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A nucleon saturation scheme for the algebra of Regge residues and chiral symmetry is studied. A
representation of this extended algebra of SU(2) X SU(2) X O(5) includes the nucleon N(940), the 5(1236), and
two other nucleon resonances. The masses for the resonances, the low-energy pionic coupling, and the Regge
coupling of the p, f, m, and A, trajectories to the particles present in the scheme are predicted and the results
are compared with experimental numbers.

I. INTRODUCTION

The algebraic approach to chiral symmetry ex-
presses various sum rules of current algebra in
a very compact manner. "Within the framework
of chiral saturation schemes having a finite number
of particles this algebraic formulation provides
an insight into the way the sum rules are built up
and leads to predictions for a large number of
pionic couplings to particles. For P -wave pions
the algebraic formulation yields what may be con-
sidered as spectrum-generating algebras. ' By
using the narrow-resonance approximation and the
ideas of duality it is possible to give an algebraic
formulation also to all finite-energy sum rules for
the scattering amplitudes ne-nP, where n, P are
any two hadrons belonging to representations of
the chiral group. 4 Chiral symmetry predicts the
low-energy pionic couplings in reasonable agree-
ment with experiment, and these couplings can be
inserted into the algebraic form of finite-energy
sum rules to predict a number of Regge couplings
for the particles.

Recently this technique has been used to derive
the behavior of Regge couplings under chiral
transformations and to derive the algebra of Regge
residues by writing finite-energy sum rules for
mn-nnP and for mme-m~P in the single and double
Regge limits. '6 This derivation based on duality
and current algebra provides a basis for the ear-
lier conjecture of Cabibbo, Horwitz, and Ne'eman'
that the Regge couplings form an algebra. The ex-
tension of the algebra of Regge residues by the
chiral group directly gives Regge couplings con-
sistent with low-energy pionic couplings, and this
consistency requirement serves to strongly re-
strict our choices for chiral saturation schemes.
At the level of SU(3) symmetry such extensions of
the Regge algebra would require the transforma-
tion from "constituent" quarks to "current" quarks
to be consistent with the Regge algebra, and in
this sense we may also talk of "Regge quark" con-
tent of the elementary particles.

In the particular case where only the leading

trajectories p, f, v, and A, are taken into con-
sideration the algebra of Regge residues has been
shown by Kleinert' to be the Lie algebra of O(5).
When this is combined with the low-energy theo-
rems of current algebra the extended algebra is
SU(2) xSU(2)xO(5). In an earlier paper' a de-
tailed derivation of this result has been given to-
gether with an application to a meson saturation
scheme. The predictions for the pion couplings
and for Regge couplings have been shown to agree
very well with experimental results.

The purpose of the present paper is to consider
a nucleon representation of SU(2}xSU(2) xO(5) and
to show that the algebraic picture for Reggeon
couplings does lead to good predictions. Since a
derivation of the algebra of Regge residues has
already been given we present in Sec. II only the
final form of the various sum rules. In Sec. III
we evaluate the Regge couplings by assigning the
nucleons to a suitable representation of the ex-
tended algebra of Regge residues and in Sec. IV
we compare the results with experiment. We con-
sider a scheme with the N(940), 6(1236), and two
other nucleon resonances. Using mass sum rules
we identify one of the nucleon resonances to be
N(1520). The other resonance has mass of 1890
MeV and simulates the contributions of all the
high-mass resonances in various sum rules.
While this is obviously a rather small set of res-
onances, all the salient features of our algebraic
formulation of scattering amplitudes can be
brought out, and what is interesting is the agree-
ment with experimental numbers.

II. ALGEBRAIC FORM OF SUM RULES

We shall consider always the collinear configu-
ration in the scattering of massless pions on the
particles n, P. The assumption of partial conser-
vation of the axial-vector current (PCAC} allows
us to compare the axial-vector matrix elements
with experimental data on pionic couplings because
these matrix elements are not expected to vary
much when the pion is taken off its mass shell to
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zero mass. Thus we have

m —q„(PPsl'lj:lnP„» = »m ' ' (p[e~A )n&b

gm2-m 2. [x (~)],

where E, =0.095 GeV is the pion decay constant
and the helicity A. is conserved. If we define m2

as the diagonal mass matrix we have

(,S(j;(n& =(i/Z, )[m', X.],.=-m, '/p. (2}

[T., x, ] =ie.„x,.

