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We formulate precisely the principle of spin tests from angular correlations in sequential decays. We show
that the spin tests for bosons proposed by Ademollo, Gatto, and Preparata for canonical frames and by
Berman, Jacob, and Chung for helicity frames are equivalent.

I. INTRODUCTION

The discovery of particles and resonant states
which undergo two-body sequential decay of the
type

1-2+3, 2-4+5 1)

has incited many physicists, from the late 1950’s
until the present, to propose more and more re-
fined methods of determining the spin and parity
of these states. Generally speaking these methods
can be divided into two main classes according to
whether they do or do not require the reconstruc-
tion of the polarization density matrix of particle
1.

Methods in the first class are based on the fol-
lowing scheme. One first makes a hypothesis on
the spin and reconstructs all (or only part of) the
polarization density matrix, from the sequential
decay angular distribution of process (1). Then
the spin test consists in checking that the mea-
sured matrix satisfies all the required conditions
to be a density matrix (or part of a density ma-
trix), namely, it must be positive’ or, under some
conditions on the production process of particle 1,
its rank must be fixed.2 If these conditions are not
satisfied the spin hypothesis must be rejected.?
Methods in the second class are based on the re-
mark that for each spin value of particle 1 there
exist characteristic correlations between the de-
cay angular distribution and the polarization angu-
lar distribution of particle 2, i.e., for process (1)
there exist spin-dependent correlations among the
moments of the sequential decay angular distribu-
tion %5

In this note we formulate precisely the principle
of spin tests of this second class, and we show
its application for the two main choices of refer-
ence frames, namely the canonical and helicity
frames. Furthermore we show that the spin tests
for bosons of Berman and Jacob®” and Chung®®
(BJC) and those of Ademollo, Gatto, and Prepa-
rata'® (AGP) both proceed from this principle and
are actually equivalent even though they are ex-
pressed in very different forms. We also show

12

how to improve the formulation of the AGP test
and simplify its use.

1. CHOICE OF FRAMES AND AMPLITUDES

We assume that particles 3 and 5 in process (1)
are spinless bosons with parities €; and €;,. We
call jf1, j52, and j§4 the spins and parities of par-
ticles 1, 2, and 4, respectively. We denote by
6, ¢ the angles of particle 2 in a rest frame F, of
particle 1 and by 6, ¢’ the angles of particle 4 in
a rest frame F, of particle 2. The frame F, must
be precisely defined relatively to the frame F,.
We call the canonical frame F§ that frame deduced
from F, by the boost L,,, and the helicity frame
F! that frame deduced from F, by the Lorentz
transformation L, XR(¢, 6,0). In addition one
must choose a set of invariant decay amplitudes
to describe the first decay. One may choose the
canonical amplitudes A? or the helicity amplitudes
A(X). At this point we want to stress that it is not
compulsory to bind the choice of invariant decay
amplitudes to the choice of the frame F,. Indeed,
the two sets of invariant amplitudes are related by
a linear orthogonal transformation

A= lea‘/fiijzx linar, (22)
Al= 2; /7000515 MAR) @2b)

where we have used the notation £ = (2x +1)¥2, so
that either set of invariant amplitudes can be used
whatever the choice for F,. However, the transi-
tion matrices for the first step take their simpler
form when the choices are associated:

T.(6, ¢)m2m1 = Z {Imj,m, |j1m1>Y£n(9, $)Al, (3a)
1

T8, )2, = D (4m)™V/%, Dir(¢,6,0)™% Am,) .

(3b)

201



292 M. DAUMENS,

G. MASSAS, AND P. MINNAERT 12

III. SEQUENTIAL DECAY ANGULAR DISTRIBUTIONS

The polarization state of the initial particle 1 can be described by the multipole parameters t"l 1 and it
follows that the normalized sequential decay angular distributions for process (1), in the canomcal and

helicity frames, have the structure

1Q,90) = (4" 2. CLK(L,L,L) 2. (LML, M,|L M) *vh@)YiaQl (42)
LLyLy My
19,90 =@mnY2 Y C(LH(L,L,M,) Z L@y vier (4b)
LyLoMy

where we have used the notation  =(6,¢), Q'=(¢’,

¢'), and DX (Q)=D%1(¢,6,0). C(L,) represents the real

decay coefficients of the second step,'? and K(L,L,L) and H(L,L,M,) are the canonical and helicity decay
coefficients for the first step. Their expression in terms of the corresponding invariant decay amplitudes,

normalized to 2J, | A*[2=20,| AM)|2=1, can be written

jz j2 L2
K(L,L,L)=1,7,7, > (-0)"I1"{j, j, L, 0I'0|LOYAIAY * (52)
1,1
11" L
H(L1L2M2)=I:1 Z <jz”zL2M2ljzmzle"zLxMz|j1m2>A(mz)A(”2)*~ (5b)

