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The irreducible components of the 2" baryon mass matrix and the 0 meson mass-squared
matrix are calculated and compared with the Li-Pagels relations. The Li-Pagels relations
predict correctly orders of magnitude, but one sign is wrong and most of the relations are
off by non-negligible factors. An exception is the relation

(m& -m„) +2(m&+ -m~-) +(m-o-rr. ~-) 3(mz+ -m@0 ) +2& 3 (m~ -m„o) sinP cosP
m~ ~mg 2m@& + m ~2 —Bm„&

which is satisfied quite well. The angle P is the q-7r mixing angle.

I. INTRODUCTION

ln the framework of an approximate SU(3) sym-
metry one can analyze the experimentally ob-
served masses into irreducible components. '

When such an analysis is carried out for the low-
est-lying octet of 2' baryons and the lowest-lying
octet of 0 mesons, certain regularities are ex-
posed. The qualitative features of these regu-
larities have been well known for a long time and
are referred to as octet mass enhancement. ' In
recent years Pagels and his collaborators' have
applied the Goldstone-pair mechanism to gain an
understanding of the quantitative features of the
observed regularities in the mass spectra. The
purpose of the present paper is to show that, al-
though their results are encouraging as far as
orders of magnitude are concerned, there are
nevertheless non-negligible discrepancies between
their calculations and experiment.

In Sec. II we update the calculation of the mass
expansion coefficients. In Sec. III we review the
calculation of the Li-Pagels relations between cor-
responding expansion coefficients of mesons and
baryons. In Sec. IV we compare the Li-Pagels
relations with the observed mass expansion coef-
ficients and draw conclusions. Appendix A con-
tains an alternative expansion of the meson mass-
squared matrix.

(8, Y",I",I,"iT-„"&,',, j8, Y', I', I,')
= (8, Y"I"I," ~

n, Y, I, I, ; 8, Y' I ', I3 )& v n, (l)

To utilize conveniently this set of matrices it is
desirable to rewrite the mass matrix in a basis
in which the isospin I is diagonal. The reason is
that the electromagnetic interactions do not con-
serve isospin, and the states

~
A) and

~

Z') which
diagonalize the mass matrix are mixtures of an
isosinglet state

~
s ) and an I, = 0 member of an

isotriplet
~
t). We therefore define

~
A) =cosu ~s) +sinu

~
t),

(Z') = —sinu )s) +cosu ( t)
(3)

where a is referred to as the A-Z' mixing angle.
In a basis in which the isospin I is diagonal the
baryon mass matrix %{&)is given by

where the factor multiplying v n is an SU(3)
Clebsch-Gordan coefficient. The matrices T& & t
fulfill the orthonormality relation

n' i» ((Tr"."i.r, )" Tr,"r r,).
=8&, . ~, ~ ~r r ~r, r ~r r . (2)

II. MASS EXPANSION COEFFICIENTS

Consider the experimentally observed masses'
of the ground-state octet of &' baryons as matrix
elements of a mass matrix which is diagonal in

the subspace spanned by the eight physical states.
We may expand this matrix of experimental num-

n

bers in a complete set of 8 by 8 matrices T&&& I
provided by the SU{3) classification scheme. The
matrices T-„"& I, are defined as follows':

X(B)=
PP2$

J9l@p

where m„m&, and m, & are defined by

(4)
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m, =mA cos'e +mzp sin'~,

nq =mA sin o. +mqpcos n,2 2

m, r =(m,r-mr. o) sinacosa .

(5)

For any given values of the eight masses ~, m„,
mA, m&+, m~p, m&-, m~p, m~- and any given value
for the A-~' mixing angle e, the baryon mass
matrix 3R(B) can be written as follows:

3R(B}=a—'T—' +a Tp~o o+a T~o&, o+a~T~o, o

binations with the required property. Up to linear
equivalence they are TP and &51o . o

—v 3 I, ».
Therefore, we get two restrictions on the mass
expansion coefficients: the above-mentioned Eq.
(9)

a~~ =0,+

oaf —o 3' =0 .

