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The interaction of a scalar field with the Kerr gravitational field is studied. The properties of the Klein-
Gordon equation in the Kerr metric are reviewed, and a two-component formalism is developed. This
formalism expresses the one-particle quantum theory for a massive scalar particle in the Kerr metric. A
semiclassical analysis of the spontaneous emission of particles by a Kerr black hole is given. The quantization
of a scalar field in the Kerr metric is developed, and a treatment of the spontaneous particle creation is given.
The particular quantization given here leads to emission only into the classical superradiant modes and hence
no emission by a Schwarzschild black hole. In the case in which w M <€ 1, where M is the mass of the black
hole and o the frequency of a given mode, an explicit expression may be given for the rate at which particles
are emitted into each mode. In the case in which the particle’s mass is zero and a € M, a = angular
momentum per unit mass of the black hole, the total rate of loss of energy of the black hole is shown to be

proportional to a%/ M?. A discussion of the problem of the vacuum energy is given. It is shown that the
energy of the vacuum state of a scalar field in a Kerr spacetime a < M is the same as that for a

Schwarzschild (a = 0) spacetime.

I. INTRODUCTION

Quantum field theory in a curved spacetime is
known to lead to the prediction that nonstationary
gravitational fields are capable of producing par-
ticle-antiparticle pairs.’”® Since the gravitational
field couples universally to all other fields, it is
expected that in an expanding universe, for exam-
ple, production of all types of particles is possi-
ble.* A quantum field theory formulated in a given
background spacetime describes the interaction of
the quantized field with the classical gravitational
field associated with the curvature of spacetime.

In the case of static or stationary spacetime it
would appear that there would be no particle pro-
duction. One would expect that positive- and neg-
ative-frequency components of a field would not
mix, and hence that a system prepared in the vac-
uum state at one time would always stay in the vac-
uum state. As we will see later, this is not always
the case.

Since the Kerr metric represents the gravita-
tional field of a rotating black hole, it is an excited
state of a system which we might expect to be able
to release energy spontaneously. At the classical
level, it is known that the rotational energy of a
rotating black hole can be extracted. One means
for doing so is the superradiant scattering process
discovered by Zeldovich® and by Misner® in which
a wave (e.g., scalar, electromagnetic, or gravita-
tional) in certain modes is scattered off the black
hole and is found to carry away energy from the
black hole. In particular, if the black hole has
mass M and angular momentum L=Ma, and if the
wave has frequency w and a component of angular
momentum of m along the rotation axis of the black

12

hole, then energy is extracted by the scattering
process if

w< my,. ¢V
Here’
Q,=a/2M7r, (2)

is the frequency of dragging of inertial frames at
the horizon at »=7,, where

Ve =M+ (M? - q?)/2, 3

The amplification factor has been calculated nu-
merically by Press and Teukolsky.®® Some anal-
ytic calculations have been done by Starobinsky!®
for scalar waves and by Starobinsky and Churilov!!
for electromagnetic and gravitational waves. For
an extreme Kerr (a =M) case, it is found that the
amplification factor for scalar waves is about 0.1%
for the most favorable modes. This factor is about
4.5% for electromagnetic waves and 138% for gra-
vitational waves. Rotational energy can be extrac-
ted from the black hole until it is a Schwarzschild
black hole whose mass is equal to or greater than
the irreducible mass, M, of the original Kerr
black hole. The relationship between mass, irre-
ducible mass, and angular momentum is'?

L2

2_Af 2, &
M? =M, +4Mi:2 .

From a quantum-mechanical point of view, su-
perradiant scattering is stimulated emission of
quanta, and there must also be a corresponding
spontaneous-emission process. This process is
the spontaneous production of pairs of particles
of energy sm§,. The rate for spontaneous emis-
sion can be determined from the amplification fac-
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tors for superradiant scattering by the same argu-
ments that are used to relate the spontaneous and
stimulated emission coefficients for atoms inter-
acting with the radiation field. For the emission

of massless scalar particles from an extreme Kerr

black hole, the rate of loss of energy is of the or-
der of 103/M?%*® This corresponds to a rate of
about 1077 W for a black hole of M =10"° cm =10
g, which will emit predominantly visible light. It
is clear that this process is significant only for
microscopic black holes. Very small black holes
(M =107 cm) which were formed at the beginning
of the universe would have lost their angular mo-
mentum by now as a result of particle production.
Unruh'* has given a quantum field-theoretic
treatment of the particle production process for
massless scalar particles and for neutrinos. In
the latter case, it is found that even though there
is no supperradiant scattering of neutrino waves,
there is still quantum-mechanical pair production
by a rotating black hole. In this paper a somewhat
different treatment of the quantization of a scalar
field in the Kerr spacetime will be given. In the
case when the mass of the field vanishes, the re-
sults given here agree with those of Unruh.
Hawking'®'!® has recently given a treatment of a
quantized scalar field in the gravitational field of
an object undergoing gravitational collapse to form

a black hole. He finds that the total number of par-

ticles produced into each mode during the collapse
process is infinite, corresponding to a constant
rate of production which continues for an infinite

amount of time. This result is interpreted to mean

that the collapsing object actually loses all of its
mass by particle production and goes out of exis-
tence. The rate of energy loss is proportional to
1/M?, so that it is of the same order of magnitude
as the energy loss by an a =M Kerr black hole due
to the process considered in this paper. Hawking’s

]

work has been extended by Gibbons!? to calculate
the rate of charge loss by a charged black hole.

It is not clear at this time what relationship this
process has to analyses such as that presented
here which begin with the static or stationary geo-
metry of an already formed black hole. It will be
seen in Sec. III that the quantization presented here
predicts no particle production by a Schwarzschild
black hole. Since an observer at infinity will re-
quire an infinite amount of time to see thegravita-
tional collapse process reach completion, itisper-
haps conceivable that a collapsing object could behave
quite differently from a black hole that has been

in existence since the beginning of the universe.
More work is needed on this subject before a final
assessment can be given,

In Sec. II, the Klein-Gordon equation in the Kerr
metric is studied and some of the properties of its
solutions are reviewed. In Sec. III, a two-com-
ponent formalism for the Klein-Gordon equation
is developed which expresses the quantum theory
of a single scalar particle in the Kerr gravitational
field. A semiclassical analysis of the spontaneous
particle emission is given in Sec. IV. In Sec. V a
quantum field-theoretic treatment of the particle
emission will be given. The problem of the vac-
uum energy will be discussed in Sec. VI and a dis-
cussion of the results is given in Sec. VII.