With these preliminary remarks we present the
sum rules we will be discussing:

(i) The superconvergence of the T=2 amplitude
for mn-nP leads to the result' that the mass ma-
trix m' is composed of a chiral scalar m0' and a
term m4' which together with m, ' belongs to a
(~, ~) representation of the chiral group. This re-
quires the usual assumption that the Q term (de-
fined below) contains no T =2 part. Thus we write

rn2=m 2+m 2
0 4 (4)

(ii) By using finite-energy sum rules in con-
junction with the threshold theorem of current al-
gebrafor the , Q term in v'n - n. ~P,

lim TNI'I" (v, t = 0) = (i/2E, ')f [Q5, aA'] + (a —b))
v vth

0

with m, ' being an isospin-1 quantity.
The matrix elements of X, are just the matrix

elements of the axial charge in the infinite-mo-
mentum frame. ' The assumption of chiral
SU(2)xSU(2} symmetry requires X, and the isospin
operator T, to satisfy the commutation relations

[T., T,] =is.„T,=[x., x,J,

write

2+ 2M2 & &p«&+1
m ~ ng 2~

v[n, (0)+I] I'
x (R p }s (R~ }, (6)

With m, ' and m4 determined from physica
masses and the pion coupling matrices ~, given

by chiral saturation schemes we see from Eqs.
(5) and (6) that we can algebraically estimate the

Regge couplings once a judicious choice is made

for the energy cutoff N to be a value just above the

last resonance beyond which the amplitudes are ex-
pected to exhibit smooth Regge behavior.

(iv) We can show' that the same kinematics ob-
tains for the reaction "Reggeon" + n —n, +P de-
rived from the reaction n, n-m, m, P in the single-
Regge limit. The low-energy behavior of this am-
plitude is fixed by the Adler zero at q, = 0. Using
finite-contour dispersion relations we then relate
the resonance-saturated amplitude in the single-
Regge limit to the double-Regge behavior beyond

a certain (energy) value N~, which leads to the

relations

[X., R~&»] =ie.„(9,),+R~."2
A,1 P

[X„RI'~ ] =i(g, )/, R&'& (

f

where (g„);, are the Reggeon-Reggeon-pion cou-
pling constants and the trajectory intercepts for
the n and the A, trajectories are e, =n„=0.

(v) In the double-Regge limit the amplitude for
the collinear reaction Inn -mnP can be considered
to be the process "Reggeon" +a -"Reggeon" +P.
A finite-energy sum rule for this amplitude re-
lates the low-energy resonance-dominated part
to the triple-Regge region in this reaction. The
algebraic form' of these sum rules is

jR~ R, J

—~ (N/M ) ~ "~ i (R~)
7l' Q + 1 —Qk

we can derive the relation4

5.~(~.')s =6.~E

2b 2 N n&(o)
+ ' — ((R~ }s (R~)„, (5)

wni (0) M

(n, +1 n, +)n~ ), .

with g;,.k being the triple-Reggeon coupling.
By defining

(6)

where the Regge couplings R XR are taken to be
factorizable and the trajectory intercept is

nz (0) = —,'. Also, N is the value of the variable
v = (s —u) beyond which Regge behavior sets in

and M' is just a scale factor and may be taken to

be 1 (GeV)'.
(iii} Similarly, for the odd amplitude' we may

~~(.) A
~ R,

0 4Pfg 0 & 10 4Pfg 0

(9)
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we can express the algebra of Regge residues in
a compact manner. Also, if we identify p, ,f, K„
A„with the generators I„, I„, I,,„and I.,4,
respectively, we have the Lie algebra of O(5):

resentation is

(-', 0) [(2, 2) g3(0, 0)]= (1, l ) l33 (o, -') g(l, 0)

[I2„,L ()] =i(52 L„()+ 6,8L2„—62()L„—(), LN()),
6, K~ K2 iK3 . (13)

P~ ~~ &y P=&~ ~ ~ -) 5 ~

(10)

These definitions together with Eqs. (7) and (10)
can be used in Jacobi identities to show' that P,
and A„ transform according to the [(1,0)s (0, 1)]
representations of the chiral group while the op-
erators Tr„f belong to a (-,', —,

' } representation:

[x„t), ] =2 e.„x,.; [xn 1 A„]= i e.„p, ,

[X, , T(3 ] =i 5,3 f; [X, ,f ] = —i K, .
We also obtain the result that

l(9.)2,, 1

= l(9.)/. I =2(».l&}'",
where the cutoff energy parameters N„and Ncor-
respond to the 2-3 and the 3-3 reactions.

