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We perform a phenomenological analysis of baryon matrix elements in a fixed-sphere MIT bag model. The
model consists of massive, noninteracting quarks which carry the usual SU(3) quantum numbers as well as an

SU(3) of color. Two-quark matrix elements investigated include those of the cr operator and axial-vector and
vector currents and the magnetic moment, charge radius, and dipole moments of the electromagnetic current.
Among our results are the masses 44 MeV for nonstrange quarks and 298 MeV for strange quarks. The model
is successful in predicting static properties of the lowest-mass baryons, but has a problem in describing the
radiative decay of the nucleon resonance, %~»(1520). Four-quark matrix elements, parity-violating
nonleptonic decay amplitudes of the ~

+ baryons, are investigated and are found to be poorly described by
the model.

I. INTRODUCTION

Although a decade has passed since the sugges-
tion was made that the quark degree of freedom'
underlies the spectrum of hadrons, dynamical cal-
culations involving the strong interactions have
met with only limited success. This is primarily
due to an inability to describe extended objects in
the context of quantum field theory. Briefly put,
theorists have been unable to construct realistic
hadron wave functions.

Recently, a framework for dealing with the
strong interactions in which hadrons occur from
the beginning as extended objects has been put
forth. " This "MIT bag" theory has the additional
virtue of sustaining models which are simple
enough to be calculable. For those who have la-
bored for so long with strong interaction dynamics,
this development promises to provide a great deal
of stimulation.

Several different types of interesting problems
immediately come to mind. A basic parameter in
the MIT bag picture is a universal pressure B,
which serves to confine quark and/or Sluon fields
within hadrons. Progress must be made in better
understanding the physical nature of this quantity.
There is also the challenge of constructing in-
creasingly sophisticated, and thus, we hope, more
realistic bag models. In the work done thus far,
baryon rest states are taken as noninteracting
massless quarks confined to a spherical region of
fixed radius. ' The generalization to nonzero quark
mass has been performed, ' and work has been done
to take quark-quark interactions into account. ' The
construction of a more realistic bag boundary also
deserves serious attention.

While the pursuit of increasingly complex bag
models is an interesting and worthwhile field of
investigation, we feel that it would be a mistake
to aviod studying the consequences of existing

and

in yIt (x) = P (x) (2)

g n 8($„(x)g (x))=2B. (3)

models. Indeed, only by comparing the predictions
of new bag models with those of the older and
simpler variety can it be ascertained whether real
progress has been made. In addition, a phenome-
nological study of such models is of interest sim-
ply to compare their content with various beliefs
involving the strong interactions which have been
built up over a period of time, such as the
Ademollo-Gatto theorem, ' the effect of SU (3)
symmetry breaking on masses and coupling con-
stants, and so on. Finally, even with the simplest
bag models, it is possible to attempt calculations
which have heretofore resisted solution. In par-
ticular, we have in mind the amplitudes which
describe the nonleptonic decays of hyperons (see
Sec. III).

The above reasoning has motivated us to perform
a systematic study of two-quark and four-quark
baryon matrix elements in the following bag model.
We assume that low-lying baryon states contain
three massive but noninteracting quarks indentified
by means of the following quantum numbers'.
6'(T=Tg=~, Y=3), X(T=-Tg=2, Y=-,'), X(T=Tg=0,
Y=-—,). Each quark is assumed to be capable of
carrying any of three possible "colors, " such that
all physical baryon states are color singlets. The
collection of all internal quantum numbers carried
by a given quark is denoted by the symbol n. The
equation of motion obeyed by each quark field with-
in the bag is

(-iy s +m ) 4„(x, t) = 0.
Permanent confinement of each quark within the
baryon bag is guaranteed by means of the two sur-
face boundary conditions,
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where n&(x, t) is the interior unit four-normal to
the bag's surface, and & is the confinement pres-
sure mentioned earlier. We shall assume in this
paper that the boundary consists of a fixed sphere
of radius 8, so that the unit four-vector is given

by n" =(0, r) .Only angular momentum j =
n solu-

tions can occur within such a boundary. The
space-time dependence of a mode labeled by index
n, parity index K, and ~ component of angular
momentum A. is given by

g(x t) =[ 4v(E+m)] '~'

fOr K = -1, and

P„,q(x, t) =[4v(E —m)] '~'

-(E-m)' 'j ((E'-m')' 'r)&r ru

t(E+m) 'j,((E'-m')' 'r)o" ru~

(E-m) ~j ((E' m2)(j2r)u

-4 Et

tEt

(4a)

(4b)

for K=+1. The mass and energy of a quark are
denoted by m and E, respectively, in Eqs. (4a) and
(4b). The mode solutions can be linearly super
posed to obtain

P (x, t) = g N((d„„,m~)aa(nuX) $„„~(x,t), (5)
nKX

where N is a normalization factor4

)
((u' —rrPR'}2

n (2rr~ 2rr'r' urn)8'rr'I( ' —rrr n')' '()

(6)
The a„becomes fermion creation or annihilation
operators upon quantization,

a (nKX) =b (nnA. } (n&0)

=da(-n, —n, X} (n&0),

which are assumed to obey the usual anticommuta-
tion relations,

[b (net}, b„(nuA)], =1, (8)

etc. Particle states are constructed by the action
of creation operators upon the zero-quark state,
defined from

b „(n(('X)
~
0 & = d (ntcl(.) ( 0 & = 0 . (9)

K Q)2 m2 g251/2
tan[ ((d2 m2 E2)l/2] ( nn a )

W„„-Km 4+K (10)

for a quark of mass m and energy

Equations (8) and (9) ensure that the fermion num-

ber operator has only integer eigenvalues, i.e.,
that only integral numbers of quarks or antiquarks
can be found within the bag.