II. KLEIN-GORDON EQUATION

The Klein-Gordon equation for a scalar particle
of mass u is

1 0 oy B
=z axa(\/?g-gasm>-uz¢—0- 4

We will take the Kerr metric to be in terms of the
Boyer-Lindquist coordinates:

4

. ,
ds? =L ar 4 p2ae? +<(r2 +a?)sin®6 + 2;2” @ sin‘*@) dg® - :fr asin’e ddt — (1 - 232”)(1:2, ®)

where A=7%-2M7 +a® and p®=72 +a?cos?0 and V=g =p?sinf. Equivalently,

<'d‘8s‘>l =P'2[A <587>2 + <—a% >2 +(sin~26 - aZA'l)(a—%

If we let ¥ =R(7)S(8)e®e~*“t, we find that Eq. (4)
separates'®!® and yields ordinary differential eq-
uations for R(7) and S(6):

__”i_ QI_{_ 20,2, 2
Adv <Ad'r>+[w (2 +a®P -4 Ma wnmr
- u2r2A + m2a® — (wPa? +1,,)A]JR =0

("

4 Mar 82 —1/2 212 2 .2 9 2}
A ogot -[A" (7% +a?)* - a®sin 9]<at> . (6)
.
and
1 d das s 2 m? )
sinf dé <s1n6 qae >+<)‘zm+c cos 9—§ﬁz—e—>5 =0,

(8)
where c?=a*(w? - u?). Equation (8) is the equation
for the oblate spheroidal harmonics® S,,,(ic, cosf)
with eigenvalue A,,, where ! and m are integers
and |m| <. Inthe case where a=0, the S,, re-
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duce to associated Legendre functions P} (cosb),
and A, becomes /(I +1).

The radial equation for R has regular singular
points at ¥=7_=M — (M? - a?)*/2 and at ¥ =7, and
an irregular singular point at » =«, Relatively
little is known about the properties of these func-
tions, but some useful information can be obtained
by the following transformations: let

U

R=(72+—a~271/2, 9

J

and define a new radial coordinate 7 * by

ar* v24q2

N (10
Then Eq. (7) becomes

d2u

2y — V(1U=0, (11)
with

V(7)== w? = (2 +a?)? m2a® - 4 Lnwr — L 22A — AQ\,, +w?a?)]+ A(r2 +a?) 3 A+ 2r(r —M)] - 372A%(v2 +a 2)™,

As Y= ('}f*- ao), V-——p,z - wz, so that

ettkr

R~

(2 _ 1 2)1/2
T Rk=(w?—pf)E (13)
As r=7, (r¥=—w), V=-(0-m®,)? so

i(W=-mQ ¥
R~ eu(w mQy) (14)
e
is the form of R near the horizon.
The linearly independent solutions of Eq. (11) in
the case when w>pu may be taken to be U,, which
have the asymptotic forms

.~ e—ikr* +A+eikr*, V¥~ o0 18
' {B+e'i‘7"*, Y* - —o0 1o
and
U ~{B-em*’ e (16)
eiO* L A gm0 ko oo

where @ =w —mQ,.
The Wronskian relations for Eq. (11) state that

W=U, % - UZ%%(— =constant (17)

for any two solutions U, and U,. This leads to the
relations

1 —A+(k)A1‘(k*)=%B+(k)Br(k*), (18a)
1-A_(R)A (k") == B_(R)B2 ("), (18)
RB_(k)=®B,(k), (18¢)
AH(ENB_(R)= = 2A_(R)BE (k). (18d)

In this form, the relations are valid even if w is
complex provided that w(k*) =w*(k).

If w<p, then the only allowable solution of Eq.
(11) is the one which decays exponentially at large

(12)

r

¥, That is, if k =(u? - w?)'/2, then

U~ e-Kr*’ VX = 00 (19)
Aei&'}r*_{_Be-iE)r*’ ey

This solution leads to the Wronskian relation |AP
= |BP if k is real.

The solution U, describes a wave which impinges
on the black hole from infinity; on the horizon it is
purely ingoing in the frame of a physical observer.?!
The solution U_ is a wave which emerges from the
black hole; it does not describe a physical classi-
cal wave, but is needed to form a complete set of
solutions of the Klein-Gordon equation.

The solution U would presumably describe in a
bound state near a Kerr black hole. The fact that
|A|=|B|says that if such a state is to exist, it must
consist of equal amounts of ingoing and outgoing
components on the horizon. One interpretation of
this result is there cannot be modes of definite
frequency w< pin the Kerr metric. It is reason-
able to expect that if one imposes the boundary
condition that the solution be purely ingoing at the
horizon, the only possible solutions would be reso-
nant states of indefinite frequency. These states
describe particles which eventually fall through
the horizon of the black hole. A numerical inves-
tigation of such states has been done by Deruelle
and Ruffini.??

If a wave packet which is sharply peaked in fre-
quency is scattered off of the black hole, Eq. (15)
tells us that a fraction |A, P of it will be reflected
back to infinity and a fraction 1~ |A,F will be ab-
sorbed by the black hole. However, if @®<0, then
|A,F>1 as may be seen from Eq. (18a). Thus, the
modes for which @<0 (w<m,) are the superrad-
iant modes in which the wave is amplified. We will
let

Aun=14,F-1 (20)

denote the amplification coefficient.



2966 LAWRENCE H. FORD 12

The question arises as to whether there are
modes of complex frequency in the Kerr metric.
No such modes are known, but there is no proof
that none exist. Such modes might be similar to
those discovered by Schiff, Snyder, and Weinberg??
in the case of a charged scalar field interacting
with a square-well potential. We will assume in
this paper that no such modes exist. The existence

J

of such modes would not necessarily affect the
spontaneous emission of energy to infinity if Rew
< u. Detweiler and Ipser®® have made a search
which did not reveal any complex frequency modes
of Rew>0 in the case of a massless scalar field.

The orthogonality relation satisfied by two solu-
tions S,1,m1(icl, cosf) and Si,mi(éCy, cos6) of Eq. (8)
is

o
f [y m— Mym) + @ (@)" = w,") cos® 6] S,dmg(ic,, €08 6)S,, |n(iCs, cOS6) Sin6d6 =0. (21
0

Likewise, the radial functions satisfy the relation

e

T+

4Ly

1"1

a2
aZJ(wl2 - w,?) i COTIR LR V) P +X(m12 —mzz)}Rw 1ym Bugrm @7 =0. (22)

Thus, iffwlllml and fwz,zm2 are two solutions of Eq. (4) of real frequency, they satisfy the orthogonality re-

lation

ffwt m S5 m [gos(ml+m2)‘goo(w1+“’z)]\‘"gd3x‘x§w w0 1 0mm> (23)
111M7 %2 12 12 "1

where 5“’1“’2 is a Kronecker § if the frequencies are
discrete and a Dirac 6 if they are continuous.

This suggests the following definition for the in-
ner product of any two solutions of Eq. (4):

Goro=bi [ Rrso-rorV—gae. ()

The solutions of definite w, [, and m are ortho-
gonal to one another under this inner product. The
inner product is independent of time for any two
solutions, f, and f,, of Eq. (4). It will often be
convenient to deal with a complete set of wave-
packet states {F, } which are orthonormal with re-
spect to the inner product. Since the value of the
inner product is preserved as the wave packets
propagate through spacetime, the wave packets
may be chosen so that they are orthonormal when
they are at infinity or on the horizon.

One such set of wave-packet states may be con-
structed as follows. Let g,,(x, £) be defined by

1 Gt —2mine "1k ji(kx-wh
gnjzw ). e - Fe dk. (25)

where » and j are any integers. In the case u =0,
this set of wave packets was used by Hawking.'®
These functions are orthonormal:

J‘ g,,jg,’:‘,j,dx=6,,,,: 6)’]" (26)

They also form a complete set of positive-fre-

quency solutions of the free Klein-Gordon equa-
tion in one dimension. For any k', —o<k'< x,

let

r
ar\/2 ., .

