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Internal structure of multicomponent static spherical gravitating fluids
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The Maxwell-Einstein equations for a fluid comprised of more than one type of particle are not a determinate
system even if an equation of state is added. The problem of what the charge distribution is in such fluids is
therefore also not determinate. To complete the definition of the problem, more equations are needed. We
obtain these for the simple case of a static spherically symmetric multicomponent system (imbedded in a
Minkowskian background) by minimizing the energy of the fluid with respect to variations in the number
densities of the constituents, with the side conditions that the total number of each constituent is constant
during the variations. This procedure results in a determinate set of hydrostatic equilibrium equations, the
sum of which is the familiar Tolman-Oppenheimer-VolkoA' equation. Some general conclusions can be drawn.
For example, the necessary and sufficient condition for charge neutrality is that the mass-energy density be
some (arbitrary) function of some (arbitrary) linear combination of the number densities. Thus since it is well
known that the electrons in a white dwarf star at absolute zero form a degenerate gas, there must be a charge
imbalance throughout such a star. This imbalance can then be computed self-consistently. An over-all physical
interpretation of the new equations is that in equilibrium at any point in the fluid the sum of the
nongravitational forces per unit energy is the same for constituent 1 as for constituent 2 and so on. This is
the analog of the corresponding (Galilean) statement for gravitational forces that is valid even without
equilibrium.

I. INTRODUCTION

The Einstein equations of general relativity de-
termine uniquely the internal structure of a per-
fect fluid of particles of a single type if the pres-
sure and mass-energy density of the fluid are de-
fined in terms of the particle number density. De-
fining the pressure and mass-energy density in
terms of the number density is equivalent to pro-
viding an equation of state relating the two quan-
tities. If the particles are allowed to possess a
characteristic unit charge, the Maxwell equations
and the Einstein equations still determine the
structure uniquely. In this case, the charge den-
sity is just the unit charge times the particle num-
ber density.

However, one is frequently interested in a dis-
tribution of more than one type of particle. At
the least, one might desire a distribution of two
types of particles. It is not difficult to show that
the structure of such a system is not determined
uniquely by the above procedure whether or not
the particles are charged. I et us assume that
the pressure P(n„n, ) and the mass-energy density
p (n„n, ) are given in terms of the number densi-
ties. Also let v be an index running from 0 to 3.
Then, if the particles are uncharged, there are
16 unknown functions'.

n„number density of particles of type one (1);

n„nmuber density of particles of type two (1);
(1.1)

u', four-velocity of fluid (4);

g"", metric tensor components (10).

However, there are only 15 equations:

u'u, = 1, metric restriction (1);

C, (g) =0, coordinate conditions (4);

Z„„=0, Einstein field equations (10).

(1.2)

Now let either type of particle assume a char-
acteristic unit charge q, (i=1, 2). We define the
charge density, p„as p, = q,n, +q,n, . Then there
are 24 unknown functions, n„n„u', g", &P", and
t', where P" are the field potentials and J' is the, .

charge current 4-vector; however, there are only
23 equations:

u'u, = 1, metric restriction (1);
J' = p, u', current definition (4);

Z„„=0, Einstein field equations (10); (1.3)

C„=0, coordinate conditions (4);

g" P„.~-g 8$ .„8+J„=O, Maxwell equations (4).

The argument can be extended to any number of
different particle types.

Thus the following question arises: How can
the system of equations be completed so as to
make the internal structure problem determinate'?
In the literature, ' the usual way of avoiding the
difficulty is to assume that the charge density is
zero (neutral system) or that the ratio of charge
to matter densities is a constant (single-component
system), or to treat the system in terms of some
average molecular weight (an effective single-
component system). If there are several reacting
constituents in a system in equilibrium, then
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chemical equilibrium equations reduce the number
of independent unknown densities. But in a multi-
component charged system the number of unknown
functions is at least one higher than the number of
equations.

The purpose of this paper is to present a method
for obtaining equations beyond those of Maxwell
and Einstein that will make determinate the spher-
ically symmetric problem involving more than
one component. In fact the method is not new, as
it is simply an extension of the energy-minimiza-
tion principle (or the entropy-maximization prin-
ciple, which is equivalent to it in an equilibrium
situation) to the case at hand. Energy minimiza-
tion has been cast into minimization of the exter-
nally observed mass of a star by Harrison,
Thorne, Wakano, and Wheeler' (HTWW in what
follows) and applied by them to an uncharged sin-
gle-component system, and it has been applied
to a single-component charged system by Omote
and Sato' for the purpose of studying stability.
The plan of this paper is to extend the princip1. e
to multicomponent systems with or without charge,
and by so doing overcome the indeterminacy dif-
ficulty discussed above. Applications of the meth-
od to particular systems will be presented in a
later paper.

