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An investigation is made of gravitation theories which are based on a Lagrangian constructed from the scalar
curvature, in which torsion is allowed and in which the metric compatibility with the connection is not
assumed in general. It is shown that because of the invariance of the scalar curvature under a projective
transformation of the connection, only that part of the connection that is projectively invariant is determined
by the theory. The theory is then reformulated so that the total action functional (gravitation plus source
fields) depends only on the projective invariant part of the connection. The resulting theory is shown to be
metrizable and equivalent to Einstein’s theory with a modified source Lagrangian.

I. INTRODUCTION AND OUTLINE

In Einstein’s standard theory of gravitation, the
affine connection coefficients I'*,, (those co-
efficients from which covariant derivatives are
formed as, e.g., V%, =V%,, +V® %, in the case
of vector fields) are taken to be identical to the
Christoffel symbols

{gv =%gaﬁ(gu8,u +88v, _guu.ﬂ) 1)

in a coordinate basis. One viewpoint on general
relativity, first discussed by Palatini, is to con-
sider metric coefficients and symmetric con-
nection coefficients as a prior: independent dynami-
cal variables in an action integral. Variation of

the metric and of the connection generates not only
the standard Einstein field equations in a vacuum
but also shows the equality of the connection co-
efficients and the Christoffel symbols.!*?

Work on the foundations of general relativity has
stimulated interest in several generalizations of
Einstein’s original theory. Cartan® proposed a
generalization of the Palatini variational principle
to include the antisymmetric part of the connection
(3T*,5 - 3T",), a tensor which he called the tor-
sion of the spacetime. The antisymmetric part of
the connection in Cartan’s theory is to be under-
stood as an additional part of the gravitational
field, not as a different physical field. There also
have been many attempts to use the antisymmetric
part of the connection to describe electromagnetism
in unified field theories.* In this work we only
consider Cartan’s viewpoint and we do not consider
any applications to a unified field theory. Cartan’s
theory has recently been reconsidered and devel-
oped by Hehl,®® Trautman,” and their co-workers,
although for brevity we will refer to their formu-
lations as “theories with torsion.” The field
equations of these theories do not determine the
connection uniquely; the additional condition

&as;p =0 has to be added which for an arbitrary
source term raises serious doubts as to the con-
sistency of the resulting theories. Although the
condition g,;, =0 is motivated physically by the
desire to induce a reasonable connection on a
spinor basis, it is our purpose to consider these
theories solely in terms of what comes out of an
action principle.

In this paper we consider a theory with torsion
that is based on an action functional constructed
from the curvature scalar (for the gravitational
Lagrangian) and an arbitrary source field La-
grangian, as do the preceding authors. However,
we take the full connection and the metric to have
no a priovi relation.

The curvature scalar is invariant under a pro-
jective transformation of the connection |cf. Eq.
(7) and Ref. 8]. The vacuum field equations de-
rived from it are also projective invariant and
hence do not determine the full connection field.
The gravitational Lagrangian depends only upon
the “projective-invariant” part of the connection.
This projective invariance of the gravitational
part of the action imposes four algebraic con-
straints on the source-field part of the action.
These constraints impose conditions on the source
fields which can lead to inconsistencies. (The
physical implications of the projective invariance
of the scalar curvature are unclear. We shall
regard this invariance as a mathematical accident
rather than a spacetime symmetry and leave fur-
ther speculation to another paper.) This con-
straint problem for an arbitrary source is resolved
in this work by reformulating the source-field
Lagrangian in a manner such that it too only de-
pends upon the “projective-invariant” part of the
connection. The constraint conditions are then
automatically satisfied and only that part of the
connection that is determined uniquely is used in
the reformulated action. It is then shown that the
gravitational Lagrangian and the source-field
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Lagrangian (both now projectively invariant) can
be regrouped into an equivalent action (i.e., the
new action takes on the same values as the old
action and hence those values of the fields which
extremized the old action functional also extremize
the new action functional), which is based on a
Riemannian spacetime (connection coefficients
equal to the Christoffel symbols) with a modified
source-field Lagrangian. This (Lagrangian-based)
theory with torsion is thus shown to be equivalent
to Einstein’s theory.