The commutators (10) and (11}now define the
algebra af SU(2) xSU(2)))x O(5) since the sets of
operators

We use the Condon-Shortley phase convention to-
gether with our choice of imaginary phase for the
chiral state (—,', 0) to make the matrix elements af

f real. The physical nucleon states can be ex-
pressed as a linear combination of the chiral
states K, in terms of three Euler mixing angles
8, g, and ft):

cos ~ Ky + sin8 sing K, + sin~ c os/ K„
N2 = sine sin&( K, + (cos() cos(P —cosa sing sing)K2

—(cosQ sin(t)+ cosesin(P cosf)K3,
(14)

N3= —sin() cospK, + (cosg sin@+ cos()cosQ sing)K,

+ (cos() cosQ cosg —sing sing)K3,

or in brief

Let us define the reduced matrix elements G B

for any isospin T=l operator, say g, as fol-
lows (Ref. 4)

(12)

commute with each other; the subscript ~ on the
SU(2) xSU(2) subgroup is to distinguish it from the
usual chiral group.

[~ ) 1/2, 1/2 —G(X)l, l tt(1

[X )3/2, 1/2 1~ lt G(x) 3 1
ajsa —~ Xa X tk

[Xg )sn
' —2 2e ' a'3XaXs3' ()n

~/2, 3/2 3 - t ~(&3,3

(15)

III. NUCLEON SATURATION SCHEME

where the isospin--, ' spinors are denoted by X and
the isospin-2 spinors are X (with T, X =0). For
the isosinglet operator f we write

The representations of Q(5) are labeled" by us-
ing two numbers (P, q) and an O(4) classification
of the states using the commuting spins S, =P, +Ay,
and 4, =p, -A.„is possible. The representations
of the group SU(2)xSU(2)N xO(5) are labeled by
the numbers [(i,j))x(p, q).

Let us consider a saturation scheme with the
nucleon N, =i)/(940), the resonance d, (1236), and

two other nucleon resonances N, and N, which we
can classify as belonging to the [(2, 0)] x (0, 1)
representation. The O(4} content of the (0, 1) rep-
resentation of O(5) is (S = 2, 4 =2)(S =0, 4= 0).
The matrix elements of the generators of O(5) are
easily evaluated by standard techniques in this
representation. Since it is a singlet under SU(2)
x SU(2))2 its chiral content (i.e., its behavior under
the usual chiral transformations) is (2, 2)(0, 0).
Thus the chiral decomposition of our nucleon rep-

= X'X G""',

[f ]3/2, 3/2 5 It g(/ )3.3
Ba ab Xo Xo Ba

(16)

G „.=[G, , P'], ,

GN)N&
—[PGKK P ]i/

The matrix elements in the chiral basis for all

In the following we shall omit the isospin super-
scripts since for our calculations n, P are either
the 4 or the nucleons.

An explicit construction of the states K, allows
the evaluation of the matrix elements of all the
generators. The couplings for the physical states
are given by
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the operators are

dg, = (p, 0, 0),

0 0 (18a)

we obtain

(fc, lm2[x, }=(fc, lm, 'lz, } =0

leading to the mass relation

(m v
' —)n „')cosg sin@ cosg'2 3

= cos8 sing(m „'sin'((+)m» 2 cos2$ —m „')
2 3 1

(the following eouplings have not been arranged
in the above matrix form so as to save space}

Qgz,
—3, C~g =Cm ——G~ =0,

= (cos8 sin()/sin28)(m~' —m„2).
1

IV. COMPARISON KITH EXPERIMENT

With cos0=0.675 and

(20)

G(g~») ——(-3, -I/v3, 0),
G(,") =(1, -I/~3, O),

G(~"») =(0, 0, i2/-v 3 ),

34'» =~ G%(('z = Grec =I
1 1 1 2 2

G(&)) ~ G(&) G(&)
1 1 1 2 2

d
1 3 2 3

(16b)

l G„/G„l = G(» )» = cocos'8+ sin'8 cos2$ = 1.25
1 1

(21)

as input, we determine cosg =0.975 while main-
taining an adequate width of 98 MeV for the ~ res-
onance. The third mixing angle is taken to be
Q = 7' so that we obtain

G(» ~) = sin8cos8(~5 —cos2$}sin(t1"2

—sin(2$) sin8 cosQ

G(f ) — ~G(&)
1 3 2 3

= —0.273,
(22)

The "reduced" Regge couplings to nucleons can
be obtained by using the transformations (17) on
E(ls. (16) after the three mixing angles are deter-
mined from experimental data on decay widths.
The numbers thus determined are proportional
to the physically measured couplings so that we
can predict ratios of the couplings. However, us-
ing relations (5) and (6) we can also estimate the
actual values of the Regge couplings. This re-
quires the masses of the resonances ~2 and +3
to be known; we shall of course use the masses
of N(940) and n, (1236) as input.