In our interpretation of this model, the linear
and nonlinear boundary condition equations (2) and

(3) serve to fix certain properties of each baryon
state under consideration. The linear boundary
condition (2) relates the value of m~ to the mode

frequency e„„,

&. K -&n.&

in the mode(n, n). The bag radius E depends upon
the particular baryon state under discussion and
must be determined dynamically. The nonlinear
boundary condition (3) is more subtle and it is
correspondingly important to understand the con-
straints implied by this relation. Since the right-
hand side of Eq. (3) is time independent, only
terms bilinear in the indices (n, x), (n', K') with n
= n K = K or n = -n', K = -K' can contribute to the
left-hand side. Thus, we find

2 ~2 + 2K(g

(12)
where we suppress the contribution of antiquark
operators in view of our intent to study only baryon
states in this paper. How does one interpret the
absence of cross terms in Eq. (12)? At the class-
ical level, it simply means that for each internal
degree of freedom e, only one normal mode
a (naX) can be excited. ' All the others must van-
ish. At the quantum level, where the coefficients
a,(net) become operators as in Eq. ('I}, the non-
linear boundary condition is seen to be a restric-
tion on the allowed particle states, which is ex-
actly obeyed in the model under discussion where
baryons exist as color singlets.

There are two ways in which certain of our ap-
plications go beyond previous calculations involv-
ing the NIT bag model. In parts of the following
two sections, we shall (i) describe a calculation
of electromagnetic transitions from an excited
state down to the nucleon, and (ii) evaluate com-
mutators such as the one defining the & term.
Each of these points is sufficiently subtle to war-
rant discussion here. Regarding the occurrence
of "inelastic" matrix elements, it is conceivable
the Eq. (3) could be interpreted as forbidding such
transitions in this model on the grounds that the
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[F,'(xo=0), eA~(0)] (a, b =1, 2, 3)

and, for example,

[F',(x' =0), H„'"(0)],

(13)

(14)

where p.v. means parity violating. Since our dy-
namical model contains field operators which are
explicitly known, we can in principle perform the
operations indicated in Eqs. (13) and (14). How-
ever, if we directly employ the field operator of
Eq. (5), we do not obtain the "standard" results
for the commutators (13) and (14). This is be-
cause the field operator p„(x, t), defined by Eqs.
(4)-(8), does not obey the usual anticommutation
relation

[ g (x, t), Pt(x', t)]",'"" =t 6'(x —x') . (15)

The reason for this is easy to understand. The
fields 4„(x, t) in our bag model carry only j =-,',
and the class of j=

& modes does not constitute a
complete set. However, this poses the problem
as to which way to proceed in calculating various
commutation relations. We feel that in calculating
the transition matrix elements discussed in the
following sections, it is correct to use the "stan-
dard" commutation relations, '

[F'(0),BA~(0)] =6„o (a, b =1, 2, 3) (16)

with

and

[ F,'(x' = 0), H'" (0)]= —,'H" (0) . ' (18)

bilinears in creation and annihilation operators
which appear in the electromagnetic current oper-
ator may connect only modes with n'=n and a' = K.

In our opinion, such an interpretation is not cor-
rect. The transition amplitude is simply the over-
lap of two quantum states via a local operator.
While it is true that Eq. (3) forces such states to
be orthogonal in the absence of a transition oper-
ator, it does not force all possible matrix ele-
ments to vanish. We shall return to this point in
Sec. II.

At several points in our calculation, it is nec-
essary to evaluate operator commutation relations.
In Sec. II, we use the pion-nucleon & term as in-
put to a phenomenological estimate of the non-
strange quark mass, while in Sec. III, we shall
employ a commutation relation involving the iso-
spin charge in order to express the hyperon non-
leptonic decay amplitude in terms of a matrix
element of the parity-conserving (p.c.) energy
density operator associated with the weak Hamil-
tonian. The commutators of interest are, respec-
tively,

In Eq. (1't), Q, is the matrix

coo )
q. = 010

I,ooo

in the internal symmetry space defined by (O', ',X, X).
Our reasoning is that the commutation relations,
which describe certain attributes of fundamental
interactions, should not depend upon the structure
of a given hadronic state. Perhaps it is simplest
to view the problem from the vantage point of a
picture where the hadronic structure appears ex-
plicitly in the wave functions. Note that if we were
to employ the field of Eq. (5) in evaluating com-
mutators, not even the charge-density commuta-
tion relations of SU(3) would be valid, in which
case it would be hard to see how to ascribe mean-
ingfully to each quark the concepts of isospin or
hypercharge. Moreover, the commutator would
then be frame dependent, since the field (o) would
pick up j +& modes because of the Lorentz-con-
tracted boundary.