(rve t ,2mine 1k
1 mine~
xf et WteP™ne Tk dp,

i€

jesk'<(j+1)e

=0, otherwise. (27)
Then using the identity?®
@ inb ia(6-m)
¢ =— 7 - , 0<6<27 (28)
Lo n—a sinar
we may see that
R DR - (29)
n,j==

Since the functions e!(*"*~¢'®) form a complete set
of positive-frequency solutions, the g,; must also
be complete. Similarly, the g} form a complete
set of negative-frequency solutions.

These wave packets have a momentum spread
of Ak=€. Attime ¢=0, g,; is peaked about x
=2mne !, If the packet is sharply peaked in mo-
mentum, its center moves at a group velocity V,
=dw/dk=Fk/w in the +x (- x) direction if 2> 0
(B<0).

In the region ¥ >>M, any solution of Eq. (4) for
which w = yu may be expressed in terms of the
functions g,;(v*, ¢) and g¥(7*, £) (in combination
with the angular functions). The function U, cor-
responds to a wave packet which initially is local-
ized at infinity (but still sharply peaked in frequen-
cy) and is ingoing. In the distant future it consists



12 QUANTIZATION OF A SCALAR FIELD IN THE KERR SPACETIME 2967

of an ingoing wave packet localized near the hori-
zon and an outgoing wave packet localized at in-
finity. Correspondingly, U_ initially represents
an outgoing packet localized on the horizon and
goes over into an outgoing portion at infinity and
an ingoing portion on the horizon. Wave packets
localized on the horizon may be described in a
manner similar to those at infinity. Define a set
of wave packets 7,;(7*, t) by replacing £ by @ in
Eq. (25). The £,; and k% (when combined with
angular functions) form a complete set of solutions
of Eq. (4) localized near the horizon. Thus a set
of wave-packets solutions of Eq. (4) are specified
by the g,; and &,;. This is a complete set of solu-
tions for which w=> pu. At some initial time we
specify the solution to be a particular one of the
&nj Or h,; (or g% or k%) and to be localized either
at infinity (g,;) or on the horizon (k,;). Its future
development is then determined by Eq. (4).

A wave packet which is localized at infinity has
positive norm if it is of positive frequency and
negative norm if of negative frequency, as usual.
However, a wave packet which is localized on the
horizon has positive norm if ®>0 and negative
norm otherwise. Here we are assuming that the
packets are sharply peaked in frequency and have,
in the limit in which they are monochromatic, time
dependence of the form e~*“!, Positive frequency
is taken to mean w>0. Thus, in the Kerr metric
positive frequency and positive norm are not al-
ways equivalent,

III. TWO-COMPONENT FORMALISM

The quantum mechanics of a single particle is
most suitably formulated in terms of the two-
component formalism.2® This formulation uses a
preferred time coordinate and gives up manifest
covariance, nevertheless, it is more suitable for
interpretation of the theory than the covariant
formulation based on Eq. (4). A two-component
equation equivalent to Eq. (4) is

¥

H‘I’=i-§-, (30)

where the two-component wave function is

().
Here

oo o]

o S o))

The two-component Hamiltonian is

_ 1 oz+i0 ii
H==5 (—g"°)‘52[~/- ax* < VeE g )
(g03)2 82 :}
- gOO a¢2
K Y-
T 720t 155 (33)

where

0 -z 10 10
o,={ , Og= sand I= )
i 0 0 -1 01

An inner product for the two-component wave
functions can be defined by

(o, )=tu [ ¥logi i dvs, 54

where ¥' = (u*, v*) and 3g =det(g;,) =gg®. This is
equivalent to the inner product defined in Eq. (24).
The expectation value of an operator is defined in
the usual way:

(A)= (¥, A¥)

v, %) (35)

The norm of a state ¥ of definite m and w> 0 can
be expressed as

(¥, ¥)= f (mg™ - wg®) p*pV=g d3x. (36)

This norm is positive if

03

% L (37

w>m

everywhere, but may not be otherwise. The rea-
son for this is that the single-particle theory
breaks down if (¥, ¥)< 0 and must be replaced
by a second-quantized theory.
The single-particle theory does apply well in the
low-velocity, weak-field limit in which
2L M
~ 03, S o0\ /2 o, o
w=p, g 73,and(g) 1+—.
From Eq. (32), we find that #>> v in this limit, so
that Eq. (30) reduces to

ou

1 _, M du _.
-557 u+u<1— y>u+zg 59 i< - (39
If x=ue**t, then
A Ge, My 2L ox
—2“VX—,,X+,,3 Lx =iy (39)

This is a Schrodinger equation whose potential is
a sum of an attractive Coulomb potential due to
the static part of the gravitational field and a term
which couples the orbital angular momenta of the
rotating body and the particle. This equation de-
scribes a particle in the field of a rotating mass
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whose gravitational field is weak. Its energy spec-
trum is that of a hydrogenic atom with a spin-or-
bit perturbation.

We return now to the case of gravitational fields
of arbitrary strength. We compute here the de-
pendence of the single-particle energy levels on aby
first-order perturbation theory. Let ¥, be a state
corresponding to some solution ¢, (=z/)w0,om o) of Eq.
(4) for the Schwarzschild (a=0) case. Regard this
as an unperturbed state to which we apply the per-
turbation of increasing a slightly. The first-order
perturbed energy is the expectation value of H for
a>0 in the state ¥,:

w=<H>\yo
=wo{ ¥, ¥t f¢0¢g<wo+—2%l'> <1 ——%'VM)—I
x V=g dx, (40)
where
(¥, qr0>=w0f¢o¢g<1 _ZTM)'lﬁEdsx. (41)

It has been assumed that a<<M so that

2M\ 2L 2M \ !
00~ _ - B3~ 2 o ——
g%~ <1 — ) and g° 1,3(1 r) .

To first order in a, the mass M is the same as
that for the Schwarzschild case. In the case of an
a <<M Dblack hole, Eq. (40) simplifies to~

w=w0+m0—47['4—3-=w0+m09,,, (42)
since the dominant contribution to the integral
comes near ¥=2M.

This result holds for states y, which are non-
zero on the horizon; otherwise the second term in
Eq. (42) does not appear, i.e., w=w, Since w can
be negative even though w,>0, this means that the
addition of some angular momentum to the black
hole can cause certain single-particle levels of
positive energy to become negative-energy levels.
The norm of the solution of the Klein-Gordon eq-
uation will change sign when this happens. In the
case when a<<M, we may see from Eq. (42) that
the solutions of the Klein-Gordon equation which
in Sec. II were referred to as being positive-fre-
quency, negative-norm solutions are in fact solu-
tions whose norm would be positive if a=0. That
is, these are the solutions whose norm will change
from positive to negative if the value of a is adia-
batically increased from zero to its actual value.
It is the existence of such solutions which signals
the breakdown of the single-particle theory and
gives rise to the spontaneous pair creation.

