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Electromagnetic plane-wave pertnrbations in Kasner cosmologies*
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Maxwell's equations with no sources are solved for the vector potential of electromagnetic plane waves in a
Kasner background spacetime (these fields are generally not null). By a transformation of the time coordinate,
the one equation not identically zero is transformed into the Euler-Poisson-Darboux equation. The basic
theory for this equation and its plane-wave solutions are presented. The stress-energy tensor due to these
waves is computed in the limit as the singularity is approached. For some of the wave modes the stress-energy
tensor introduces negligible source terms in the perturbation equations for the gravitational field. However, for
other wave modes, the stress-energy terms in Einstein's gravitational field equations grow faster as the
singularity is approached than the terms due to the Kasner background spacetime. Hence these wave modes
perturb the Kasner background in an unstabilizing manner.

I. INTRODUCTION

A time singularity of the spacetime metric is a
property which occurs in general classes of solu-
tions to Einstein's gravitational field equations. ' '
The Khalatnikov-Lifshitz' ' generic time singular
spacetimes grew out of the generalization of the
Kasner" spacetimes. In this paper the solutions
to Maxwell's equations for electromagnetic plane
waves in Kasner spacetimes are obtained and their
effect on the background spacetime is determined.

In Sec. II the problem of solving Maxwell's equa-
tions for plane waves in a Kasner background met-
ric is reduced to solving the Euler-Poisson-Dar-
boux (EPD) equation. " The solution A& is the
vector potential for the Faraday tensor E„,. Then
the basic properties of the EPD equation and its
solutions are presented. In general, for each
Kasner metric, there are six possible values of
the parameter 4 in the EPD; corresponding to
each value of 0 there are one or more types of
plane waves (which are not null in general).

In Sec. III the stress-energy tensors due to each
wave mode are calculated in the limit as the singu-
larity is approached, i.e. , as ~-0. For some wave
modes the stress-energy tensor is shown to be a
negligible source term in the perturbation equa-
tions for the gravitational field. However, other
solutions give rise to a stress-energy tensor with
terms, including the T,' component, which grow
faster as t -0 than the corresponding terms in
Einstein's gravitational field equations due to the
Kasner background metric. In Sec. IV the possible
effect of this unstabilizing perturbation on the
background spacetime is considered.

II. PLANE-WAVE SOLUTIONS TO MAXWELL'S EQUATIONS

The vector potential A„ for plane waves is found
by solving Maxwell's equations with no sources in
a curved spacetime. ' In a coordinate frame, Max-

well's equations become

8

, , [hagi" g""g'"(A, „-A„,)] =O.

The Kasner metric"' is

dS' = —dt '+ t '~1 dX'+ t 2» d'y2+ I;2& 3 dg'

(2)

This model represents an anisotropic expanding
universe. The p&, i=1, 2, 3 are constants and sat-
isfy

Pl P2 ~3 ~1 P2 ~3

Following the convention of Belinskii et al. ,
' we

can arrange the p& in order p, - p2 -p3, then
——'-p, 0 p, -—,' p3 1, and we can represent
p] P2 p3 in parameter form

-u 1+u
p, (u)=, , p, (u) =

1+u+u 1+u+u

u(1+ u)
p, (u)=, , where u ) 1.1+ u+u

The electromagnetic perturbations of the Kasner
spacetime satisfy Maxwell's equations (1) with the
metric given by (2'). (See Sec. III for a derivation
of this result. ) We are seeking solutions analogous
to the plane-wave solutions in Minkowski space-
time. Hence we will look for solutions such that
AD=0 and only one of the components A„A„A, is
nonzero. This nonzero component A; will be a
function of the time t and only one of the space
variables &~ where j@i. Hence there are six
possible modes of solution A, (t, y), A, (t, z), A, (t, x),
A, (t, z), A, (t, x), and A (t, y). For each mode we
shall change the coordinates to transform the one
Maxwell equation which is not identically equal to
zero into the Euler-Poisson-Darboux (EPD) equa-
tion.
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Case 1. Solution modes A, (t, z) and A, (t, z). We
change the coordinates to

tq
7 = —

~ X=/ X, g=g 2$q $=g 38~

where q=1 —P, and P, 11. In the new coordinates
the line element (2) becomes

For mode A, (t, y), set A, =A, =A, , =A„=O.
Then Eqs. (1) with o. =0, 1, 2 are identically zero
and the &=3 equation becomes the EPD equation
with v "~ =A„$=y, -3 «k « —1, and k =-1 for
p3 =1.