We conclude this section with a summary of the
contents appearing in the remainder of this paper.
In Sec. II, we explore various phenomenological
consequences of the bag model for baryon matrix
elements of two-quark operators. We begin by
fixing the nonstrange quark mass and the pressure
& by means of a fix to both the nucleon axial-
vector coupling g~ and the nucleon & term
(H (o(H). The strange quark mass is determined
from the mass of the J = &' baryon, 0 . A
variety of applications, which follow once these
basic parameters have been determined, are then
described. In Sec. III, we present a calculation
of the parity-conserving nonleptonic hyperon decay
amplitudes. We summarize our results in Sec.
IV, and in Appendix A discuss alternative means
of attaining the nonrelativistic limit of this model.
In Appendix 8, we present certain excited-state
wave functions pertinent to our discussion of pho-
ton transitions.

II. ANALYSIS OF TYCHO-QUARK OPERATORS

Before we can calculate the various matrix ele-
ments of two-quark operators which form the
subject matter of this Section, we must first de-
termine certain basic parameters, such as quark
mass. We shall assume that the masses of all
nonstrange quarks are equal, so that there exist
two independent quark masses, which we call m~
and my.

We determine m~ simultaneously with the bag
pressure B and the bag radius R for the nucleon
by fitting the model to the degenerate nucleon-
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n(1232) mass of 1180 MeV

4mR B 3(o„,
3 R

(19)

the bag model prediction for g&, whereas a larger
predicted value of g& would give too large a pre-
dicted value for (N i& i N). Our solution for the
nucleon is then

the nucleon axial-vector coupling constant

5 2w'„, ~ 4m~v, , —B~ll
) (20)

o =mz g r(mQ, &u„„)b*(nxA}Q~b~(noh), (21}
anKA.

where for z = —1, the only physically interesting
case,

sP(1 +2rnR) + &nnR(2nuR —1) —2(rnR)'

((g +mR)(2(o' —2(o +mrs)

(22)

There are four unknowns, m+, R, B, coy ] and five
relations: the boundary conditions (10}and (12),
nucleon mass (19), axial-vector coupling constant
(20), and o term (21}. We demand that the first
three relations be maintained exactly, and use the
latter two to predict a wide range of axial-vector
couplings and 0' terms. Results are given in
Table I.

At this point, we have a somewhat arbitrary
choice to make as to which quark mass gives a
good fit to g& and O'. In Ref. 4, the value m~=122
MeV was chosen to satisfy the criterion of fitting
the axial-vector coupling g& exactly. Here our
decision is somewhat complicated by the uncer-
tainty regarding the value of the nucleon term.
Phenomenological estimates have ranged from
25 MeV to 110MeV.9' We have decided to employ
parameters which give g& = 1.143 and (N i

&r
i N) ='70

MeV. To insist on a smaller & term would worsen

and the nucleon 0 term. In our model, the 0 oper-
ator, defined by Eqs. (16) and (1'l), may be written
as

m6, =44.1 MeV, 8' ~ =113.9 MeV, (23)

and values for the frequency (Joy y and bag inverse
radius R ' are presented in Table II. The quanti-
ties m~ and & are thus determined for the rest of
this paper, whereas the mode frequency 4)g y and

bag inverse radius R ' describe only the degen-
erate nucleon-L(1232} state. Also given in Table
I are the dependences of the nucleon gyromagnetic
ratio g~ and charge radius (r )'i' upon quark mass
(formulas for these quantities will be given short-
ly). Our choice of m~ =44 MeV implies g~ = 2.63
and (r') '=1.03 F, both reasonable approxima-
tions to the experimental values. "

There are several ways in which one can per-
form a phenomenological estimate of mq. We have
chosen to fit exactly the mass of the 0 baryon,
Mz = 1672 MeV. This state contains only quarks
with mass mq, so the energy equation to be solved
is the same as Eq. (19) except that 1612 replaces
1180 and (d„, and R refer specifically to the 0
channel. Therefore, the three unknowns m~, ~„„
and R can be determined from the three equations
(10), (12), and (24). We find

m, =297.8 Mev, (24)

4wR'B na(u„, (P) +ng(u„, (A)
(25)

and list e„„Rin Table II.
Having obtained estimates for the quark masses

m~and m~ we can easily calculate the strangeness
-1, -2 baryon masses from the boundary condi-
tions Eqs. (10) and (12), which determine the two

unknowns (dg y and R in a given channel . The
energy equation is a generalization of Eq. (19)