IV. SEMICLASSICAL TREATMENT
OF PARTICLE PRODUCTION

A semiclassical analysis of the particle produc-
tion by a rotating black hole may be given using the
connection between stimulated and spontaneous
emission of bosons. In the case that the emission
rate is sufficiently low (as in the case of emission
of scalar particles by a Kerr black hole), an anal-
ysis based on the use of complex frequencies may
be given. Enclose a rotating black hole in a re-
flecting spherical cavity of radius 7,>>M. The
classical waves in this cavity are described by U,,
which is required to vanish at r=7,, If A, =e|A,]|
then the eigenvalues of % are

1
k":——[(2n+1)17—6+i1n|A+H, nzos lv ..
27,

(43)
We assume here that the amplification coefficient
for the superradiant modes is small so that 4,,,,
<<1or In|JAJ<<1. Let K,=Rek, and I,=Imk,. Then

w,=(B2+u? 2~a, +iB,, (44)

where a,= (K2 +12)/% and B,=K, I (Kz2 +u2)"1/2,

Thus, the eigenfrequencies of the normal modes
of the cavity are complex. As expected, the super-
radiant modes grow and the nonsuperradiant modes
decay. Consider a particular superradiant mode.
The energy density, and hence the total energy in
the cavity, in that mode will be proportional to
e?Pn, Thus, if N, () is the number of quanta
present in mode #, [, m at time ¢, then

AN,
dt = ZBnlmanm . (45)

This is the contribution from stimulated emission.
However, this means that the spontaneous emis-
sion rate into this mode is 283,,,. This is a univer-

sal relation between the stimulated and spontan-
eous emission rates for any boson. Consider a
system of bosons interacting with some external
perturbation. Let |0) be the vacuum state of the
system and a} and 6] be the creation operators for
particles and antiparticles, respectively. (In the
case of neutral particles, b;( is also a creation
operator for a particle, but corresponding to a
different mode than af.) The production of part-
icles can only occur if the full Hamiltonian for the
interacting system can be expressed in a form in
which it has the off-diagonal term calb{,. The
probability per unit time that the system will make
a transition from the state

|7y, 0)=(,1)7*/2(af )| 0)

to the state
[y +1, 1)=[(n, +D!/2(a])xb],|0)

is proportional to the squared matrix element
[r2r, O[Hny +1, 1)]2 = | c[?(my + 1). (46)
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When #,=0, this is the spontaneous emission rate;
otherwise it is the sum of the stimulated and spon-
taneous rates. Hence, the ratio of the stimulated
emission rate into a state of », particles to the
spontaneous emission rate is #,.

Returning to the particular case of the black hole
in a cavity, we see that the rate of spontaneous
emission into the mode 7, [, m must be

-d%tm =28, (47)

The rate at which energy is lost by the black hole
is

—M:ZZﬁ,,,,,,a,,, (48)

nim

where the sum is over all superradiant modes.
In the limit that ry—=c, >, -~ (¥,/7)dK and dK
=(K?+u?)K'dw. Thus,

P | mQp 1 mQp
-M=— j wlnIA+|dwz——f WA i .
T J, 27 u

(49)
This result is an approximate form of the exact
result obtained below, Eq. (77). The fact that
A,;.<<1 has been used not only in Eq. (44), but is
essential for the entire approach to be meaningful.
Only if |Imw|<<|Rew]|is it meaningful to regard
the complex-frequency modes as though they were
real-frequency modes which have been slightly
perturbed by the presence of the black hole.

V. FIELD QUANTIZATION IN THE KERR METRIC

A. Quantization

The Lagrangian density for a neutral scalar
field is

L=-3(8°Y o9, s +u?). (50)

The canonical momentum is (for an alternative
definition, see Appendix A)

re oL
09 o
and the Hamiltonian density is
=1 o-L
=%(g”¢,i¢.j 'goolp,olp,o"'llzlﬁg)- (52)

The Hamiltonian is

H= f V=g dx, (53)

="'zp'07 (51)

where the integration is over a ¢{=constant space-
like hypersurface. It may also be expressed, after
use of Eq. (4) and an integration by parts, as

H=3 f [2g03¢,03¢ —g"°(¢,o¢,o _Zp,ood))]‘/:é ax.
(54)

If ¥ is a wave-packet solution of the Klein-Gordon
equation (or a field operator expanded in terms of
such solutions), the surface term obtained in the
integration vanishes.

The quantization of the scalar field is effected by
imposing the commutation relations on the f=con-
stant hypersurfaces:

Lo, 8), m(y?, B)]=i6(x?, %), (55)

where 6(x%, y?) is a three-dimensional Dirac §
function which satisfies the condition

Jo(xt,y") V=g d®% =1. Let {F\} be a complete
set of positive-norm wave-packet solutions of Eq.
(4) which are orthonormal with respect to the in-
ner product

(F)\, F)\r>=6)\)\l. (56)

Then {F$} will form a complete orthonormal set
of negative-norm solutions:

(F%, F{)= -6y (57
and

(Fy, F%)=0. (59
The field operator may be expanded as

b= Z}\:—\/%-—(a)\ﬁ‘ﬂ alF¥), (59)
where

a, =v2{y, F,)and al=-VZ (9, F§). (60)

The creation and annihilation operators satisfy the
usual commutation relations:

[ay, ali]=8y. (61)

Let us further assume that the wave packets F),
are sharply peaked in frequency, that is, that Aw
<<1/M. Such wave packets, while still normali-
zable functions, may be treated as monochromatic
waves as far as their interaction with the Kerr
geometry is concerned.

The time dependence of F, will then be of the
form e !%\t, As was discussed in Sec. II, positive
frequency and positive norm are not always equiv-
alent in the Kerr metric, so €2, is not always pos-
itive. In particular, R, =w,®,/|®,|in the case of
a wave packet which is localized on the horizon.
Wave packets which are localized when at infinity
always have £, =w,.

If one now substitutes the expansion Eq. (59 into
Eq. (54), the Hamiltonian becomes

H=%;nx(axa1 +alay). (62)

If the vacuum state of the system is defined to be
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|0), where a,]|0)=0 for all A, then it is an eigen-
state of the Hamiltonian, as are all other states of
definite particle number. However, since 2,<0
for some modes, |0)is not the state of lowest en-
ergy of the system, and in fact no such state ex-
ists. By adding additional particles to such a
mode, states of ever decreasing energy may be
attained. The presence of negative-energy modes
suggests that although the vacuum is an eigenstate
of the Hamiltonian, it is still unstable with respect
to emission of particles into these modes. Ina
certain sense this is true, as will be seen below.
The fact that H is diagonal stems from the use of
exact solutions of the Klein-Gordon equation in
the Kerr metric in the expansion of y. If, on the
other hand, we regarded the presence of the black
hole as a perturbation on a field which satisfies
the free, Minkowski-space Klein-Gordon equation,
we could expand ¢ in terms of solutions of this
latter equation. Then H would be off -diagonal and
have terms of the sort mentioned in Sec. IV. This
is, of course, the usual approach for treating the
interaction of an atom with the electromagnetic
field. In the black-hole case, however, it would
be very messy if carried through in detail. A
more satisfactory approach is the one given below,
or the equivalent one given by Unruh,'*

B. Particle Production

As a prelude to the discussion of particle pro-
duction by the Kerr metric, it will be convenient
to introduce some further notation for labeling our
wave packets. Let Fy =Fysy;;m» Where [ and m are
usual quantum numbers arising from the eigen-
values of the angular equations, j labels the mean
momentum of the wave packet, and % labels its
mean position at some time. We require that F
be, at some time, localized entirely at infinity or
entirely on the horizon, and when it is so localized
to be entirely ingoing or entirely outgoing. When

this occurs, if it is at infinity ¥ =+, and if it on the.

horizon y = —; if it is outgoing 6 =+, and if it is
ingoing & = —. The specific form of F) may be left
unspecified for the present, but could, in particu-
lar, be taken so that the »* and ¢ dependence of F)
is described by the g,; or &,; of Sec. Il when F, is
at infinity or on the horizon. In a slight departure
from the notation used in Sec. II, we here take j to
describe only the magnitude of the mean momen-
tum of the packet. The label y is redundant since
n contains the same information, but it will be
convenient to also use v.