There is a long-standing problem in the de-
scription of white dwarf stars, to which our equa-
tions will give a quantitative resolution. ' The
standard model for the white dwarf star is that of
a gas mixture of electrons (constituent 1) and
heavy charged nuclei (constituent 2}; the electrons
form a degenerate gas. The partial pressure for
the nuclei is regarded as negligible, but that for
the electrons is of course significant. Finally the
system is treated as electrically neutral. But the
congregation of these assertions leads to an incon-
sistency of sorts: If the system is neutral, the
nuclei must be supported everywhere in the star
to the same extent as are the electrons. But what
supports them if their pressure is zero'P The
standard answer' is to suppose that there is in
reality a small electric field in the star, caused
by a small charge imbalance, and that this field
is present to just such an extent as to hold up the
nuclei. In a sense it transmits the pressure from
the electrons to the nuclei. The electric field is
supposed to be large enough to support the nuclei
yet small enough not to matter otherwise in a
realistic discussion of the internal structure of
the star. Several authors have argued that this
can mell be the case. ~ However, the following
question remains: How can one describe the sys-
tem self-consistently, taking into account rigor-
ously (at least in principle) all the various effects?
We shall arrive in Sec. V at equations that can be

II. THE BASIC PROBLEM

In this section the relevant Einstein-Maxwell
equations are written down and the problem asso-
ciated with the presence of more unknown func-
tions than independent equations is described.

The gravitational metric tensor for the static,
spherically symmetric case is given by'

ds' = e "dt' —e "dr' —r'(d8'+ sin'& dP'), (2.1}

where e" and e" are functions of r only. For a
static, spherically symmetric perfect fluid the
Einstein-Maxwell equations' reduce to

SmG, GS' SmC
c4 o= c~ c p

(2.2)

SmG, GS' SmG
c4 1 c4~4 c4

(2.3)

SmG, GS' SrG
c4 2 -c4r4' C4 P

SmG
c4 3

v" v'V' (v')' v' v V)+ +
2 4 4 2r (2.4)

The charge density p„ the mass-energy density
p, and the pressure P are regarded as known
functions of the number densities n„n„.. . of the
various constituents of the fluid:

P =P(n,n, ~ ).

(2.5)

These equations constitute the information of an
equation of state.

In Eqs. (2.2)-(2.4) the charge integral 8 is de-

applied to this white dwarf problem and can give
a consistent picture to all the effects involved.

The paper is constructed as follows. In Sec. II
the Einstein-Maxwell equations for the spherically
symmetric fluid are presented. In Sec. III the
va.riational principle is described. In Sec. IV the
variational equations for two constituents are dis-
cussed, and the condition for charge neutrality
given in a quite general form. In Sec. V structure
equations are substituted into the variational equa-
tions and the consequences are discussed. Finally
the actual calculation of the variational equations
is presented in the Appendix.
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fined as terms of the Landau-Lifshitz pseudotensor t„„:
(2.6)

U = — g 7 + t~)dxdydz. (3.2)

This represents the total charge below the radius
r.

Equations (2.2)-(2.4) plus Eq. (2.5) constitute
all that the Einstein-Maxwell equations plus an
equation of state tell us. The divergence equation
of electrodynamics is satisfied identically, and
the divergence equations of general relativity re-
duce to just one equation of substance:

2m(r) 2A(r) GS'(r)
+ 2 4r r rc (3.3)

where

Another way to specify the energy of such a, sys-
tem is in terms of its mass. The first integral of
Eq. (2.2) is

m 4vGrp Gg' Sh'e
r' c' 2c'r' 4mr'

(2.7)
d( )

deG J'
(

'd~d'
)

(3.4)

(3.5)

This is known as the Tolman-Oppenheimer-Volkoff
equation; we shall refer to it as the TOV equation. -'

It is not independent, but can be derived from Eqs.
(2.2)-(2.4). The function m(r) is defined below in
Eq. (3.4).