2M& p, (~2) t/2

20
32
44
55
71
91

110
127

30
50
70
90

120
160
200
240

1.11
1.13
1.14
1.16
1.18
1.21
1.23
1.26

2.63
2.63
2.63
2.63
2.63
2.62
2.62
2.61

1.01
1~ 02
1.03
1.04
1.06
1.08
1.10
1.13

TABLZ I. Dependence of nucleon parameters upon
nonstrange quark mass. The quark mass (m ) and 0

term (&) are given in MeV. The axial-vector coupling

(gz) and gyromagnetic ratio (2M~p), where M& is the
proton mass, are dimensionless, and the charge radius
((r ) ) is expressed in fermis.

where n~ and nq are the number of 6'- or X-type
and ) -type quarks, respectively. The predicted
masses for the baryons A, Z, F,*(13&5)and

:-,=*(1530)are compared with the corresponding
experimental values in Table II. The latter are
averages of the physical masses weighted accord-
ing to multiplicity of states. Agreement is reason-
able, given the assumption of a rigid- sphere bound-

ary which underlies the entire model.
It could possibly be argued that instead of follow-

ing procedure we have just described, it would
have been preferable to determine m~ and mq from
some sort of least-squares fit to the (weighted-
average) —,''--,"mass spectrum. While the values
of mz and mq thus found would probably not pre-
cisely equal ours, it seems to us just as arbitrary
a manner to adopt. The real point is that as long
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TABLE II. Masses of the 2'-2' baryons. States with the same strangeness quantum num-

ber are degenerate in this bag model. The masses and the various R ~ values are given in
MeV. The experimental masses are averages of the physical masses weighted according to
their multiplicity.

States
Mass

Bag model Exper iment
Mode frequency

co& & ((p) m& &(A, )

N, A

A, Z, Y)
M M$

y M

1180
1344
1508
1672

1180
1300
1462
1672

2.206
2.204
2.202

3.396
3.379
3.362

136.4
137.8
139.3
140.8

1 2td' +4mftm —3mB
3 2'' —2v+mA

(2'7}

This b S = 0 operator is sensitive to the presence
of nonstrange quarks only. Although we defer de-
tailed discussion of our results to the conclusion,
it seems worthwhile to point out here that the
axial-vector couplings in Table III are essentially
the SU(6) values multiplied by a factor 0.686 (with

very minor variations) as we sweep across the
baryons. The bag structure has served to renor-
malize the axial-vector couplings predicted by the

SU(6) of the naive quark model. If the zero mo-
mentum transfer axial-vector matrix elements are
parametrized in terms of SU(3),

(28)

where we suppress all space-time dependent nota-
tion, we find F/D=2/3, as expected. This aspect
of the bag model appears to agree rather well with

recent phenomenological determinations of the
F/D ratio. "

A direct extension of the &S =0 calculation just
discussed is consideration of the b, S =1 axial-
vector transitions connecting the S = -1, -2 chan-
nels to the S =0, -1 channels, respectively. These
matrix elements are interesting because our bag
model allows for breaking of SU(3) symmetry.

as we work without spin-dependent forces, degen-
eracy exists between the &' and &' states and no

such model can lay claim to a completely satis-
factory description of the physical states. At best,
one can attempt to obtain a reasonable estimate
for the underlying parameters so as to gain sound

insights regarding the bag model content when

employed to calculate a variety of amplitudes.
A collection of static properties of the 2' baryons

is exhibited in Table III. Let us first discuss the
axial-vector couplings. The effective operator
whose diagonal matrix elements are given in the
column of Table III labeled g„has the structure

Q f(m~ (g, ,)s qg, g ~b~(I, 1, X}r ~b „(1-,-1,X),

where n = 1, tc = 1, and the -function f is given by

Conceivably, there might be differences between
the 4S =0 and 4S =1 amplitudes. Furthermore,
the 4S =+1 amplitudes represent a departure from
previous bag model calculations. These matrix
elements involve "inelastic" processes, which
give rise to certain subtle technical points which
require interpretation. For example, in a b, S =1
axial-vector transition, a ~ quark is converted to
a 6' quark. The other quarks are spectators. Yet,
there is even some effect of the transition on the
spectators because, as is seen in Table II, the
frequency of a proton quark (for example) changes
slightly as we scan across the S =0, -1, -2 chan-
nels. Moreover, the integrals which occur involve
the overlap of baryon wave functions with differing
bag radii (again, see Table II}. In each case, it
turns out that the numerical consequence of these
effects is quite small, but in principle, there is
some arbitrariness in how we proceed. For the
case of the overlap integrals, we chose as a cut-
off the smaller of the two bag radii. For the 4S
=+1 axial-vector transitions, the dynamical fac-
tors which are generalizations of the b,S =0 ex-
pression Eq. (27) are quite complicated and

are not given here. The result of our calculation
is that the SU(6) quark model predictions are re-
normalized by baryon structure with a numerical
factor 0."t45 or about 8% less than the b.S =0 am-
plitudes. This value is common to the S =-2 to
S =-1 and S =-1 to S =0 transitions.