Localization here means that the wave packet
can be thought of as being “in one piece.” Thus,
a Fii +)nj1m Packet and a F__,,;;, packet always stay
localized, but the F:_y,j;» and F_s),;;m Packets do

not. These latter packets will consist of two dis-
joint positions when {—«, one at infinity and one
on the horizon.

We may introduce a second set of wave packets,
the Gy =Gysynjim» Which will be chosen so that as
t -, the localized portions of F, are G,’s. In
particular, we may let

Giy=Fyy (63a)
and
G__=F__. (63b)

We will normally suppress the labels 7, j, I, and
m. This and the following transformations are
diagonal in these labels.

If ®>0, let
Fos) 1/2
Fo_=A, G+++B+<7) G__, (64a)
k 1/2
F_, =B_<—5> G +A_G__, (64b)
and if ®< 0, let
@\
F,_=A.G,. +B+(T> G*_, (652)
k 1/2
F_+=Bf<_®> G, +A*G__. (65b)

Using the Wronskian relations, Eqs. (18a)-(18d),
these expressions may also be written as

k 1/2
Gis =AIF+_+Bf<5> F_,, (66a)
@ 1/2
c__=Br<—k—> Fy_+A*F_,, (66b)
if >0, and, if ®<0, as
k 1/2
G++=AIF+_—-BT(_-> Fx,, (67a)
- 1/2
G__:—B+<—k-—> F¥_+A_F_,. (6'T0)

The G, have been defined so that (G), G\»)= 0y ;
they form a complete set of orthonormal positive-
norm solutions of the Klein-Gordon equation for
w>U.

Consider a particular packet £, _. It comes in
from infinity and scatters off the potential barrier;
as t—= it consists of a portion, A,G,,, which has
been scattered back to infinity and a portion

o2 e o) ]

if @>0[& < 0] which is going down the black hole.
Similarly, the F_, also split into two portions.
When ©® <0, we see that these portions need not
have positive norm in themselves, even though the
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entire packet does.

These packets must be complemented with a
complete set of solutions of Eq. (4) with Os wsp
in order that we have a truly complete set. Hence-
forth, {F\} or {G,} will denote this complemented
set. However, we will not need to refer explicitly
to the w < u solutions. The field operator may be
expanded in terms of either the {F, } or the {G, }:

zp:ZﬁL(a,\ B +al F¥)

1
=Zﬁ(b>\Gx +b3GE). (68)
If we write
F)\:Z\:(axlex'*‘ﬁu'G{r), (69)

then since ay =vV2 ( F,, ¥) and by =V 2 (Gy, ¥), we
have that

ak:z}\;(axx'bx'—ﬁxx'b{l)- (70)

The fact that [ a,, al.]=[b,, ].]=6,, imposes the
condition

;(axlxai‘zx =B aBrn) =0x n (11)

We must now decide which creation and annihil-
ation operators represent physical particles. The
case of wave packets localized at infinity presents
no problems; here we may rely upon the usual
particle interpretation of quantum field theory in
Minkowski space. Thus, if £, is such a packet,
a]|0) may be interpreted as a one-particle state
in Fock space corresponding to a single particle
at infinity. The case of wave packets localized on
the horizon is more ambiguous. Here particles
cannot be said to be free, although formally the
solutions of the Klein-Gordon equations have the
form of free-particle solutions. A natural defini-
tion which presents itself is to continue to use
modes which have time dependence of the form
e~ ! (this corresponds to the use of the timelike
Killing vector of the Kerr geometry to define
modes). Packets of positive norm represent par-
ticles and those of negative norm represent anti-
particles. (In the case of a charged field, the as-
sociation of a particle with a positive-norm solu-
tion as opposed to a positive-frequency solution
is necessary in order that all particle states have
the same sign of charge and all antiparticle states
have the opposite sign.) Thus if F, is localized on
the horizon, af |0) is still interpreted as a physical
one-particle state.

Consider the history of a particular wave packet,
F,_for which ®<0. At {— - it is localized at
infinity and at {— +%, it consists of a positive-

norm portion outgoing at infinity and a negative-
norm portion ingoing on the horizon. In the latter
case, the associated one-particle state in Fock
space is to be regarded as a superposition of the
state for an outgoing particle and the state for an
ingoing (to the horizon) antiparticle. (Particles
and antiparticles are of course identical in the
case of a neutral scalar field.) This means that at
t -+, the physical creation and annihilation op-
erators for the mode A are b} and b,, not af and
a,. The meaning of {—« for a given wave packet
is a time long after it has scattered off of the po-
tential barrier. For each packet, we choose some
time in its history after it has scattered off of the
potential barrier at which we make the reassign-
ment of the associated physical creation operator
from af to b]. Inthe case of F,, and F__ packets,
this reassignment is trivial: b{ =a¢]. In the case
of F,_ and F_, packets for which @ >0, it merely
replaces a, by a linear combination of ¢,’s, and
hence transforms the basis of the one-particle
sector of Fock space without changing the vacuum
state. However, for F._ and F_, packets with <0
it performs a Bogoliubov transformation which in-
troduces a new vacuum state, since b, is a linear
combination of a, and ¢{. From Egs. (70), (69),
and (65a)—(65b) we have in this case that

—_o\1/2
a,_=A,b,, —B+<Tw> bt _, (72a)
k 1/2
a=at__-5x(L5) ol (12b)
or, equivalently,
k 1/2
by =Ara+_+Bf(_{D> al,, (732)
k 1/2 .
b__=A_a_, - B_<——_CD> ai_ . (73p)

We will adopt the Heisenberg picture, sothe state
of the system is the same for all time. If at = —
it is |0), where a,_|0)=a_,|0) =0, then at t—~,
|0) will actually contain particles defined relative
to the b)’s. The expected number of such particles
will be

Ny =(0]56]5,]0). (719

The rate of spontaneous emission by the black
hole to infinity is determined by

N++ =<Olbi+b++l0> =Aklm‘ (75)

N. . is the total number of particles that are crea-
ted into the mode A = (+ +)njlm. We may regard the
contribution of a given mode to the total particle
production rate as being tallied when the packet
G.. passes some value of v=7,>>M. The total
particle production rate will depend on the rate at
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which the packets G, pass this surface, as well
as on N,,.. Let us choose, for the particular form
of the G.,, packets whose 7 and ¢/ dependence for
r>>M is given by the packets g,; of Sec. II. These
packets are spaced a distance Ar=27e ™ apart and
travel at a velocity of V,=k/w. Thus, the number
of packets of fixedj, /, and m which cross the sur-
face per unit time moving outward is u=€k/2rw.
The number of packets per unit k interval is p =e 71,
Consequently, the total rate at which particles are
created into the momentum interval dk with quan-
tum numbers [ and m is

N++updk=% N,, dw. (76)
Finally, the total rate of emission of energy by the
black hole to infinity is

. mQp
e > e Ao, (7

The sum on m is taken only over values for which
me> .