Mo,y

Using Eq. (2) the canonical coefficients can be ex-
pressed in terms of helicity amplitudes and the
helicity coefficients in terms of the canonical am-~
plitudes. Indeed, at fixed values of L, and L, the
two sets of coefficients K(L) and H(M,) are related
by the linear orthogonal transformation

K(L,L,L)= 2, (L/L)(LOL,M,|L, M)H(L L,M,)
M2

(6a)

H(@IL,L,M)= (£/L)LOL,M,|L, M)K(L L,L).
L

(6b)
The moments of the sequential decay angular

distributions (4) are defined by!?

®(L,ML,L)=4r Y, (LML,M,|L,M,)

M, My
X(YRQ)YZR)) , (7a)

50(L, M,L, M,) = (47)¥2L (D¥1(Q)¥1% LY I2(@20)
(To)

so that they are proportional to the multipole
parameter 1,

%(L, M,L,L) = C(L,)K(L,L,L)*E! (8a)
5C(Ly M,L, M,)=C(L,)H (L,L, M,)*t5* . (8b)

These relations are the basic equations for recon-
structing the density matrix of particle 1 from the
measured moments of the sequential decay angular

-

distributions; they allow spin tests of the first
class. As we shall see now they are also the basic
equations to derive spin tests of the second class.

IV. PRINCIPLE OF THE SPIN TESTS

To derive spin tests for particle 1, one assumes
that the spin and parities j,, j,, €,, €;, €,, € and
the decay coefficients C(L,) are well known. The
principle of the tests is based on the remark that
for fixed L, and M, there exist several moments

:K"(LZ’L) (OSLz 52j2’ ]Ll - Lz |SL SL1+L2)
or
SC(Lz’Mz) (OSL2“<— 2j2> _Lstzst) ’

providing one with a multiple determination of
the same multipole parameter /j;!. Then, from
Eq. (8) the ratios of two different nonvanishing

X or ¢ moments, at fixed L,,M,, are independent
of the polarization of particle 1, but they may de-
pend on the spin j, through ratios of two K’s or
two H’s. If these ratios can be given analytic
forms of j,, one obtains equations for the spin j,
with coefficients depending on the experimental
moments.

Note that it is easier to get analytic expressions
for the ratios if the K’s and H’s are expressed in
terms of helicity amplitudes rather than canonical
invariant amplitudes since then their dependence
on j, is contained in only one Clebsch-Gordan co-
efficient. This is what we shall do in the following
discussion.
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(i) Let us assume first that the decay in the first
step involves only one independent helicity ampli-
tude. Then the dynamical dependence disappears
from the expressions of K or H, and at fixed L,
any ratio of two K’s or two H’s which depends on
j, yields an equation for the spin j, in terms of the
X or 3¢ moments.

(ii) Assume now that the decay in the first step
involves two independent helicity amplitudes de-
noted by ¢, and &,, and normalized to |§1 |2+ |§2|2
=1. Then the dynamical dependence of the K’s and
H’s can be expressed linearly in terms of the heli-
city decay parameters o', 8/, v/,

a'=2Ret*t,, B'=2ImErE,, ¥'=|6|%-|8)%,

(92)

a2+ p2+y2=1, (9p)
One has

K=aa'+bB' +cy'+d, (10a)

H=a'a'+b'B' +c'y' +d’, (10p)

with coefficients a, b, ¢, d, a’, b’, ¢’, d’ depend-
ing in general on j;. The ratio of two nonvanishing
X’s or ¥’s, at fixed L,,M,, gives a linear equa-
tion in a’, B/, v’. Dynamics-independent spin
tests can then be derived in two different ways:
Either one can write a system of three indepen-
dent equations in a’, B/, ¥/, and condition (9b) on
the solution yields an equation for j, in terms of
the X or 3C experimental moments (spin tests of
this type have been proposed for fermions by
Byers and Fenster™ and by Ademollo and Gatto'®),
oy one can write systems of two independent equa-
tions in one decay parameter or three independent
equations in two decay parameters. The consis-
tency conditions of such systems yield equations
for the spin j, in terms of the X or 3¢ moments.