We have also performed a calculation of the
analogous 4S = 1 vector current transitions. Ac-
cording to the Ademollo-Qatto theorem, effects
of SU(3) breaking should be "small" in such am-
plitudes. Again, because of their complexity, the
amplitudes are not reproduced here. We find for
the S = -2 to S = -1 and S = -1 to S=O transitions a
renormalizing factor of 0.971, consistent with the
qualitative expectations following from the
Ademollo- Gatto theorem.

Although data on baryon magnetic moments are
not abundant, there do exist enough of sufficient
quality to make some preliminary judgment re-
garding success of the bag model. For n=1,
a = -1 states, the magnetic moment operator has
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TABLE III. Static properties of the
2

baryons. The
axial-vector coupling, gyromagnetic ratio, and charge
radius (in fermis) is given for each baryon. The gyro-
magnetic ratio is found by multiplying the magnetic mo-
ment of each baryon by twice the proton mass M&.

State (~2)i/2

1.14
-1.14

0.91
-0.91

0.0
0.0

-0.23
0.23

2.63
-1.76

2.52
-0.96

0.78
-0.61
-1.39
-0.53

1.03
0.0
1.05
0.99
0.25
0.25
0.35
0.95

the form

A 4(d+2mR —3
gfmAy (d) =—

6 2(d —2v+mR ' (30)

To obtain the gyromagnetic ratio for a given bary-
on, we multiply the bag model magnetic moment

by twice the proton mass. In Ref. 11 are listed
the following gyromagnetic ratios: P(2.79),
n(-1.91}, A(-0.67 + 0.06), Z' (2.62 + 0.41),

(-1.93+0.75). It has already been mentioned'
in the context of a zero-quark-mass calculation
that the scale of these magnetic moments is not
determined primarily by quark mass, but instead
by the structure afforded by a finite bag radius.
Indeed, this is seen clearly in Table I, where the
proton gyromagnetic ratio is rather insensitive to
changes in quark mass. That the bag gyromag-
netic ratios do so well in fitting the experimental
values is motivation for additional study of these
models. Note that the magnetic moment operator
of Eq. (29) is sensitive to the presence of both
strange and nonstrange quarks in the baryon wave
function. Although the SU(3) prediction that p(&')
= g(p) holds in our model to a high degree of ac-
curacy, the SU(3) prediction y(A) = p(n)/2 exhibits
the effects of symmetry breaking to a greater de-
gree. The model does rather well in these two
cases. In view of the large error bars associated
with the existing " experimental value, it seems
premature to rule this case as a defect of the
model.

The final column of Table III contains values of
the charge radius for each &' baryon. The oper-
ator from which these numbers were obtained in

part is

Q g(m+, (u, ,}ugzzgugb~(1, -1, A)Qb„(1, -1, X),

(29)

where 9 is the quark matrix for electric charge
and

h(m~R, (u„,)b„(1,-1, X)Qb (1, -1, A), (31)
a, A.

where

and

R A.
h(mR, (u} =—

6 (uP -m' R' )(2(u' —2&u+mR)
(32}

(
g

)
g pz(E+Mg)

12m@~ m~
(35)

where P is the magnitude of decay momentum, M~
is the decaying &' baryon mass, and E,M~ are the
&' baryon energy and mass, respectively. The
results, shown in Table IV, depend upon two sa-

A =4(o'-4(u'+(o'(8+6mR —4rPR')

+sr(-6-8mR+4m R') +(9mR —6m Rz —6nPR ).
(33)

The charge radius operator, like that for the mag-
netic moment, probes the presence of both strange
and nonstrange quarks. Our results for the proton
bag in Table I indicate that charge radius increases
as the quark mass increases, with roughly the
sensitivity exhibited by the axial-vector coupling

To our knowledge, there is virtually no ex-
perimental information on the charge radii of the
strange baryons, so it is hard to judge the validity
of the values for (r') ' given in Table III. One
theoretical analysis" of the vanishing of the neu-
tron charge radius suggests that the term linear
in zf' of the form factor Ez(q'), defined by

& Pl &,'(0) I zz) = ( P)sF'i "(~')r„+...] (P4, (34)

is pure d type. Thus, along with the vanishing of
the neutron charge radius, one has simultaneously
(r') =0 for the A, &', and =0. From Table III,
our model is evidently not of this type. We obtain
the vanishing of (r') for A, Z', and =' only in the
limit of SU(3) symmetry, where the strange and
nonstrange contributions to the function h of Eq.
(32) cancel. However, for broken SU(3), the can-
cellation is incomplete, and we obtain the values
given in Table III.

For the remainder of this section, we consider
transition matrix elements, first of the type g"- &' via pion emission, then ~'- ~' via photon
emission.

The pion-emission amplitudes for ~'-2' tran-
sitions are determined from axial-vector current
matrix elements of the type described in Eqs. (26}
and (27). Pion pole dominance is then used to ob-
tain a bag model prediction for the coupling con-
stant Z[&*(—2'}-8(&+)zz]. Upon squaring the cou-
pling constant and inserting appropriate phase-
space factors, we obtain an expression for the de-
cay width I'(B*&w),
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TABLE IV. Decuplet decay widths. All widths are
given in units of MeV.