This paper uses the conventions of Ref. 9. The
units are chosen such that 87G=c =1 and the
coupling constants for the source fields are ab-
sorbed by these fields and are not shown explicitly.
All tensors are referred to a coordinate basis and
a general tensor is written as ¢, where A is a
collective index. (E.g., ¢,=¢, for a vector,
$a4=¢,, for a second-rank tensor, etc.) The co-
variant derivative of ¢, is written as

Garu=Pa,u+005% T %, , @)

where ¢, , is the ordinary partial derivative, I‘Ba“
are the connection fields, and Oﬁ"‘ﬂ are a set of
Kronecker &’s that handle the bookkeeping for the
connection terms; e.g., 0{4% =—6%064 for a
covariant vector field, o{s}*5 =~ 6406265 - 646%57
for a covariant second-rank tensor field, etc.
Square brackets on indices denote antisymmetri-
zation and round brackets denote symmetrization,

e.g.,
A(aﬂ] =%(Aa6 _Aﬂoc)

and
Ay =2(Agp+Ag,) .

II. ACTION PRINCIPLE AND THE FIELD EQUATIONS

We assume there exists a spacetime metric g3,
a linear connection I'* 5, and a source field ¢,
on a four-dimensional manifold M. The notion of
“the gravitational field” is generalized to mean
the metric and the (aipriori independent) con-
nection fields on M.

In this scheme the Riemann curvature tensor

Raﬂpv (P)EFQBU'“ - I'O‘B“‘u +I‘°‘p“I‘pB,, - F“p,, FPB[J
(3)
and the Ricci curvature tensor

Ryp(T)=R";4p(T) 4)

depend only on the connection, while the Ricci
scalar

R(g, T)=g*"R, 4(T") (5)

is constructed from both the connection and the
metric.

The field equations relating the connection, the
metric, and the source fields are assumed to come
from a variational principle. As in most theories
with torsion we take the gravitational action to be

Selg Tl = [ axV=gr(g, 1), (®)

where g=Det(g,3). We will now see from two dif-
ferent points of view that even in the absence of
sources the connection cannot be uniquely deter-
mined from the action Sg.

(i) The action is invariant under the “projective
transformation” of the connection defined by

TH g=T! s =T" 5 +05¥s, (7

where g is an arbitrary covariant vector field.®
Consequently, the variation of the gravitational
action generated by a projective transformation
(6T*,5 =04p) will vanish as an identity. Therefore,
some of the Euler equations are vacuous, and the
projective invariance makes it impossible to de-
termine the connection fields uniquely from the
action.

(ii) This can be seen independent of a discussion
of the projective invariance. The field equations
resulting from a variation of the I'*, 5 can be
written (in vacuum) in the form?

BaB,u—8pB *rpau —8ap *rpuﬁ=0: (8)

where *I'¥yg is the linear combination of T'* 5 given
by

AT =T", 5 =504 Fpe] - 9)

The *I'*, 3 are determined uniquely by Eq. (8) and
turn out to be the Christoffel symbols defined by
Eq. (1), i.e., for vacuum *I'* g ={£¢}. The vector
I'f,s) is not determined by the variational principle
and the combination *I'*, 5 contains no information
about this vector, since

*FPPB_*FPBP:O’ (10)

as can be easily verified from Eq. (9). Therefore,
even in a vacuum spacetime, the variational princi-
ple determines the connection only up to a vector
field, i.e., up to a projective transformation.

We will now show that these two viewpoints are
equivalent. First note that the *I'* 5 constructed
from a connection I'¥_ 5 and the *I'*,5 constructed
from the projectively transformed connection T'* g
are equal, i.e., that the *I'*,; is a projective in-
variant. The *I'*_, is the projective-invariant part
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of the connection. If the *I'* 5 is now regarded as
a connection, then the curvature scalar R con-
structed from the *I'“ 4 is equal to the curvature
scalar constructed from the I'¥ g, since the curva-
ture scalar is a projective invariant. When *I'¥ g
and I'¥ g are regarded as connections, they differ
only by a projective transformation with 4= —%I‘ﬁ,ﬁl
in Eq. (7). The action functional for the gravitation-
al field can therefore be written in an obviously
projectively invariant form