Spin tests of the latter type have been proposed
by AGP' for bosons. But, since AGP worked with
canonical amplitudes and 9j symbols, they could
not write down the consistency conditions as ana-
lytic equations in j,. Their procedure for spin
determination was then by trial and error: They
used numerical values for the 95 symbols and they
tested the compatibility of the system in the ca-
nonical parameters o and y for successive values
of j,. A considerable improvement of the method
is obtained by using helicity-invariant amplitudes,
since then one can get analytic expressions for
the spin j, in terms of the experimental X mo-
ments. See an example in Sec. V below.

A similar analysis was made implicitly by
BJC,%" %9 although they do not use the parameters
a’, B’, ¥'. Their method consists in writing lin-
ear combinations of 3¢ moments, with given L ,M,,

such that their ratios are independent of the quan-
tities | ¢, |2, |&,]2, or £¥¢,. In our language this
corresponds to the fact that with helicity frames
the system of linear equations is easily reduced to
subsystems of two equations in one decay param-
eter. Thus the consistency conditions can be
readily written down and give simple equations
for the spin j, in terms of the experimental 3¢ mo-
ments. See Sec. V.

To make sure that the AGP and BJC formulations
of spin tests are actually equivalent, one may ver-
ify, in each case, that the expression of j, in
terms of the X moments can be derived from that
in terms of the 3¢ moments by using the linear
orthogonal transformation (6) which at fixed L,,
M,, and L, relates the moments ¥(L, M,L,L) and
¥e(L,M,L,M,).** Furthermore, when the test is
expressed as the ratio of mean values of explicit
expressions in angles 6, ¢, 6’, ¢’, one may veri-
fy that the test in terms of the canonical angles
6!, ¢! can be derived from the test in terms of the
helicity angles 6;, ¢ by means of the transforma-
tion which relates these angles, namely,

cos}=cosf cosh.+sinfsind, cos(p —-¢), (11a)
sinb; cos¢; = —sinb cos b’ + cosb sinb;cos(¢ - ¢7) ,
(11b)

sinf; sing; = —siné; sin(¢ — ¢7) . (11c)

V. EXAMPLE OF AGP AND BJC FORMULATIONS
OF SPIN TESTS

Let us consider, as an example!” of the two pos-
sible formulations of spin tests, the sequential
decay discussed by AGP and BJC:

jit-1-07, 1--0-0". (12)
We define n=¢,(-1)’t. If n=-1 the first decay in-
volves two amplitudes, whereas if n=+1 it in-
volves only one. A simultaneous study of both
cases, following the procedure of Sec. IV, yields
a spin parity test for each value of L, even and
M,. Fixing L, =2, M,=0 in both formulations one
can write the test in the form

77j1(j1+1) _ <W >
.G, a1 =3~ Wy * 3)

For the canonical frame the quantities (Wy) and
(Wpy are linear combinations of the X moments

(Wy) = 2VT %(2020) + 210 5%(2022) + V2 %(2024) ,

(14a)
(W) = =247 %(2002) + VT %(2020)

—-VI0%(2022) + 3vZ %(2024) , (14b)

while for the helicity frame they are linear combi-
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which has been used in several experimental
papers.'® In addition the functions W, and W,
can be written explicitly in terms of the decay

5.G,+1) -3 25(2000) =5 5(2020) ’ (15) angles. For the canonical frame one finds
J
(Wy) =(-sin*6[sin*6(3 cos*6, —1) —sin26 sin26/ cos(¢ — p?) + (1 + cos?6) sin?6 cos2(¢ - /)]y, (16a)
(W) =((3 cos?6 ~1)[5 + cos?6 + cos?0! — 3 cos?6 cos?f!, —sin26sin26/ cos(p —p!) —sin?6 sin? 6! cos2(p -],
(16b)
—
and for the helicity frame the BJC test can be identity
written in the simple form (cos2¢]) =3 (sin?6),cos2¢! ), (19)

n7,(j,+1) —5(sin®6 sin8! cos2¢; )
710, +1) =3~ ((3 c0s?6 -1)(3 ~5 cos?6})y ~

amn

As we remarked previously, one verifies the
equivalence of both formulations by using either
the linear orthogonal transformation (6) or the
transformation (11).

Equation (17) has been given by Koch.'® Using
Egs. (2.12) and (2.14) of the SLAC report by Ber-
man and Jacob® one obtains for the numerator of
Eq. (17) the expression

(Wy) = —4(sin*0 cos2¢;) (18)

given in two recent experimental papers.?® The
equivalence of both expressions results from the

strictly valid for the decay of a pure spin-one
particle into spinless particles. However, since
the function cos2¢; does not belong to an orthonor-
mal set of functions, the function § sin®6; cos2¢;

is a better estimator from a statistical point of
view and with respect to the sensibility to the
background.?!
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