Instead of directly assuming that K„N3 are two
particular resonances in the particle data listings
we shall use the fact that m4', which is the chiral
symmetry breaking term in the mass matrix, be-
longs to a (-„-,') representation to obtain two mass
sum rules. Earlier, Pashupathy" obtained the
same sum rules in another context. Since (1, —,')
S (1, —,') does not contain a (—,', —,') in its chiral de-
composition we see that

and hence

mz, ——cos'8m„'+sin 8(sin'pm» '+ eos 4)m» ) ~

1 "2 3

(19)

Again, because (1, -', )Is (0, -', ) does not have a (~, 2),

G(„)» = —sin8 cos8(&—eos2&)cosg
1 3

—sin 2g sin~ sing

= 0.418.

If the resonance N, is identified as the N(1668) we
obtain I'(N, -¹)=57 MeV which may be compared
with the experimental value" of 60-110 MeV. If
we let N, = N(1520) we predict I'(N~-Nv) =130 MeV
which is somewhat higher than the experimental
value of 53-75 MeV. With the mixing angles so
chosen we give below the predictions of our sym-
metry scheme:

(a} With m„=940 MeV and mz, ——1236 MeV as
1

input in the mass relations (19) and (20} we deter-
mine the masses of the resonances N, and N3. We
predict

(23 )

m~ =1890 MeV
2

(24)

to be compared with m„= 1688 (with -12%%uo error).
2

It is of interest to nute that if we use the predicted
masses instead of the experimental masses the
partial widths in the ¹ channel are in close
agreement with experiment with decay widths of
107 MeV and 68 MeV, respectively, for N, and

N3.

m„=1440 Mev"3

so that N, may indeed be identified with the N(1520)
resonance (with -5% error), and
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(b) The p-Regge couplings of interest are

G»» = [(1/W3cos8+sin8 sin&l&]' =O.3O8,
1 1

(25)

IG~~"»& 1=(2/M) sin8cosg =0.83. (31)

(e) The couplings to the A, Regge trajectory are

approximations this null value is not inconsistent.
We also have

G~g» = —(1/M)(cos 8/W +sin8 sin&j'r) = —0.32 .
1

The data for m p —n'n and for n'p -n'4+' of Refs.
13 and 14 lead to a value

G~»"&» = (cos8+sin8 sing/M) —T sin &sin 8
1

= 0.557,
(32)

I GV &„ /Gfg»&
I
=1.06~ 0.14 (26a)

G~~& = (cos8 —sin8 sing/M} =0.58,

with

to be compared with the theoretically predicted
ratio

(c) The f -Regge coupling for the nucleon is

G~~&» = (M cos8 —sin8 sing)sin8cosg =0.722.
1

(27)

The experimentally measured p and f residues in
n N- nN have been quoted by Michael" to be

(f) We now make use of the low-energy pionic
couplings and the predicted masses for N, and N,
in the relations (5) and (6) to give estimates for
the actual magnitudes of the Regge couplings. For
the p-Regge coupling we obtain

p(p)p(p) tlp+1Mp
N1N1 r r 2y 2~2

/

m ' —~ » G(„")
5

and

C(f }&„',=-R&g&„RP,& = —53.6+ 2

C(p)„„=--,'R&g&» R &~ & = -8.6+0.6

(28) —(m,' —m» ')'I GP~ I' (.1 1

With n =-,', M'=1 GeV', and N/hf'=n we have

Gt„'&„ /G&g~ =2.8~ O.5.
1 1 1 1

From Eqs. (25} and (27) we obtain

(30a}

The errors quoted are probably somewhat low. We

may use (28} and (29) together with the exchange
degeneracy result R,„=R,P„ to obtain

R&j& R&» = —117n '~'
1N1

The value of N', the energy above which the
Regge approximation to the behavior of the scat-
tering amplitude is expected to hold, may be
chosen to be just above the last resonance in the
theory. If we let N' =1.95 GeV, we obtain

(30b)
R&g& Rt,&'& = —16, (34)

in excellent agreement with (30a), considering the
assumptions that go into the derivation of (30a).