Seleg, Tl = fM d*xV=gg®®Ros(*T) , (11)

where the Ricci tensor is constructed from the
*I'¥ g in the usual way,

Raﬂ(*r) = *r“ae,y - *ruocu.B
+ *I‘HP“ *rﬂaﬂ - *rﬂps *rpa“ (12)

and the action is to be regarded as an explicit
functional of g, and *I'*,g, and an implicit
functional of T'* g through *I'* 4. Since no in-
formation about I'*,; other than contained in *I'* g
appears in R, the fact that only *I'*,; is determined
by the field equations is seen to be a consequence

of projective invariance.

The interaction of the gravitational field with
another physical field is generated by adding a
source action S, for this field to the gravitational
action S; and applying the variational principle to
the total action S. (Spinor fields will not be con-
sidered explicitly. The generalization to include
them requires the addition of a spinor connection
in addition to the tensor connection I'¥, 5 as an
independent field in the action functional. This an-
alysis will be left to a future paper, although we
expect a result similar to the one described in this
work, c.f. Ref. 10.) To formulate a Lagrangian
density for the source fields in a curved spacetime
requires a consideration of “the equivalence princi-
ple.” For the field theories we are interested in
we will use “the equivalence principle” in an op-
erational sense and define the notion of “minimal
coupling” as a prescription for the generalization
of equations from flat Minkowski spacetime to
curved spacetime. Usually “minimal coupling” is
taken to mean that (i) all inner products are to be
evaluated with the metric tensor explicitly and (ii)
all partial derivatives are to be replaced by co-
variant derivatives (the “comma-goes-to-semicolon
rule”). The connection fields then appear only
through the covariant derivatives. On spacetimes
with torsion the rules for “minimal coupling” can
create physical theories with very different prop-
erties, e.g., Maxwell’s equations are no longer
gauge invariant if a covariant derivative with
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torsion is used in place of the ordinary exterior
derivative in the field equations. For the purpose
of this work all we require is that if the connection
fields appear in the source Lagrangian, then they
should only appear through covariant derivative.

In general, the Lagrangian for a field on a curved
spacetime is given by taking the flat spacetime
Lagrangian for that field and applying the above
rules for “minimal coupling” to the gravitational
field. The Lagrangian density £ for the source

is then constructed from the source ¢,, its
covariant derivative ¢4,,, and the metric g,5. The
source action is then given by

Sul6,2,T] =fu*d‘*x£(¢,¢;,1,g) . (13)

In general, a variation of this action generated
by a projective transformation will not vanish as
an identity as the variation of the gravitational
action did. Instead, such a variation generates
the four algebraic constraints on the source field

0L _> o
<8P“aﬁ 65=0. (14)

These constraints must either be satisfied as
identities for a particular source Lagrangian or
they are extra conditions on the fields. In many
cases, these constraints are strong enough to
imply, when used together with the field equations
for the ¢,, that all the higher derivatives of the
¢4 vanish.

The previous theories with torsion imposed the
condition that the connection be metric, i.e.,

SaB;p =gaﬂ,p_gp5rpccu_gaprpep=0 s (15)

in order to determine the full connection and re-
move the projective invariance. [Note the order of
the indices in the last term and compare this with
Eq. (8).] Under a projective transformation of the
connection the covariant derivative of the metric
tensor transforms as

gaﬂm"gas:u‘ZgaBlpu: (16)

so putting g44,, =0 does indeed remove the pro-
jective freedom. However, in addition to removing
the projective freedom in the connection this con-
dition imposes the constraint that the metric and
connection satisfy an equation of the form

gaﬂ:u_zgaﬁgp‘_’o ) (17)

where £, is some vector field constructed from the
metric and the connection. As will be shown short-
ly, the field equations for the connection are al-
gebraic and can be solved to give the projective-
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invariant part of the connection *I'*_; in terms of
the Christoffel symbols and the source fields.
When this solution for the connection is substituted
into these additional conditions, the source fields
are further constrained. If one allows completely
arbitrary sources, then in general the theory be-
comes inconsistent with these constraints.