A charged scalar field may be treated in the
same manner as a neutral field. The only essen-
tial difference is that the rate of productionof parti-
cles into each mode is twice that for neutral par-
ticles; the presence of the charge does not affect
the interaction of the field with the black hole, it
only doubles the number of degrees of freedom of
the field. Both particles and antiparticles have
equal probabilities of being emitted to infinity, so
the net charge flux out of the black hole is zero.
(This will not be true if the black hole has a net
charge at the outset.)

Starobinsky!® has obtained an analytic expres-
sion for the amplification coefficient 4,,, in the
region wM << 1 in the case p=0. This result may
be generalized to the case when p#0. (See Appen-
dix B.) The result is

ﬂ(,r+2 +az)(,r+ — 7_)21221+3(l !)2na)k21+1

[@HIF[CI+ DI -2 )
><.I:I(j2 +172)I=I(n2+4Q2), (78)

Apim=

where n =—=2Mp2/k and @ = (.2 +a®)0/(r_ - 7,).
This formula is valid for both superradiant and
nonsuperradiant modes of wM <<1. In the latter
case, —A,,, is positive and is the fraction of the
wave absorbed by the black hole. If a<<M, then
Eq. (78) is valid for all superradiant modes. In
this case, the mode [=m =1 gives the dominant
contribution to the spontaneous emission of parti-
cles by the black hole;
A _ 327 M*@nk3(1 +1?)
RL1 T 9(1 - ezwn) ’

(79)

since Q®<<1 in this case. For a black hole with
a<<M, the number of neutral scalar particles
emitted per unit time per unit frequency interval
is approximately @m)™A4,,,. If u =0, then

Ay == B MG, (80)

If we insert this expression into Eq. (77), the re-
sult is

— a’ ~10-6 a®
=g 10T -
This is the rate of energy loss due to emission of
massless scalar particles by a black hole with
a<<M.

Starobinsky'® has also given expressions for A,;,,
in the pu =0 case in the region near w=m,. A
particularly interesting aspect of this resultis
that A,,, may oscillate rapidly in this region.

We may also treat stimulated emission of parti-
cles in this framework. Suppose that the state of
the system is not |0), but rather

M (81)

T\~
IN):%——N). (82)

There are now N particles initially present in one
of the ingoing wave-packet modes. The expected
number of particles emitted to infinity in the cor-
responding outgoing wave-packet mode is

Ny =(N|[61,6..|N)=4,,,(N+1). (83)

This reflects not only the contribution from spon-
taneous emission, A,,, but also a contribution
from stimulated emission NA,;,. In the classical
limit, N -, the wave packet is amplified by a
factor of A,,,,.

The Bogoliubov transformation Eq. (73a)-(73b)
introduces a new Fock space of eigenstates of 6{6,.
Let |0) be the vacuum state of this Fock space, so
that

~ 044|0)=b__]0)=0. (84)

We may express |0) in terms of the vectors in the
new space. Let

w=A,, B=- B+<;k°3>1/2 . (85)
Then
10)=D Z(-%)"n—ﬂ(bui_)"lm. (89

It may be verified from Eq. (72a)-(72b) that a,,|0)
=a__|0)=0. The transformation Eqgs. (72a)-(72b)
leaves all other a, invariant, so a,|0)=0 for all
other modes. The norm of |0) is
©0loy=1p?S &
0=1p123 |2

n=0

SN -
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If A< |A4? for the mode in question, then |0) has
finite norm relative to the new Fock space. This
condition is in fact fulfilled for a scalar field in
the Kerr metric where the amplification coeffi-
cient A,;, is much less than one for all the super-
radiant modes. Thus, the problem of inequivalent
representations of the commutation relations which
often arises in field theory?” does not occur here.

Equation (86) shows that |0) is a superposition
of states containing various numbers of pairs of
particles. Each pair consists of one member
which is emitted to infinity and one which goes
down the black hole. The particles which go down
theblackhole have negative energy as seen from infi-
nity; hence, energy conservation is assured, and
the emission of energy by the black hole is com-
pensated by its loss of mass.

Equation (86) only describes the effect of a single
Bogoliubov transformation. However, each time
that a wave packet of a superradiant mode crosses
the 7 =7, surface we need to perform such a trans-
formation. Let |0) be the physical vacuum state
at £=0 (so that the a{ are the physical creation
operators). Att¢=7, a certain number of modes
will have had their physical creation operators re-
defined to be the b]. Adopt the wave packet G,
used above as the set of basis functions. Then the
outgoing packets which cross 7 =7, in time 7 range
from n=n, to n=n,+k7€/21w for fixed j. Since
the packets are sharply peaked in momentum, we
may let k=je. We may thus express |0) in terms
of the states of definite physical particle number
at time 7 as

o » 1
l0>=H [D)\ &~ <— g_);\) P—l(b(1; +) njlmb(T—-)njzm)pl 0)} ’
(89)

where the product is taken over those values of
n, j, I, and m for which ®<0 and n,< nsn,+k7e/
27w. The D, may be chosen so that

[Dy[2= 2 (ﬁ) " (89)

Then {0/0)=1.

VI. VACUUM ENERGY

An important question in the theory of a quan-
tized field in a curved spacetime is that of the
vacuum energy. On the basis of Poincaré invari-
ance, it can be argued®® that the energy of the
vacuum state must be zero for a field in Minkowski
space, but there does not seem to be any reason
why this should be so in other spacetimes. For
this reason, normal ordering has not been used
in the expression for H. This issue is not directly

relevant for the treatment of particle production,
but is of importance in determining the limitations
of the assumption that the background spacetime
is a classical solution of Einstein’s equations. If
the energy of the vacuum is nonzero, it will modi-
fy the original background gravitational field.
Formally, the vacuum energy is infinite, so the
physical energy in the vacuum will have to be
found by some type of renormalization procedure.
Several discussions of possible procedures have
been given in various contexts,?®~3¢ but the com-
plete answer is still unknown.

The induction of a nonzero vacuum energy by an
external gravitational field is analogous to the
Casimir effect® in which the presence of two par-
allel conducting plates induces a nonzero energy
into the vacuum state of the electromagnetic field
and causes an attractive force between the plates.
The modes whose wavelength is much shorter than
the separation of the plates are unaffected by the
presence of the plates, so the vacuum energy shifts
by a finite amount when the separation changes.
The energy density between the plates is in fact
constant, and is'®

U=—n2/72004, (90)

where [ is the separation of the plates. Here the
configuration in which the plates are an infinite
distance apart is taken to have zero energy.