Case 3. Solution modes A, (t, x) and A, (t, x). Now
let

dS = —T d1 +T dX +T dy +T dp

where a = 2p, /q, b = 2p, /q, and & = 2p, /q;

(Igl)"= ',

(3) tS
$ = sd&x y = s22y Z = s22zs' '

where 8=1 -p„and the value P, =1 is allowed. In
the new coordinates the line element (2} becomes

where d = (1+P,)/q.
In these coordinates Maxwell's equations (1) with

Ac= 0 become the following equations (4a)-(4d) for
+=0, 1, 2, 3 respectively:

Td a bA --+Td a cA--+Td 2aA-0
, Qs

(7.d acA-) rd~-c (A A ) yd-a-& (A

= 0, (4b)

(r ' 'A, ),—r '(A, , —A, ,), —T ' '(A, , —A22),

= 0, (4c)

(&d 2aA ) -rd a c(A --A ) rd-a-c (A

= 0. (4d)

ds2= —r d2 +2rjdp+r'dy'+T ~dz'

where j= 2p, /s, i = 2p2/s, and m = 2p, /s. In these
coordinates, with A, =A, =0, calculations similar
to the previous cases show that A, (t, x) satisfies
the EPD equation with v('~ =A„$= x, 0 «k «1,
and k=1 for P, =1. With A, =A =0, mode A, (t, x)
satisfies the EPD equation with o "~ =A„
-1 ~A -0, and k=1 for P3 1.

To complete these considerations, for P, =1, let
7 =lnt. Then using the & coordinate, A, (t, z) and

A, (t, z) satisfy the EPD equation with v( = A, and
v "' =A„respectively, )=z and k=0.

A. Properties of the Euler-Poisson-Darboux equation

For mode A, (t, z}, set A, =A, =A, , =A„=O.
Equations (4a), (4c), and (4d) are identically zero
and Eq. (4b) reduces to the EDP equation

~( )+ . ~( )k
rr gg T r

with 0 ~ =A„$=z, and k= d —a —b =1+2u; u ~ 1

so 3-k&+~.
For mode A, (t, z), set A, =A, =A, , =A, ,=O.

Equations (4a), (4b), and (4d) are identically zero
and Eq. (4c) reduces to the EPD equation with
~("' =A„)=z, and ~&k «-3.

Case 2. Solution modes A, (t, y) and A, (t, y).
Now let

The equations for the various wave modes
A, (t, x ) all have the form of Eq. (5), the EPD
equationo "in one space variable with the range
of k being -~&k&+~. The superscript k in & '
indicates the dependence of & ~(t, $) on k. When
k =0, eq. (5} reduces to the well-known plane-wave
equation. Note, however, that for k t0 functions
of the form v(T, $) =f (t a $) are not solutions to Eq.
(5), so there are no traveling plane waves for
k 40.

We state the solution of Eq. (5) for the Cauchy
problem with initial conditions

~'"'(0, () =f (5), ~",'(0, h) = 0.

For k&0,
tr

T= —,X=r2&X $=r 2y Z=rc2Z

where r = 1 —P, and the value P, = 1 is allowed. In
the new coordinates the line element (2) becomes

~+ y

~(c) (7 $) 2 f ($ ~ ~) (I 2)(ll-2)l2 d~
0+& "-i

(9)

dS = -T di +T dg2+T d$ +T dg2

where e=2p, /r, f=2p, /r, and g=2p, /r. In these
coordinates Maxwell's equations (1) with A, =0
take a form similar to Eqs. (4a)-(4d).

For mode A, (t, y), set A, = A, = A,2
=A„=0.