A convenient way of satisfying the algebraic con-
straints in Eq. (14) follows if we alter the “comma
goes to semicolon” rule. The constraints imply
that S, can depend on I'* 4 only through *I'*_g.
Thus, by analogy with the gravitational action, the
¥y p in the ¢,,, terms in the source Lagrangian
are replaced by *I'* ;. Let ¢ ¥, signify the co-
variant derivative of ¢, with respect to the *I'*
combination of the I'*_ g:

Gaky=ba,,+ D505 ¥%, . (18)

(The *I'*, z differ from the I'* 4 by a tensor.
Therefore, *I'_; is also a connection and the co-
variant derivative with respect to it is well de-
fined.) With this alteration, the source Lagrangian
is also projectively invariant and satisfies Eq. (14)
as an identity. The imposition of an additional con-
dition [e.g., Eq. (15)] to remove the projective
freedom is no longer necessary since only that
part of the connection that is determined uniquely
by the field equations is used in the total action.

To treat the source action similarly as the gravi-
tational action in the Palatini form, it is convenient
to consider the source Lagrangian in first-order
form.!'*'® The generalized covariant canonical mo-
mentum densities 74* are defined by

9L
Ap -
T
and the first-order Lagrangian density A is de-
fined by

A, T,g) =14 ¢ %, ~L£(d, 0% ,,8) . (20)

(19)

The total action functional is then given by

Sle, T ¢,7]

= f d*x V=g g*PRos (*T) + 144 . ¥, - A($,m8)] |
" (21)

where the I'¥ 5 appears only in the projectively
invariant combination *I'*_ ;. Requiring this action
to be stationary for independent variations of g,
I*,s ©¢a, and ™" gives the field equations for

the theory. In particular, the variation of the
connection I'*, g implies

(/=g8"8)%, - 08(/=g g )%, - 2V=g&*? *Tf 51
=V=gd*,(¢,m,8), (22)

where

V=gd 8, (¢,m,8) =~ 14Pp 10 5% +3¢ 08P ,mALBGET

(23)

Unlike the other fields, the *I'*,; are subject to
algebraic rather than to differential equations, and
can thus be expressed as

*r“aﬁ ={a“BJL + ég“u(LuaB - Laﬂu +LBva)
={.a”8}+H“aﬁ(¢,71g) . (24)

Here,
Loy =dapy —58ae’py —3Jy°p)~5880d 0" -
(25)
This solution for *I'* ;, when substituted back

into the action functional in Eq. (21), defines a new
action functional S’ depending on ¢, 7, g, and {4*g}:

slg.{} 9,7l

=S[g, r={ }+H, ¢, 7] +a divergence

= [ atx Vg™ Ras{ N+ 04 =K (9 7, ),

(26)

where R, ({ }) is the Ricci tensor constructed
from the Christoffel symbol,

¢'A[u =¢A,u +¢Boﬁaﬂ{aﬂu} (27)
is the Riemannian covariant derivative, and

Ao, 7 8)=A(, T, g)+V _ggaB(Hp“ BH“ap"HpupHPocB)
=14 05" oH Py (28)

is the modified first-order Lagrangian for the
source field. The new actions S’ defines an equiv-
alent variational problem® (i.e., produces the
same physics). '

The action S’ is based on a Riemannian space
without torsion. Requiring S’ to be stationary for
independent variations of g,5, and of ¢, and 74¥
gives the usual Einstein field equations with the
field energy tensor constructed from the A in the
usual way [see Eq. (A6) in the Appendix], and the
Euler-Lagrange equation in a Hamilton-type form
for ¢, and 74,

II1. DISCUSSION

Our calculations above were quite general. Only
the variational principle was used; no extra con-
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ditions were imposed. As a consequence, the vari-
ational principle did not give all the information
about the gravitational field, because no informa-
tion about T',g1 was given. In most theories with
torsion another viewpoint is taken. The condition
8op;p =0 is imposed as a supplementary condition
to the action integral and the range of allowed
variations is thereby restricted.