Thus we have essentially three equations, Eq.
(2.2)-(2.4), and at least three unknowns: X, v,
and the number densities n„n„.. . . If there is
one constituent, then the number densities reduce
to just one, n„and the system is determinate, as
discussed in the Introduction. But if there are two
constituents there are two densities n„n„whence
there are four unknowns, but only three equations.
And so on. The problem is to find new equations
from which all the unknown functions can be de-
termined.

III. THE ENERGY MINIMIZATION PRINCIPLE

In this section an outline is given for the varia-
tional principle that is used to supplement the
Einstein-Maxwell equations.

The procedure minimizes the energy U of an
isolated fluid (radius R) subject to the side con-
ditions that the total number of each type of con-
stituent particle N, = lim N, (r),

At large distances from the object, the A(r)
function is the observed mass. But A(r) reaches
its asymptotic value at the surface R of the object.
It can be shown that the energy U of Eq. (3.2) is
proportional to A(R). Thus, following HTWW we
can minimize A(R) directly without going through
the bother of evaluating Eq. (3.2).

The minimization of A can be made with respect
to variations in the n, functions directly. This was
in fact the first way we solved the problem. How-
ever, it simplifies the equations considerably to
use as independent functions the N, (r) of Eq. (3.1)
which represent the numbers of particles below r.
An added advantage to using the N, (r)'s is that,
instead of introducing and then eliminating La-
grange multipliers for the side conditions, one
needs only to restrict the variations to be such
that 5N, (0) = 5N, (~) =0. However, p is conceived
as depending on the n, (r)'s directly, not on the
N's, so there is the problem of converting from
n, 's to N, 's.

The variational calculation is carried out in the
Appendix.

IV. THE VARIATIONAL EQUATIONS FOR TWO

CONSTITUENTS-GENERAL DISCUSSION

N, (r)=de f e,(r)e e'eedr (3.1)

In the remainder of this article we discuss the
problem of two constituents, 1 and 2. The varia-
tional equations are then two in number, and from
Appendix A are

is kept constant during the variations. Just what
the numbers N, are could be asserted at the outset
as the definition of the object under consideration,
but can equivalently be determined by boundary
conditions.

In general relativity, the energy density is fre-
quently not a uniquely definable quantity. However,
the total energy U of an isolated system imbedded
in a Minkowskian background is known to be
uniquely defined, One suitable expression is in

g X/2

+ P -'A'- e n. P+n. P 414n'rG

n,
' ~ ' ~n2 ' an

~p. '
q.~e
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1 8p 1 8pm+ m 0
CV~ 8n~ G2 8n2

where +, and +, are arbitrary constants. The
general solution of Eq. (4.4) is

(4.4)

p = p (o.,n, —u,n, ). (4.5)

That is, p must be some (arbitrary) function of
some (arbitrary) Linear sum of the n's If ther. e
are uncharged constituents in the fluid the same
result applies, since the terms which vanish when
8 vanishes are the terms containing the q&. An

example of a system for which charge neutrality
would hold is one where only the zero-point ener-
gies of the particles contribute to p '.

pm nfmf p (4.5)

where m, is the mass of particles of type i. (If
there are three types of particles, the same
scheme of equations and solutions appear. }

An example of a system where charge neutrality
would not hold is one where at least one type of parti-
cle is degenerate, for then p is a complicated
function of the n's, or where interactions are taken
into account, for then typically n' terms appear.
Thus the theory developed in this paper would
seem to have relevance to a white dwarf star, or
to a neutron star.

Now Eq. (4.4) looks very much like an equation
of chemical equilibrium, since &p„/Sn, is what is

These equations are fairly general, as the equa-
tion of state has not been specified: Only general
relations of the type in Eq. (2.5) are assumed. In
this section we discuss the interpretation of these
equations from a general viewpoint, and in the
next section we discuss a special case.

First of all, the sum of these two equations is
just a generalized version of the TOV equation,
although it is perhaps hard to recognize without
making some detailed equations of state. The sum
is then the "old" result. The new equation comes
from taking the difference of Eqs. (4.1) and (4.2).
One way to write this difference is simply to solve
for the charge integral:

8 ' 8 8 ' 8Pm Pm Pm Pm

(::;)'-"(':;) '

This is the new equation that makes the Einstein-
Maxwell system determinate.