(d) This theory leads to a decoupling of the
Reggeized pion from the nucleon. It would require
the inclusion of conspiracy considerations" in or-
der to have a nonzero value for G(N" N . Within our

1

which is in reasonable agreement with the experi-
mental value of —19.2 + 1.2, considering the ap-
proximations inherent in our saturation scheme.
We may mention that for N' '= 1.9, which is just
at the position of the last resonance, the Regge
residue is —17.2.

From Eq. (5) we obtain (with o.'& ———,'):

= —87(n) '~'(0. 725+2»'» ). (35)
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For the same choice N' '=1.95 GeV as before,
we obtain (Ref. 1'l)

1 1 1 1
(36)

(37)

In the absence of a reliable experimental value
for the p-Regge coupling in NN-NNwe can use
our earlier result (Ref. 4)

The above relation Eq. (36) can be tested if the
Z term is known. However, due to difficulties
of extrapolation of the isospin-even amplitude to
m, ' = 0, no reliable estimate is available and val-
ues ranging from 20 to 110 MeV are quoted in the
literature. Also, inclusion of more resonances
will certainly lower the resonance contribution
from —32 to a value closer to the experimental
value of —53.6+2 for R„,» R„„and in view of the
generally accepted low va/ues for the Z term, our
small saturation scheme requires modification by
the inclusion of additional resonances.

(g) Finally we note that we can obtain an order-
of-magnitude estimate for the triple Reggeon cou-
pling constant. The definition (9) can be used to
write

V. CONCLUSIONS

In our saturation scheme we have not demanded
that m, 2 be proportional to the f -Regge coup lings;
they are taken to be the fourth components of two
different chiral four-vectors. They would be pro-
portional to each other for the nucleon represen-
tations of O(5) which transform as singlets under
SU(2) xSU(2)„. This in turn would have led to
Gzj'„, =0, in disagreement with the experimental
result that

It is clear that the extended algebra places con-
straints on the baryon spectrum when it is based
on chiral symmetry considerations.

We have shown that a consistent picture emerges
for Regge couplings and low-energy couplings. In
order to reemphasize the compactness of the alge-
braic form of the sum rules we note that the usual
Adler-Weisberger relations based on the alge-
braization of the chiral commutator [Q, X, ]

are given by

(G(X)llG(X)11 G(X)13 G(X)31) G( T)ll
ey ya Sy ya Ba Sa~

y

based on a meson saturation scheme or, equiva-
lently, the prediction for this number based on
the Veneziano model for xw- II to evaluate
R(g)„using the p-Regge residue in 2N- xN.

q 1
We have

(
1 dX)31 G(X)ll +(S)G(X)33 g(X)31) G(T)31 0By ya + ~ Sy ya Ba

y

(1G(XJS1 g(X)13 ~G(X)33 G(X)33) g(T)33
By y a + Sy y Ba Sa

y

(39)

R(SI'~„, = 19.2/5. 5 =3.5

so that

~g( = (x/4MS)(M'/N'}' '(3 5/0. 308)

9(N&/MS)-1/2 GeV-2

Igl =1 GeV-'. (38)

This value for g agrees with our estimate based
on a meson saturation scheme'; however, the
choice of N' is rather arbitrary.

We may expect the triple Regge region to be
reached for the missing mass variable in the re-
actions A+A-C+ anything having a value N" ~'

=9-10 GeV. We then have

These relations are readily verified for the cou-
pling matrices in the chiral basis or in the physi-
cal nucleon basis. Relations similar to Eq. (39)
are derivable for the cornrnutators of the Regge
couplings; Such Adler-Weisberger type relations
can again be verified in terms of the couplings of
Eqs. (18}and they are naturally valid for the nu-
cleon couplings as well since the transformation
from the chiral basis to the physical states is an
orthogonal one. The relations obtained from the
Regge bootstrap algebra are the algebraic ver-
sions of finite-energy sum rules based on duality
for particle-Reggeon scattering.

The Regge algebra has to be extended to include
nonforward directions, helicity changes, and con-
spiracy effects (to obtain a nonvanishing pion-
Regge coupling) and additional trajectories. We
have considered only those Regge couplings in this
paper for which experimental information is al-
ready available, viz. for nucleon matrix elements.
The present model, or extensions of it, can be
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used to anticipate experimental developments and
to provide theoretical expectations for the cou-
plings of Reggeons to all particles. Inclusion of
more resonances in the saturation scheme and
extensions to SU(3) symmetry will be studied by
us in the near future as part of the program of
algebraization of scattering amplitudes.
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