There is a means by which one may in principle
measure this energy density. If we think of this
vacuum energy as being associated with a fluctuat-
ing electromagnetic field, then we can write

U=3({ E?)+(B?)). (91

Since the field is fluctuating in all directions, (E)
=(B)=0. Another way of visualizing this is to
consider that the effect of the plates is to exclude
the lower-wavelength modes from the region be-
tween the plates. Consequently, the value of (E?)
must shift when the plates are introduced, and if
it is set equal to zero in the absence of the plates
it must become negative in their presence. Any
physical system which is sensitive to the magni-
tude, but not direction of an electric (or magnetic)
field will then detect the electromagnetic vacuum
energy. An example of such a system is a hydro-
gen atom; there will be a second-order Starkshift
of the order of a,*(E?) if (E?)#0, where a, is the
Bohr radius. Thus an atom which is placed be-
tween two conducting plate 100A apart will show a
second-order Stark shift of the order of 1078 eV.
This shift is probably too small to actually observe,
especially since there would be other effects due
to interactions with the walls. Since {B?)#0, there
will also be a quadratic Zeeman effect. Typical
energies here are of the order of a?q,*(B%)(« =;;—.,—,
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the fine-structure constant) or about 10712 eV,

If the effect of an external gravitational field on
the vacuum is similar to the Casimir effect, it
might be expected that only wavelengths which are
of the order of or larger than the distance [ over
which the curvature of spacetime changes will
contribute to the vacuum energy. A local observer
can transform the gravitational field away within
a region of length I/, so that much shorter wave-
lengths will behave as though space were flat and
will not contribute. This means that the vacuum
energy is expected to be of the order of 1/l in a
region of volume /3, so that the energy density
should be of the order of 1/I%, This vacuum energy
can be thought of as arising from the uncertainty
in the definition of creation and annihilation oper-
ators by a local observer.'® Those modes whose
wavelength is much less than I do not feel the ef-
fects of the curvature and can unambiguously be
defined. However, those modes whose wavelength
is greater than or equal to ! are not unambiguously
defined. This leads to an uncertainity in the defi-
nition of the energy density of any state which is
the zero-point energy density =1/1¢,

In the case of a black hole, /=M, so the vacuum
energy will be a significant fraction of the total
energy when M =107% ¢m. This argumentindicates
that an analysis which assumes that the background
gravitational field is described by a classical so-
lution of Einstein’s equations and neglects the ef-
fects of the vacuum energy will be valid if
M>>10"% cm,

It can easily be seen that the vacuum energy of
a quantized scalar field in a slowly rotating Kerr
solution must, to first order in @, be the same as
that of a Schwarzschild solution of the same mass
(to first order in a, the mass of a Kerr solution
is the same as its irreducible mass). Equation’
(42) shows that for every state (m >0) which in-
creases in energy as a increases from zero, there
is another state (m <0) which decreases by an equal
amount. Hence the sum of 3w over all modes does
not change to first order as a function of a. This
result is necessary if the vacuum energy is to be
an analytic function of the angular momentum of
the Kerr field at a=0 since the energy can depend
only on the magnitude and not the direction of the
angular momentum.

The energy density induced into the vacuum state
of the electromagnetic field by a background grav-
itational field should in principle be measurable
by the second-order Stark effect as is the Casimir
energy density. In the vicinity of a black hole of
mass M, a hydrogen atom will experience a shift
of the order of a,°/M* due to the vacuum energy.

If M=100 A, then this shift is of the order of 107®
ev.

LAWRENCE
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VII. DISCUSSION AND CONCLUSIONS

We have seen that a quantum field theory in the
Kerr spacetime leads to the prediction that a ro-
tating black hole will spontaneously emit particles
and eventually lose its angular momentum. That
this should be the case is apparent on semiclassi-
cal grounds, as was discussed in Sec. IV. How-
ever, the field-theoretic treatment still contains
ambiguities with regard to the choice of creation
and annihilation operators. In this treatment (and
in the treatment given by Unruh!?), positive-fre-
quency modes have been defined with respect to
the timelike Killing vector. In the case of wave
packets which are localized at infinity this is just
the usual Minkowski-space definition, so there is
no ambiguity in this case. However, in the case
of wave packets which are localized on the horizon,
the situation is less clear. Formally, the solu-
tions of Eq. (11) have the appearance of free-parti-
cle solutions here, but this does not necessarily
mean that the physical definition of particle num-
ber should be the same as at infinity. The defini-
tion used here predicts no particle production by
a Schwarzschild black hole. Thus, a Kerr black
hole will eventually become a Schwarzschild black
hole whose mass is equal to or greater than the
irreducible mass of the original black hole. Boul-
ware® has analyzed the quantization of a scalar
field in the Schwarzschild spacetime and came to
the conclusion that there should, in fact, be no
particle production in this case.

There is still a difficulty in understanding the
relation of the work on quantization of fields in
the vacuum Schwarzschild and Kerr solutions and
the work of Hawking'*'¢ on particle production in
gravitational collapse. Hawking predicts that a
black hole formed by collapse continues to emit
particles long after the actual collapse process.
There seem to be two possible interpretations of
this result. One is that this emission has nothing
to do with the collapse and should show up in a
correct quantum field theory in the vacuum Sch-
warzschild spacetime. The other is that the col-
lapse is essential for the production of the parti-
cles; the emission appears to an observer at in-
finity to continue for a long time only because it
takes this long for the particles formed in the col-
lapse to reach him. At the present it is an open
question as to which interpretation is correct. It
does seem to be the case that one can devise quan-
tizations which do yield particle production in the
vacuum Schwarzschild geometry if one introduces
definitions of positive-frequency modes on the past
horizon other than that based on the timelike Kill-
ing vector.®® What remains to be seen is whether
a compelling physical criterion can be found in
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favor of one definition.

Another question that arises is whether the pres-
ence of the horizon is essential in order that one
get spontaneous particle creation in a Kerr metric.
If one had a rotating body witha Kerr metric (or ap-
proximately Kerr metric) exterior field, couldital-
so spontaneously lose itsrotational energy? If there
is an ergoregion (where the Killing vector which is
timelike at infinity becomes spacelike), thenthere
seems tobe no reasonwhy there would not be pair
creation. The presence of an ergoregionwith or
without ahorizon canleadto classical superradiant
scattering, andhencetospontaneousemission. If
there isno horizon, the matter inthebody mustbe
able tointeract with the scalar field and absorbthein-
going wave (which carries negative energy) in or-
der that there be superradiant scattering. In the
absence of an ergoregion, the situation is less
clear. In a theory in which the scalar field inter-
acts only with the gravitational field of the rotat-
ing body and not with the matter constituting the
body, there will be no superradiant scattering and
no spontaneous emission without a horizon. How-
ever, if the field interacts with the matter of the
body as well, this may not be true. If the effect
of these interactions is to exclude the scalar field
from the interior of the body, the classical solu-
tions of the Klein-Gordon equation will have to
satisfy appropriate boundary conditions at the sur-
face of the body. As was argued by Zeldovich,’
such boundary conditions may lead to a superra-
diant scattering, which will in turn lead to spon-
taneous emission of quanta. The existence of an
ergoregion does not seem to be essential in this
case.