To get some clue as to the significance of this
equation, consider the condition necessary for
charge neutrality. Even without a particular
equation of state, Eq. (4.3) shows this condition
to be

defined to be the chemical potential g, of the par-
ticles of type 1. A typical equation of chemical
equilibrium (A+B- C) is

(4.7)

where the &, 's are the numbers of molecules of
type i that enter into the chemical reaction equa-
tion. Thus, Eq. (4.V) is similar to Eq. (4.4) pro-
vided we identify the o.', (which are so far constants
of integration) with the v„and provided we agree
to imagine a kind of "chemical" equilibrium to
exist for noninteracting particles, which we have
assumed so far.

By this general approach, we can perhaps inter-
pret the basic new equation, Eq. (4.3) as a kind of
equilibrium-of-forces equation for noninter acting
particles with charge. [Since it is the derivative
of Eq. (4.4), Eq. (4.3) must be associated with
forces. ] In the next section, we shall see that
when more specific equations of state are intro-
duced the various terms do have the look of iden-
tifiable forces.

V. THE VARIATIONAL EQUATIONS FOR TWO

CONSTITUENTS-A PARTICULAR CASE

In order to apply Eqs. (4.1) and (4.2) to some
concrete cases, let us suppose that the matter
densities and pressure are additive,

p = p (n,)+p (n, ),

P =P, (ni) +P.(n.},
(5.1)

e- p,'=(p c'+p, ) ——,—,+,
+.-~~ ~- S&,n„

m c4~~P 8'G
p2=(p c +pn) —p — 4 + ~ s

+.-~~
S&.n.~-.

(5.3}

(5.4}

It is easy to see that the sum of these equations

and that the equation corresponding to the first
law of thermodynamics for one constituent is val-
id separately for two constituents'.

8p p +Pic
8,'= '-,

(5.2)
P Pm +~2

8n, n,

Equations such as (5.1) and (5.2) are easily shown
to be verified for, say, the constituents of a white-
dwarf star as found in the literature.

With Eqs. (5.1) and (5.2), Eqs. (4.1) and (4.2)
become
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gives the usual TOV equation, (2.7).
If Eq. (5.4) is subtracted from Eq. (5.3) we get

(5.5)

This is written in a way different from Eq. (4.3)
but contains the same information. It is the new
equation obtained by the variational procedure.

An interesting interpretation can be found for
this equation by appealing to the nonrelativistic
limit for a clue, for then the denominators reduce
to just the p terms and the numerators are iden-
tifiable forces, either pressure forces or elec-
trostatic forces. The equation then says that in
equilibrium the sum of the nongravitational forces
per unit mass is the same on particles of type 1
as on those of type 2, etc. The classical gravita-
tional forces per unit mass behave this way any-
how (Galileo's discovery), even without equilibri-
um. The new equation exhibits an analogous re-
lation for the sum of the nongravitational forces
in equilibrium. Equation (4.3) can then be inter-
preted as the relativistic and general version of
this. It is this relation that makes the Einstein-
Maxwell equations determinate.

As a final point, let us return to the last para-
graph of the Introduction, and consider the white-
dwarf problem from the point of view of whether
or not a charge imbalance exists, and if so how
to calculate it self-consistently.

From Eq. (4.5) we see immediately that charge
neutrality cannot hold if one of the constituents is
degenerate. Let the electrons be denoted as con-
stituent 1 and the nuclei as constituent 2. Then
Eq. (5.4) is a general-relativistic TOV equation
for the nuclei alone, but is coupled to the electron
parameters through the functions in the large
parentheses. In particular, if, as is usually done,
we set p, =0, and p = m,n„ then Eq. (5.4) reduces
to

Equation (5.5) applied to this case gives

~$2 & ~gg+g —e py (5.7)
Pm

This result shows that the electrical force per
mass on the nuclei (i.e. , the "electrical accelera-
tion" of the nuclei) is not equal to the "electrical
acceleration" of the electrons, or even Z times
it, where Z is the charge on the nucleus. Rather
it equals the "electrical acceleration'* of the elec-
trons plus (or rather minus) the "pressure accel-
eration"; the latter two are, strictly speaking, nor-
malized relative to p c'+P, . It is this fact that

1
relates the electrical to the mechanical properties
of the electrons and nuclei and ultimately ensures
self-consistency.

The entire problem for the white dwarf can
therefore be handled self-consistently starting
from the assumption P, =0, provided P, and the
p's are known in terms of n, and n, . In fact the
mathematical problem can be reduced to a single
nonlinear, second-order differential equation in-
volving just one unknown function. The solutions
of this equation are presently under study.