Then Eqs. (1) with o=0, 2, 3 are identically zero
and the &= 1 equation becomes the EPD equation
with v' =A„)=y, 1 ka 3, and k=1 for p, =l.

] Q N

&( 2(r) —7 & 2 —— (ya+2a & g(2+22&)
T BT

(10)

where n is a positive integer such that k + 2n & 0,

where 0„=2m+/F(n/2), and F(n) is the gamma
function. For k &0, the solution is not unique. In
addition the cases where k is an odd negative in-
teger must be considered separately. For k &0
and k not an odd integer
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For k = -1, -3, -5, . . . , the exceptional cases of
odd negative integers, "let A = —2n —1, n =0, 1, 2, . . .
then

(12)

where the a„„„coefficients are determined by the
recursion formula

a, „=0, ann= 1, , a , re=+~ai, n
—ar, n(2n —&)

(13}

with

f((l =n a, „„rg a, „„(r ()(-li" ' v (((. (15i

For k &0, the solution given by Eqs. (10) or (12)
is not unique. For example, any function of the
form

(k) (& ~) &1-kv(2-k) (r ~) (16}

can be added to Eqs. (10}or (12), where v(' «'(7, $)
is a solution to the Cauchy problem for parameter
value equal to 2 —k. Such solutions have zero
Cauchy data at t=0,

m k (0, $}=w k (0, $) = 0.

Thus the Kasner case differs from the Minkowski
or Friedmann cases. In the latter cases, the
vector potential for plane-wave solutions satisfies
the wave equation (EPD equation with k = 0) and the
only solution with zero initial data is identically
zero.

In addition to the solutions given above, for k = 0
v(o)(7, () =f(r —$} will be considered as a possible
solution.

We are interested in examining solutions similar
to propagating monochromatic plane-wave solu-
tions of the form

v(&, 5) = &sin(()(& —5).

However, unless 0=0, such functions are not solu-
tions to the EPD equation. So we drop the require-
ment of propagation and instead examine mono-
chromatic plane-wave solutions by imposing a
periodic initial condition in Eq. (8),

v~")(0, $) =f($) =Bsin(d).

and v k"")(r, $) in Eq. (10) solves the Cauchy prob-
lem with initial conditions

vi"'")(0, $) =f(()/(k+1)(k+3) *(k+2n —1),
v(k+kn)(0 ~) 0

III. EFFECT OF THE ELECTROMAGNETIC PERTURBATION

ON THE KASNER BACKGROUND SPACETIME

The perturbing effect of these plane waves on the
Kasner background spacetime is determined' '
essentially by computing the stress-energy tensor
due to these solutions and then comparing each
term to the other terms in the Einstein field equa-
tion in which it occurs. More precisely, consider
the combined Einstein-Maxwell equations for the
gravitational and electromagnetic fields with Ein-
stein's field equations in the form

(18)

and Maxwell's equations given by Eq. (1). Also,
the Faraday tensor

F)(v +v )( )( v

determines the stress-energy tensor

(19)

(20)

Let g „,be given by Eq. (2) and consider an electro-
magnetic perturbation to g&, which results in a
new spacetime and a Faraday tensor given by

gpv g pv +~pv and +pp y

(~) (21)

respectively, where g„„+&,are solutions to the
Einstein-Maxwell equations and happ App 0.

Now assume g» in Eq. (21) is given as an ex-
pansion in powers of t, where h» has as a factor
a more positive power of t t'han that of g&~&~, p, ~ 1.
Furthermore, assume that the remaining nonzero
h&, have as a factor a more positive power of t
than that of all the g», p, -1. Then

Igl = Ig~ )
I + terms in more positive powers of t

Hence near 1=0, we can make the approximation
Igl Ig I

in Eqs. (1) to obtain the perturbation
equations for A„, where now the raising and lower-
ing of indices is done by g~~.

In Sec. II plane-wave solutions to Eqs. (1) were
found. Now we must verify that the assumptions
made on the relative smallness of h„, are satisfied.
The perturbation equations for h&, are given in

For k=2, 4, 6, . . . the integral in Eq. (9) can be
evaluated by integration by parts. Some solutions
are

v~o) =&sin&icos»,

v ' = (&sin(dg sin(d&}/»,

= 3Bsin(()$(sin» —» cos(()&)/((dT) .
For these solutions we see that v ~ has the struc-
ture of a standing wave which is periodic in time
and which decays as

~' as ~-
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TABI K I. Asymptotic form of the vector potential A& and the stress-energy tensor T".