(u~ i =2.21'l, E =1398 MeV

(ropy 3 862 R 128 1 MeV (38)
Mode (bag model) F (experiment)

4 (1232) Nm

r, (1385)—A~

Fg (1385) Zm

=-*(1530)—=-~

103
41.3

5.2
14.5

120
30.8
4.2
9.1

lient points. The first is that the bag structure
which reduced the nucleon axial-vector coupling
from —,

' to 1.14 plays the same role here, and it
is clearly just as important in bringing the scale
of the SU(6) predictions into agreement with ex-
periment. The second noteworthy feature of our
results is that, despite the SU(3} breaking con-
tained explicitly in this bag model, the B*»cou-
pling constants turn out to be very nearly SU(3}
invariant. As has been shown in the phenomeno-
logical analysis of Ref. 14, empirical &*&&cou-
pling constants exhibit about 15% symmetry break-
ing. This explains why, as good as the results in

Table IV are, they are no better.
Finally, we consider photon transitions to the

ground state of charged and neutral excited nucleon
states. This study is significant in providing a test
of the excited-state bag-model wave functions. The
first excited nucleon state has the configuration
(1Sg,) (1&g,). its energy can be determined from
the solution of bvo linear boundary equations of
the type given by Eg. (10}(one each for n = 1 with
~ =+1 and -1}and one nonlinear boundary con-
dition. The energy equation is analogous to Eq.
(25}, except now the distinction is between K =+1
and -1 quarks, not between & and 6' quarks. %e
find

where q is the initial state momentum, J is the
electromagnetic current, and

of
(38}

For the excitation of a J = —, excited state, there is
this amplitude and an additional one,

If the N* has isospin &, then the amplitudes for the
neutral and for the charged decaying states are
independent. If the isospin of N* is ~, it suffices
to consider just the proton amplitude because the
electromagnetic current is then isovector. In the
following, we shall denote the various nucleon
resonances by the notation I-»» where I is the
orbital angular momentum with which a rN com-

Now that we have a complete description of the
lowest-lying &=-1, +1 nucleon states, we can pro-
ceed to consider the photon transition amplitudes.
The experimental values presented in Ref. 11 are
those of transition amplitudes defined as follows.
Suppose a nucleon traveling along the z axis with
spin component -& and a photon traveling in the
opposite direction but with spin component +1
combine to form a J=

& excited state at rest. The
appropriate matrix element is

TABLE V. Electromagnetic transition amplitudes. All numerical values are in units of
GeV . The experimental numbers are taken from Ref. 11. The columns labeled P and n

refer to decays of nucleon resonances with charge +1 and 0, respectively. The S&& and S ff
bag model amplitudes correspond to the choice +=+1, where n is the parameter defined in
Appendix B.

Bag model Experiment

P33(1232)

D (3 (1520)

S||(1535)

S 3i (1650)

D»(1670)

S gg (1700)

A,
A3

A)
A3

Ai
A3

-0.102
-0.176

0.0
0.0

0.131

0.031

0.057
0.098

0.118

-0.044
-0.076

-0.044

-0.079

-0.141+ 0.003
-0 ~ 259+ 0.005

0
-0.177+ 0.015

0.058+ 0.025

0.057+ 0.035

0.064+ 0.028
0.083+ 0.050

0.036 + 0.030

-0.076+ 0.013
-0.124+ 0.010

-0.042+ 0.013

-0.027+ 0.040
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posite couples to the resonance, and T, J are the
resonance's isospin and spin.

In Table V, we exhibit the amplitude for decay
of the 6(1232} state P,+, in magnetic dipole (Ml)
approximation. Numerically, it should be a good
approximation to ignore electric quadrupole radi-
ation. The characteristic dipole ratio (A, /A, }„~&,
=W3 is satisfied to a reasonable degree by the
data. " The calculation proceeds by determining
the matrix element between P,', and the proton
of the magnetic moment operator (29). The cor-
rect normalization is obtained by means of com-
parison with the nucleon magnetic moment cal-
culation. The value given in Table V has the cor-
rect phase, but is somewhat small in magnitude.

Transitions from the negative-parity states
(1Sgm)2 (1Pg,}are not quite so straightforward
because we must first construct the correct quark-
state vectors. There are five independent types
of states —D33 ~3 +$ S y&, &yap They are all
degenerate in this model. Contributing multipoles
are E1 for the J= ~ states and both E1, M2 for the
J = ~ states. For the latter, there is no a priori
reason to expect dominance of any one multiple
over the other. Indeed, for the D» state, con-
siderable destructive interference is clearly pre-
sent in the A, amplitude. " However, we have per-
formed our calculation in E1 approximation partly
for simplicity, but also in response to a poor re-
sult regarding the D,', state which cannot be re-
solved by adding a higher multipole. The state
vectors are written down in Appendix B, and re-
sults are exhibited in Table V. The parameter

