeV for g22~22/
p' =27.04 and g„ms /g„m =19.83. In this ap-

proach our model would be completely specified
by the requirement that it satisfactorily describe
nuclear matter. In this context we then realize
that the intrinsic limits on this model stem from
the uncertainties as to what constitutes nuclear
matter.

The energy density (4.6) for nucleons is identical
with a result obtained by Waleeka through an en-
tirely different approach. We remark that his fit
to nuclear matter and ours are the same. A thor-
ough comparison of the model's predicted prop-
erties (binding energy, effective mass, symmetry
energy, etc. ) with those obtained by other methods
is given by Chin and Walecka. " As stressed there,
agreement with phenomenological parameters is
quite good.

It may appear surprising that a model as simple
as one based on scalar and vector fields should be
in such close agreement with data on nuclear mat-
ter and nuclei. However, in view of our earlier
remarks motivating the expansion in density we
see that it should contain the essential physics of
very dense matter.

The alternative approach to the evaluation of the
coupling strengths depends on the identification of
the phenomenological fields with physical mesons
as observed or as required to fit nucleon. -nucleon.
scattering. For the density range of interest the
candidates for meson-exchange species are the
rr, q, p, e, 6, and Pmesons. " A different set of
mesons are used for fits to nucleon-nucleon scat-
tering. These are the 2, q, v, &u, and Q. Of these
lists of candidates only the a and ~ would couple
to the baryon number density or baryon proper
number density and thus serve as candidates cor-
responding to our meson species for the expansion
in density. The coupling strengths of these mesons

(hydrodynamic models for which e &10"g/cm'
and T» 0}. We are thus forced to extrapolate down
to the region of nuclear density in order to fit the
input parameters. One way to accomplish this
wouM be to require that a system of dense matter
with equal numbers of protons and neutrons be
bound at nuclear densities (q2,„=q~2 =1.42 fm ')
with binding energy EB =-15.75 MeV per nucleon.
The other approach would be to use the observed
v and ~ mesons as candidates for our effective
meson fields.

For the first case we denote the total energy
density by & =&"+&~, the nucleon number density
by n =n" +n, and assume a baryon mass mB =939.0
MeV. Then (4.6) and



RELATIVISTIC SUPERDENSE MATTER IN COLD SYSTEMS. . . 3053

in each set differ considerably. The set of meson
parameters fit on nucleon-nucleon scattering would

appear to provide a more natural set of candidates
for the exchange fields in our effective Lagrangian.
The average value of g, '/4n is 5.84 from a range
of 4.7 to 6.97. These correspond to g~'ms'/p~'n
= 22.94 and g„'ms'/pv'v2 = 21.29. These values are
satisfyingly close to those obtained from the nu-
clear-matter fit. The effects of any uncertainty
in the couplings will be discussed in the subsequent
paper. The average value of g '/4& is 11.6 from a
range of 9.05 to 15.3.

As we shall show in the following paper, the
equations of state may be obtained in a form which
permits evaluation of this sensitivity to variations

in the coupling strengths. VFe consider in a sub-
sequent publication the observable effect of these
variations on neutron stars.

APPENDIX

The pressure and ground-state energy density
for a system of baryons may be expressed natural-
ly in terms of Green's functions. The analysis
could be carried out starting with (3.1) for Z(x),
and the Hartree approximation. The elimination
of meson degrees of freedom can be performed at
the end of the analysis. This procedure is unduly
complicated for our present purposes. Instead
consider the effective Lagrangian density

Z(x) = Q(3(x) iy' ms+ ——Q ~', gs. (x)gs. (x) — ", y'&st. (x)f~ (x) ys(x). (A1)

The equations of motion for g~(x) are given by

Bg
~

Bg
s |I's s (s 4s)

and are
2

(ig-m, )y, (x)=-Q ', |t,, (x)y, (x) — ", yy, , ( )x yy, , (x) y, (x)
B' ~ ~S

(A2)

and its adjoint. The stress-energy density tensor is

r "=Q s y, (x) s(, p
( ))

g "Z(x). (A4)

Using (A1) this becomes

7'""(x}= Q f~(x)iy'S" gs(x) —g""Z(x). (A5)

The Hamiltonian density += &'0 follows immediately:

2 2

K(x) = Q g (x) -iy 7+m —g ~
g (x)g, (x) — ",y%, (x)y'P, (x) 0,(x)

B '2Vs' '
&v

2 1
2

=g q, (x) -iy V+m -g ' n" '+g ",y'n' ' 4 (x).
B 2p, s 2Py

(A6)

The last step corresponds to the Hartree approxi-
mation, in which gs(x)gs(x) and g~(x)y'f~(x) are
replaced by n' ' and n' ', respectively. The pres-
sure I' in a spherically symmetric andhomogeneous
system may be related to the expectation value of
W"" as follows: =(c,[x[4,) . (A8}

I

ment, and & is the ground-state energy density.
The thermodynamic average in (A7) is taken over
the ground state

(T"')=u"u" (P +e) —g""P. (A7)
lt foi].ows from (A7) and (A5} that the total baryon
pressure of the ground state isHere u" is the velocity four-vector of a fluid ele-
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(A9)

v "= g l', (x) —,'(iy'8, m, ) + g ' , n&'& —"
-, y'n&s'&

(A10)

The last form follows from the equations of mo-
tion.

The definition of the baryon Green's function
(2.3) is now used to rewrite the ground-state aver-
ages of (A6) and (A9) in terms of G~~'(P). Consider
the first term in (A6). Take the ground-state aver-
age and rewrite it as

(gs(x)iy Vgs(x))= lim iy V(g'(x')g~(x))
x ~x+p

lim iy V(Tgs(x)(s(x))
x'~x+p

ilim-iy VGz& '(x-x'}.
x'~x+p

(A11)

The notation x'-/+0 signifies that xp +p+&, with
E being a positive infinitesimal. The time-ordering
operator guarantees that the proper ordering gg
will result. The same general procedure allows
us to rewrite (A6) in terms of Gz' '(x-x') to obtain

e =(K)
2

lim tr -iy ~+m~—,n'
x'~x+p 8 a' 2~s2

2

+Q v, n' 'y' G' '(x —x')
2p. y

(A12)

The equations of motion may be used to eliminate
the interaction terms. If this is done, we obtain

lim tr -gy V'+m~ +-
a' x+p 8 2 St st'

xG~&»(x x')

(A13)

Substituting (3.18) for Gg(x-x') into (A13) leads
directly to the momentum-space representation
(4.5b). In this form all interaction effects enter
through G~ '(P), and since the integration is over
baryon momentum the effective mass may be
treated as a constant. We note that (4.5b} and the
thermodynamic expression

g {B) ~(B) dn{B) (A14)

yield similar integrals (one over p and the other
over q'}. Both give identical results.

Proceeding in similar fashion for I' we arrive at
(4.3b). The details are straightforward and will
not be reproduced here. As a check, the results
above may be used to reproduce & and & for a
relativistic gas of noninteracting baryons.
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