By formulating the theory in a projective-in-
variant manner, we have shown that the resulting
theory is metrizable and equivalent to Einstein’s
theory with a modified source Lagrangian.

One of the major reasons for the renewed interest
in theories with torsion is the possibility that these
theories do not satisfy some of the recently proven
global theorems on signularities and that singu-
larities, inevitable in Einstein’s theory, can be
avoided in theories with torsion. Indeed, cosmo-
logical models with phenomenological sources
have been constructed with no initial singularity.'®
This infringement on the signularity theorems!*
has been discussed in Ref. 15 in terms of a viola-
tion of the energy conditions which is due to the
torsion. From the viewpoint of the present paper
the “violation” of the singularity theorems is not
attributed to a “pressure” generated by torsion in
the spacetime geometry, but rather by a violation
of the energy conditions by the summetric “metric
energy tensor”(see Appendix), constructed from
the modified source Lagrangian in the usual way.'®
In our viewpoint, the avoidance of singularities is
due to a strange source Lagrangian in the usual
theory rather than the usual source Lagrangian in
a strange theory.

In theories with torsion, the “energy tensor”
that appears on the right-hand side of the gravi-
tational field equations can be either the canonical
energy tensor or the symmetric “metric energy
tensor, ” depending on whether one uses an Einstein
tensor formed from an abstract connection or an
Einstein tensor formed from the Christoffel sym-
bols. These energy tensors (constructed from the
actions S and S’) and the conservation laws they
obey are discussed in the Appendix and are the
generalizations of the Belinfante-Rosenfeld re-
lations between the canonical and symmetric
energy tensors to spacetimes with abstract con-
nections. When the explicit solution [Eq. (24)] for
the connection is substituted into these general
relations, the usual conservation laws for the
canonical energy tensor constructed in the usual
way from the modified source is recovered.
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APPENDIX: ENERGY TENSORS IN THE THEORY

The action S and S/, defined by Egs. (21) and (26),
respectively, are invariants, and therefore varia-
tions of S or S’ generated by coordinate transfor-
mations vanish as identities (the conservation laws
for energy and momentum). As it is usually done,
we assume that the source fields satisfy appro-
priate field equations. If the coordinate transfor-
mations are generated by an arbitrary vector
field &*, then the variations of the various fields
are the Lie derivatives of these fields with respect
to the vector field £, For the action S, the rele-
vant Lie derivatives are

£r8ap=28,at gy + E8ap™p
+2§p(gaa*r[oﬂp] +80p8 *Ip1) (A1)

and

£§ *r“aﬂ = &“ ":‘Ot*;‘ﬁ +R“aoﬁ(*r)§o - 2(50 *Ft‘oa] )",‘B ’
(A2)

where R¥_,3(*T) is the curvature tensor construct-
ed from the *I'* ; connection in the usual way.
Substituting these expressions for the variations of
the connections and metric fields into the varia-
tion for S, and restricting the £* to vanish on the
boundary of M, we set the conservation law

_1<_8_9_> . +1<_a_9_ ) _<89 )*r

1 . v a P) agwgau >.:<u Bg“,, plvel
+(V—gsuua)).;(z/)':(u+'_gsuupRppoa/(*r)
+2(' -gs‘“'p)"',(ll *Pfocp] =0 ) (A3)

where 6=6%, is the trace of the canonical energy
tensor!® given in first-order form by

0% g =T % — 0% T AP %, +0%gA . (A4)

For the action S$’ (on a Riemannian manifold) the
relevant Lie derivative is

£e8up=ExintEpia (A5)

and the corresponding conservation law is

(4010~ A) —‘“’—(m))]]fo.

l: 8gyu ax’ ag;w,p

(A8)
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The expression in Eq. (A3) is the generalization of
the conservation law for the canonical energy ten-
sorf,, to a spacetime manifold with an unrelated
connection and metric. The S*’, terms are anal-

ogous to the Rosenfeld “spinterms.”" The ex-
pression in Eq. (A6) is the usual conservation law
for the symmetric energy tensor in first-order
form (cf. Ref. 16).
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ments, June, 1975.
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