III. ANALYSIS OF FOUR-QUARK OPERATORS

In a renormalizable gauge theory, strangeness-
changing nonleptonic decay is dominated by matrix
elements of the time-ordered product of two weak
currents mediated by a W-boson propagator. "
Since the W-boson is presumably quite massive,
the amplitude is sensitive only to the small-x
region of the time-ordered product, so that a
Wilson expansion may be performed. ~ Also, in
an asymptotically free model wherein the strong
quark-quark interactions are mediated by mass. -
less, non-Abelian neutral gauge fields, renormal-
ization-group techniques may be utilized to give
the effective Hamiltonian in the presence of the
strong interactions as"

H, )f ——c+H» + cM (40)

where

a, defined in Appendix B, is taken to be u =+1.
Although not quantitatively impressive, the bag
model amplitudes are seen to have the correct
phases. One might argue that by adding the M2
amplitudes to these results, it is conceivable that
the fit might be improved, e.g., in reducing the
generally large values of the S» amplitudes. How-

ever, this will not patch up the (D~)+ decay ampli-
tude, for which we obtain zero in E1 approxima-
tion. Evidently, the D» state which occurs in
nature is not the state being described by the fixed-
sphere bag model.

3Gvsin8cos8
H, = g [Jf; y„(1+y,)6'; P&y" (1+y,)X& +X; y, (1+y,)A&@&y (1+y,)6'z],

2 2 I 2=1
(41)

=-10"', c+=10 ' "for a three-color model
such as ours. In the conventional model wherein
strong interaction effects are neglected, c, and c
are both unity. Here H is a purely bI =-,' term
while H, involves a mixture of AI=-2 and BI=-,'
components. %'ithinthisapproachthen, there is an
effective enhancement of 4I= & over 4I= ~ of about
1(y'48/10 ' "=—5, which is suggestive, but still
too small to explain the experimentally observed
ratio of about 20." It is therefore of interest to
compute matrix elements of this Hamiltonian as a
test both of our hadronic model and of the renor-
malization-group ideas.

Since we are not as yet equipped to take three-
hadron matrix elements within the bag scheme,
we first utilize current algebra together with par-
tial conservation of axial-vector current (PCAC}
in order to reduce nonleptonic amplitudes
(&'v )H„(&& to those involving matrix elements of

the weak Hamiltonian between two baryons. Be-
cause of the appearance of baryon pole terms, the
procedure is strictly legitimate only for the S-
wave (parity-violating) piece of the nonleptonic
amplitude, and we find'0

&a v'i@„"ia& =—&a'i [P,', Il.'"]i»

(a JH.~"f» . (42)

In our model, there are guaranteed to be no ~I =
&

eff ects since

(&'je, )» =0

according to the Pati-Woo theorem. " Thus, the
octet operator H is the only one which contributes.
The calculation proceeds as before, however, now
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using the 4-Quark operators

ld'r p~(r, t)y, y~(1+y, ) p(r, t)

x0 (r, t)yoy~(1+y, )p(r, t).
If we neglect the small shift in radius and frequen-
cy between the p, A, = states, we may character-
ize our results most simply by means of

(nr'IH'" IA&'=W (pv IH""IA) =i(d+sf)

(pv'IH'"Iz') =M(nv IH'„"IZ) =i've (d-f),
(44)

&nn'
I Hg

" IZ''&'= 0,

where

d = f= -c-" cos8 sin8 II N, J d'r — j,(p,r)j,(p,r) + ' ' ' f,(pp'}j,(p2r)

x j,(p,r}j,(p,r) + ' ' ' ' j,(p,r)j,(p,r)E3+m3 E4+m4
(45)

where P; =(&u -nPR')' '/R and Il, = 94 MeV is the
pion decay constant. Performing the integration
numerically, we find

d= f=-6.5-x 10 'c (46}

How does this result compare with experiment?
Unfortunately, the parameters f, d cannot be ex-
tracted unambiguously from the S-wave hyperon
decay amplitudes because in general there can
be other contributions, e.g. , K* pole diagrams.
Although these other contributions are probably
non-negligible, none of them is expected to exceed
the commutator term evaluated here. A numerical
comparison of Eqs. (44)-(46}with the experimen-
tal amplitudes is presented in Table VI. Even with
the use of the enhancement factor c -=3.1, pre-
dicted decay amplitudes are too small by factors
of 2 to 5. The ratio f/d = -1 given by our bag
model [or any other model employing SU(6) wave
functions for the &+ baryons] is not in disagree
ment with the value f/d = -1.2 obtained —in Ref. 20
on the basis of fitting both the S- and P-wave
am'plitudes with an SU(2) parameterization.