Nonzero component
of Ap

A, (t, x);0» k»1

Asymptotic form
of Ap

M TB since/ 1—

Asymptotic form of SmT~~ in Kasner coordinates,
nonz ero components

t 2+1+~2)
T = — — B2~2cos (~s fx) =-T =-T =T

s 1 2 3

SPg l
T~ = —

Tent% tan(cus &x), Tp-——t iT&
p3

Ag(t, y);1—k»3

A&(t, z);3~ k &+~

given by A2(t, x) case with indices 1 and 2 interchanged, r replacing s and y
replacing x

given by A &(t, y) case with indices 2 and 3 interchanged, q replacing r and z
replacing y

A3(t, x); —1&k &0

A&(t, y); —3» k &-1

A2(t, z); —~ &k» -3

A&(t y) k =-1

A3(t, x); k =-1

Type II

given by A 2(t, x) case with indices 2 and 3 interchanged

given by A&(t, y) case with indices 1 and 3 interchanged

given by A&(t, z) case with indices 1 and 2 interchanged, unverified for
k =-7, -9, —11, . . .

given by A&(t, y), —3»k & —1 case with a factor 2 lnt replacing 1/(k +1) =1/p&
in A& and in T&

given by A3(t, y), k = -1 case with indices 1 and 2 interchanged

Type I

A, (t, x); -1»k &0 B 7~ ~ sine)
-»i+a~

Tp= 2 pqB sin (cps &x) = —T(=-T2=TS
—4t ' +

2 2 2 P ~ 2 3
s

A3(t, y); —3»k» -1

A2(t, z); —~ &k —-3

T& =Tptcu —cot(cus ix), Tp ———t iT&
S

p3

given by A3(t, x) case with indices 1 and 2 interchanged, r replacing s and y
replacing x

given by A3(t, y) case with indices 2 and 3 interchanged, q replacing r and z
replacing y

Additional k =0 modes

A g(t, z) B sincuz coscu v. given by A& (t, x) type II, k = —1 mode with indices
1 and 3 interchanged and z replacing x

A, (t, z) given by previous mode with indices 1 and 2 interchanged

Traveling wave modes

A 2(t, x),A3 (t, x)

A((t, z),A2(t, z)

B Sln(T —$)

B sin(~ -z)

t -2/3
Tp=-2 — B ~ cos (cps &x) =-T T =t Tp= —Tps

Tp=-2t B co cos [co(lnt -z)] = Tg= —Tp=TpP -2 2 2 2 p 3

Appendix D of Lifshitz and Khalatnikov, ' and the
stress-energy components &"„are source terms
in those linear equations. Also in Appendix D,
those perturbation equations are solved for the
T",~"~ of matter in an ultrarelativistic state, and it
is shown that the resulting h&, is relatively small
compared to the background spacetime.

Here we shall establish the relative smallness of
h„, corresponding to some of the plane waves A.&,
by showing component by component that the stress
energy T"„generated by A„grows no faster as
t-0 than the 7'"„" for rnatter. Hence we shall
compute &", in the limit as t - 0 for the various
modes A.&.
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I et the initial condition be given by Eq. (17).
For A, (t, x) use the coordinates of Eq. (7) and let
A2 = & '. Then using integration by parts on the
solution given by Eq. (9), in the limit as t -0

CO 7n"' tn, k) —= n n in ni (i ——
2(k +1)

Then Eqs. (19) and (20) determine T",. For the
other modes T"„ is determined similarly. For
A, (t, y) use Eq. (6) and for A, (t, z) use Eq. (3).
For A, (t, x), A, (t, y), A, (t, z) there are two types of
solutions. Type I is given by Eq. (16) and type II
is given by Eqs. (10) and (11) for k c-l, -3, —5, . . .
and by Eqs. (12) to (15) for k = -1, -3, -5, . . . .
There are some additional solutions possible for
A, (t, z) and A, (t, z) for k =0, which are similar to
the previous solutions for A, (t, z) and A, (t, z) of
type II, respectively. Finally, for k =0, the EPD
equation reduces to the wave equation, so that
traveling waves are also possible solutions. For
A, (t, x) and A, (t, x), k=0 for p, = —', ; also for A, (t, z)
and A, (t, z), k =0 for P, = 1. The results of the com-
putations to determine A& and T", are given in
Table I.