VI. CONCLUSIONS

In this paper we have outlined a method for mak-
ing the Einstein-Maxwell equations determinate
for a multiconstituent fluid in static equilibrium
and having spherical symmetry. We have indicated
generally what the condition for charge neutrality
is, and we have made some attempts at interpret-
ing the new equations in Secs. IV and V.

In future publications the application of the new
equations to some special cases will be made,
with an attempt to discover quantitatively how
large the effects are in standard star problems,
where else one might look for significant effects,
and under what conditions stability (an energy
minimum rather than a maximum) occurs.

Sgp' = m2 + 47t"Yp-
m'

' r'G 2y3 (5.6)
APPENDIX: THE VARIATIONAL PRINCIPLE ' ' "

The problem is to minimize the quantity
This special case of the nuclear TOV equations
shows that the electrical force on the nuclei (the
left-hand side) equals the gravitational force on
them (the first term on the right) plus relativistic
corrections. (Notice that the electron pressure
enters the large parentheses on the right in the
correction term. ) This verifies the argument
cited in the Introduction, made by several au-
thors, "that the nuclei are held up in the star by
an electrical force. In fact Eqs. (5.3) and (5.4)
are the general-relativistic version of Eqs. (10)
of Auluck and Kothari. '

4~a &
y gg~A(r)=, p +, , r'dr (A1 )

in the limit r -~, subject to the restrictions that
the total numbers N, (r) of each type of particle
remain constant during the variations. We shall
take as the independent variational functions the
N, (r) defined as

x,(.) 4.f .;""=d""*
0

(A2)

The side conditions are then taken into account by
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stipulating that at the end points

6N((~} = 0, 6Ã, (0}= 0. (A3)

In Eq. (A1) the g and g' are immediately func-
tions of the N, (r) and N', (&} through the relation in
Eqs. (2.6) and (3.1):

where

X/2

a=
c X ] Btlg

I =—e-"'g P-6N'+ 6(gg')
ac', Bn, '+c'r

(A12)

g(r) = Qq, N, (r). (A4) (A13)

However, the p term in Eq. (1) is treated as a
function of the n, (x) directly:

The exact solution of Eq. (A11) with the boundary
conditions of Eq. (A3) is

From Eq. (Al) we need

6A(r}= + 6p + +, 6(gg') r'd~.4mG 1

0 7I

(A6)

(A6)

r
6A(r)=e +"'& e &" '&g(r')dr',

0

where

r
D(r, s) = a(r')Ch'

S

(A14)

(A15}

6gg' = g'Q q(6N)+ gg q)6'.

To proceed with the first term we use

(A7)

The second term in the integrand is immediately
We let r-~ in Eq. (A14) and obtain an integrand

of the desired type depending only on variations
of the N, and their derivatives [using of course
Eq. (A4) j. Integrating by parts in the usual way
for the 6N& terms, we end up with the form

Bp
ap. = g,'- ~,

and to get the 6n, we take the derivative of Eq.
(A2):

(A6) i!A( }=8 +" "'j 8 ' "pzf(r')5Ndr'=0.
0

(A16)

(A9)

We need now to get 6A(~). To do this, ' go back to
Eq. (A6) and take an r derivative, using for 6p
Eqs. (A8)—(A10). After some manipulation, it be-
comes clear that the resulting equation has the
form

—(6A)+a6A=f,d
d+

(A11)

From Eq. (3.3) we get

6e-"~'=e"" r '6A(r-)+-q, 6N, . (A10)Gg

Bp X 4+G y Bp
(A17)

This is the final result of the variational proce-
dure. One must also investigate stability, but
this type of problem will be deferred to a later
paper.

For independent variations, the Z's are set equal
to zero. Rather than write out the Z's as they
appear in Eq. (A16) we rearrange the terms in
each equation Z&= 0 so as to resemble the usual
TOV equation as much as possible:

Bp. '
q, ge"'

~The Cauchy problem has been discussed by J.L. Synge
fRelativity, the General Theory (North-Holland, Am-
sterdam, 1965), Chap. 10] and Y. Bruhat tin Gravita-
tion, edited by L. Witten (Wiley, New York, 1962),
pp. 150, 151]. Synge is somewhat misleading, as he
asserts that there are 21 equations and 21 unknowns as
he formulates the problem. But when the Maxwell
equations are reduced from field variables to potentials,
it is clear that there is an extra unknown function. The
discussion in Bruhat's article illustrates this. When
spherical symmetcy is imposed, as in the present
article, there is no question about it.
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