IV. CONCLUSION

In the previous sections, we have utilized the
NIT bag model in order to examine a variety of
transition moments. The present analysis extends
previous work in that (i}non-diagonal matrix ele-
ments are handled and (ii) commutators are uti-
lized in order to reduce uncalculable three-hadron
matrix elements to tractable two-body expectation
values. The results of these calculations are
generally encouraging. Calculated results for
masses, magnetic moments, axial-vector and
vector decay constants, etc., agree reasonably
well with experimental values except in the case
of the D» electromagnetic transition moments and
of the nonleptonic decay amplitudes. There are
two possibilities here. Recent work by Aaron and
Amado" has indicated that substantial unitarity
corrections must be applied to the electromagnetic
transition moments, suggesting that the experi-
mental analysis for the D» states should be redone.
Also, the weak Hamiltonian used to calculate the
nonleptonic decays is by no means assured to be

TABLE VI. Hyperon nonleptonic decay amplitudes. Column 2 gives the value predicted in the bag model [Eq. (46)]
in terms of an arbitrary enhancement factor &, whereas the numbers in column 3 correspond to & = 3.1.

Mode 10 x (experimental value) 107 x (theoretical value)
(see footnote a)

10~ x (theoretical value)

&n7r' IH
"IA)''

(per jH~' 'fz )
inn IHw~ Iz)'
&A7r IH I)' '

2.39+ 0.05

-3.28 + 0.11

-3.39+ 0.07

c x 0.17

-c x 0.42

-c x 0.34

0.53

—1.28

—1.05

is the enhancement factor defined in Eq. (40).
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correct." Thus one can take the point of view that
the bag wave functions are substantially right, but
they cannot be easily applied to the cases in ques-
tion. Alternatively, and probably more likely, one
can adopt the attitude that the fault lies in the na-
ture of the model itself. The simplified version of
the bag that we are employing may be too naive.
Indeed, spin-spin interactions between the quarks
can and should be added. Such interactions could
substantially modify the wave functions we have
been using and could lead to a resolution of the
problems discussed above. In addition, alterna-
tives to the fixed-sphere bag solutions should be
sought. Excited states could well be better des-
cribed by such wave functions than by those we
have utilized.

Two other extensions of the model should be
examined. In the present version of the model
hadrons are always at rest —matrix elements al-
ways involve momentum transfer q =0. Ways to
allow the bag to move, consistent with the boun-
dary condition, must be found in order to deal
with arbitrary kinematical situations. '4 Finally,
the implications of the existence of a fourth
—charmed —quark can be studied especially with
respect to the 4(3105). Because of certain tech-
nical subtleties and because of the speculative
nature of the charm hypothesis, we have not in-
cluded this work here, but will present such work
in a separate publication.

APPENDIX A

M Mg
3

(A 1)

It is interesting to study the relationship between
this model and the familiar nonrelativistic quark
model. In Ref. 4, it has already been shown that

by letting the quarks become infinitely heavy, our
numerical results attain the values given by the
SU(6) symmetry which underlies the nonrelativ-
istic quark model, e.g., g& =&.

In this Appendix, we wish to point out the exis-
tence of a second manner in which a nonrelativistic
limit can be attained. An alternative to taking
quark mass to infinity is to let the bag radius R
become arbitrarily large. The basic point is that
the standard quark model is recovered from the
bag model in any limit in which &, the confinement
energy per volume, goes to zero. Of course, we
must continue to satisfy the bag boundary condi-
tions as the limit is being taken. For example, the
linear boundary condition (10) implies 2P„1-mSR'
-8 as either m or R becomes infinite. It is
amusing to note that in taking R-~, all masses
remain finite, and indeed,

where M~, M& are the proton and 0 masses. This
is in distinction to the infinite quark-mass limit,
for which in this model, the hadron states also
become infinitely massive.

APPENDIX B

In this Appendix, we write down the quark wave
functions employed in the calculation of radiative
decays of nucleon resonances described in Sec.
II. The state of highest weight in the (1S,/-, )'(1P,/, )
configuration is

(D„);/', = (b'(d't)b'(d't)bB(d't) +c p.) I0),33 3 2

where a quark in the lory/2 configuration is denoted
by a tilde (d' or X), the subscripts R, W, B are
color indices, and c.p. means cyclic permutation
of all variables aside from the color indices,
whose position remains fixed. The remaining
states of the (1S,/, )'(1P,/, ) configuration can be
reached by means of lowering operators, ortho-
gonality conditions, and unit normalization of the
states. Our phase convention here is that the
lowerings are accompanied by positive signs only.
The states with T, =J, =~ can be written in terms
of the classes of quark creation operators

A =bs(Xt)bw(d't)bB(tpt) -"

B = bBt(A)bts(Xt)bB(d't), ... ,

C = b,'(Xt)b', (d't)bt(d't), ... ,

D =b/1(d't)bt//(Xt)bB(d't), ... ,

E = bshe(d't)b„(d't)bB(Xt), ... ,

(D„)',/, =,/, (A+B+C +D+E),1

( 31)1/2=( 1/2 (2A+2 —C — —E)
1

(D,s)',/2 =,/2 (2A —B+2C —D —E),1

+ -2A + B + C + aD —(1+a)E
ll+)1/2 ~6(5 +2a2 +2a)1/2

S
2A —B —C —yD+(1+y)E(11B1/2~6(5+2y2 +2y)l/2

where —~&a&~, all —2, and y=-(5+a)//(I+2a).
That is, the S»& and Syph' states are not uniquely
determined by orthogonality and normalization.