The analysis presented in the preceding sections
assumes the stationary nature of the Kerr geome-
try, and thus ignores the time dependence of the
gravitational field caused by the reaction of the
quantized field back on the metric. This should
be a suitable approximation as long as the time
scale on which the pair production process occurs
is much longer than the time scale on which the
metric changes significantly. Another way of ex-
pressing this is to say that the average energy
carried away by a particle must be much smaller
than the total mass of the black hole, which will
be the case if M>>1. When M=1 (1075 g in con-
ventional units), this approach breaks down; how-
ever, it is not surprising that a semiclassical
theory in which the gravitational field is classical
does not hold at this level since quantum effects
associated with the gravitational field itself are
expected to come in at distances of the order of
107** cm. Furthermore, the discussion of the
vacuum energy given in Sec. VI indicates that re-
action of the quantized field on the background gra-

vitational field via vacuum energy will become
large in this domain. When this happens, the Kerr
solution will have to be replaced by some other
self-consistent solution of Einstein’s equation tak-
ing account of the vacuum energy.
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APPENDIX A

Rather than defining the canonical momentum 7
to be conjugate to ¢,,, as was done in Eq. (51), one
might also consider defining it to be conjugate to
- ZP'O:

17=—-§—1;B-'-°—=¢,0. (A1)

In Minkowski space, the two definitions are iden-
tical. There seems to be no a priori reason to re-
gard either one as being the preferred generaliza-
tion to a Riemannian spacetime. Infact, Eq. (Al)
may also be used to construct a quantum field
theory.

Let {F\} be a complete set of positive-norm
solution of the Klein-Gordon equation which have
time dependence of the form e~*“xf, They are as-
sumed to be orthonormal:

<F)\, F)\r>=5)\)\l. (Az)
Define the 3 function by
(F(x), B(x, ) =w,\Fi(y). (A3)

An explicit expression for 3 is
3(%9)= 2B WF ). (A%)

Now the quantization of the scalar field may be
carried out by imposition of the condition

[9(x), 7(y)]=33(x, y) (A5)

if x%=)°, If ¥ is expressed as
1
V=2 75 @k +aFY), (48

then, as in Sec. V, a, =V 2 (F,, ¥) and satisfy the
commutation relations
[ax, afe]= 6y (A7)

This may be verified by subsituting Eq. (A6) into
Eq. (A5) and using Eqs. (A7) and (A4).
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APPENDIX B

We will follow the method of Starobinsky!° to
calculate the amplification coefficient in the case
that wM <<1. Assume also that a# M and let

Y =7,

X= ot (B1)

In the region in which x<<l/w(»,-7_), Eq. (7) be-
comes approximately
d dR 5 B
x(x+ 1)H<x(x+ 1)E>+[Q X x(x+1]R=0,
(B2)
where @ = (7.2 +a?)®/(¥_ - 7,). The spheroidal har-
monic eigenvalue A, is, to second order in ka,

A=+ +K, (B3)

J

o LT —a)

Fla, b;c;2)=(1-2) T -a)

and the fact that F(a, b; c;2)~1 as 2~ 0. Equation
(B6) is valid only if arg|(1 —z)|<7, so we need to
add a small imaginary part 6 to x in Eq. (B5). The
result is that if x>> max(l, @),

R x K yopx7 1K (B

where we let 6 -0 at the end of the calculation.
The coefficients are given by

I'(l -2iQr(2/+1+2K)
T(+1+2K)T(I+1-2iQ +K)’

kT =2iQ)I (-2 -1 -2K)
T(-1-K(-1-2iQ -K) *

= (_ I)K

(B8)

cz=(=1) (B9)

Use of the relation I'(1 +2) =2T'(2) and the fact that
lim, . ,T'(22)/T (2) =3 enables us to write

] -1
¢, = (2l)!(l!H(n - 2iQ)> (B10)
n=1
and
c2=-l![2(2l+1)!]‘1Ij[(n+2iQ), (B11)

where K << 1 has now been dropped.
However, if ¥>>M (x>>1) the radial equation,
Eq. (7), becomes

d2U+[1 _n_ l(l-:l)]U=0, (B12)

dp® P P
where U=vR, p=Fkr, and n=-2M u?/k. The solu-
tions of this equation are the Coulomb wave func-
tions, F;(n,p) and G,(n,p). In the limitp -0,

. . 1 -5
F<a, c-bja-b+1; 1_Z>+(1—z’)

where

@m -1)@2m +1)
TT@RI-D(@I+3) ](k“)z' (B4

For [#0, K is a very small correction to A,,, and
will be dropped at a later stage in the calculation,
but it is desirable to retain it for the present.

A solution of Eq. (B2) is

K:-;-[1

(X Niep(_ g _ 1 — 9i0)-
R=( 1)<x+1> F(-1-K, I+1+K;1~-2iQ; K +1),
(B5)

where F(a, b; c; 2) is the hypergeometric function.
This solution satisfies the boundary condition of
being purely ingoing on the horizon (x—0). We
now wish to examine the behavior of R in the re-
gion max(l, Q)<< x<<l/[w(7, —7_.)]. Use the iden-
tity

%;%—E%;F(b, c—-a;b-a+1; ﬁ),
(B6)

F,(n,p)~C,@mp"** (B13)
and

G,m,p)~D,mp~*, (B14)
where

Cm)=2%e~""/2|T (L +1 +in)| /(21 + 1! (B15)
and

D,m=[@I+1)C, )] (B16)
Consider the solution

U=b,F,(n, p)+b,G,(n,p) (B17)

of Eq. (B12). In the region max(l, Q)<<x<<1l/
[w (7, =7_)], it may be matched to the solution Eq.
(B7) of Eq. (B2). This leads to the relations

bl = cl[ kl+1(,r+ _ 7’_)tc1(7])]-1
and

by=ck (v, =7 )" /D,(n).

(B18)

(B19)

The asymptotic forms of the Coulomb wave func-
tions for p -« are

(B20)
(B21)

where 6, is a phase angle. A term oclnp has been
dropped in the arguments on the right-hand side
of Egs. (B20) and (B21). Since U has the asymp-
totic form

Uoxe™ 1A, et

FI(TI’ p)-sm(p +61)9
G,(n, p)~cos(p +5,),

(B22)
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as p-o, we find that

b, —ib,|?
b, +1b,
If we now use Egs. (B10), (B11), (B18), and (B19),
we find that, to lowest order in 2M, the amplifi-
cation coefficient 4,;,, is

Apm=lAZ -1

|4 2= (B23)

= [(zl)!]_2<4Q(1’+ —y_Ritipziel

X (l!)zc,z(n)z (n? +4Q2)). (B24)
We may show that -
a2t~ IT (52 +1%)
T(2l+l)!]j;slinh7m ’

Clrm= (B25)

_ a2 +a?) (v, —v_)212213(11) 2okt

[CHIPRI+ DI - e )
XH(J +7? H n® +4Q3). (B26)

For superradiant modes, A,;,>0 and is the am-
plification coefficient; for nonsuperradiant modes
A,;n<0 and is the absorption coefficient. In the
limit that 4 -0, Eq. (B26) becomes

(.,.+2 +a2)(1’+ _ 7’_)2'22”2(”)4630)2”1
[+ )1

Aklmz_

1

x ] #*+4@%, (B27)

n=1

which is the result given by Starobinsky.°
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