Now we compare these T"„with T",@). The stress-
energy tensor for matter in the ultrarelativistic
state' T"„" has a dependency on t given by

TO T3 t -1-P3 Tl t-2+2@3 T2 t -1+$3 -2/2
P 3 ' '

& 1 2

To To yP t T - T -g g T

In the perturbation equations solved in Appendix D

of I ifshitz and Khalatnikov, ' only the largest term
T3 of the three TN ", p = 1, 2, 3 was kept in the
equations. Hence in our comparison of T",( with
the T"„generated by a plane wave, we shall com-
pare the tensors component by component except
for T"„, g=1, 2, 3; the exceptions will be compared

T3 (N)

For the solution mode A, (t, x}, comparison of
T"„"'with the results in Table I shows that the
components of T", for A, (t, x) are either propor-
tional to smaller powers of 1/t than T"„'"' or are
zero. Hence we conclude that the wave mode
A, (t, x} produces a, negligible perturbation k„„on
the Kasner background spacetime g„~ .

Also notice in the Einstein field equations (18)
the principal terms in A& - t ', A', - t ' for g„,
whereas T„"-t-"'",T,'-t-'"", so that T", is
negligible compared to the principal terms in R, .

Similarly for wave modes A, (t, y), A, (t, z),
A, (t, x) type I, A, (t, y) type I, A, (t, z) type I, and

A, (t, x) typ«, -1&k&0, comparison of &", with
shows that these waves produce a negligible

perturbation on the Kasner background.
However, for A, (t, y) type II, -3 -k & —1,

t- (P2+P3) TP( ) T (Af) t-1-P3 d y +P0 3 3

&2P, +2P, since P, &P,. Hence T„"grows faster
than T"„" as t-G. In fact in Einstein's equations
(18), the terms in &"„—t ', which are of lower
power in 1/t than &&, also R„' —t ' whereas
T,'- t' ' ~2' 3 . Hence the Kasner spacetimes are
unstable under a perturbation produced by the
wave mode A, (t, y) type 11.

By similar comparisons, the modes A, (t, z)
type II, A, (t, y) type II, k = -1, A, (t, x) type II,
k = -1, additional k = 0 modes for A, (t, z) and

A, (t, z) and the traveling wave modes are found to
produce unstable perturbations.

IV. DISCUSSION

Electromagnetic plane-wave perturbations in a
Kasner spacetime have been shown to be solu-
tions to the classical Euler-Poisson-Darboux
equation, the theory for which has been extensive-
ly developed by Weinstein et g$."For — &P &+~,
there are plane waves which produce a negligible
perturbation on the Kasner background spacetime
near the singularity. However, for -~&0 ~-3
there are wave modes A, (t, z) and A, (t, y) and also
there are traveling wave modes which produce un-
stable perturbations to the Kasner background
near the singularity. It would be interesting to
determine the evolution of a Kasner spacetime
undergoing such a perturbation as the singularity
is approached.

In the Khalatnikov-I ifshitz generic case' where
mixmaster perturbations are taken into account,
perturbation terms due to mixing do not occur in
the Bo= 811(&o—2&) equation, whereas for A2(t, z),
A, (t, z), there is a T,' component of the same per-
turbing power as the other diagonal components.
Hence it would be interesting to find out whether
there are similar electromagnetic perturbations
in the generic case. If so, they might cause the
generic spacetime to evolve differently as the
singularity is approached so as to allow thorough
mixing. Hence such perturbations might contri-
bute toward a theoretical explanation of the ob-
served isotropy of the microwave background
radiation. '
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