+Q~ Tp ~ p+Q~ Tp I p+a+ T+

+Q+ T~, , +a~ T~...,

where T~+ is defined by

(6)

When reexpressed in terms of the mass matrix
elements, Eq. (11) reads

(mo -m„) —(mr+ —2 mr +mr, -)

—(m, o —ms-) —2v 3m„= 0 (12)

T+ —
~2 (To ~ i. o+To i. o)

Ttfe coefficients a in the expansion Eq. (6) will be
referred to as mass expansion coefficients. Be-
fore proceeding, we remark that all that expres-
sion (6) for the baryon mass matrix does is to
trade one set of nine parameters, namely, the
mixing angle and the eight masses, for another
set of nine parameters, namely, the mass expan-
sion coefficients.

Four out of the nine mass expansion coefficients
are actually independent of the A-Z' mixing angle
o.. Indeed, from the experimental values' of the
masses we have

a—' = 1.151 11+ 0.000 08 GeV,

a"= 0.134 06+ 0.00011 GeV,

a, =0.002 41+0.0000'1 GeV,

a~=0.00004 +0.00009 GeV .

(6)

We see that a+~ is at least four orders of magni-
tude smaller than a~, and is consistent with zero.
Thus, even if the relation

a~=0+ (9)

is not exact, it must be an excellent approxima-
tion. Expressed in terms of masses Eq. (9) reads

(mr, -m„) —(mz+-mr -) +(moro -ms-) =0 . (10)

This is the Coleman-Glashow' sum rule. To ex-
plain the sum rule one assumes that the electro-
magnetic interactions have the transformation
properties of a U-spin scalar member of a SU(3)
octet. One also assumes that in the absence of
electromagnetic interactions all the coefficients of
Tp 7g p with I 0 vanish. From these two assump-
tions it follows that linear combinations of Tp ~$ p p

which have no U-spin scalar component, will have
vanishing coefficients in the expression for 3R(B}
Eq. (6). There are two linearly independent corn-

or in terms of the masses and mixing angle

(mo —m„) —(mr+ —2 mr, o +mr, -) —(mso —ms -)

+2(mA -mno) (sin'a —v 3 sin+cosa) =0 . (13)

This is the Okubo-Sakita' and Dalitz-Von-Hippel'
sum rule. We follow these authors and define the
A-Zo mixing angle by the sum rule (13). It is now
convenient to define a matrix 7P by

(&)1l2 2rrr y(o)1l2 Zgz, (14)

and write the expansion of 3R(B) as

3R'(f ) =»T ,', , +fr'T~, , +br-Trr, ,
S +~V TU

where the g-mp mixing angle P is defined by

(m~+' —mro') —(m, +' -m, o')

(16)

+(m„'-m, o') (sin'P —v 3 sinP cosP) =0 . (I I)

In Table I we exhibit the standard matrices rele-
vant to the mass expansion. Table II and Table III
show the values of the expansion coefficients.

3R(B) =a&T~&o o+a T&q +a"T~"

+a~To ~, o+a, T~op, o+a, T~, +a/7/,
(15)

where it is understood that the A-Z mixing angle
a in expressions (5) is calculated from Eq. (13)
and that a~ vanishes. The orthonormality rela-
tions (2) make the calculation of the expansion co-
efficients immediate.

A completely analogous expansion is possible for
the mass-squared matrix of the lowest-lying octet
of 0 mesons if one neglects a possible g-g' mix-
ing by the strong interactions and assumes the
state

~ r)) to be a pure I= Y=O member of an octet.
Assuming m, + =m, —,m~+ =m~-, and m&p =mpp2 2 2 2 2 2

we have
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TABLE I. Standard matrices relevant to mass matrix expansion.

12

o, oio

0
-1

~8 ~10
0, 0, 0

s~ v30
To,'i, o- 15

0 2va
0

2vo 0

T-A =vs8

0, 0, 0
T-A8 W6

0, i|0 3

0
-2

~15
ooo ]5

v o
u 30

0 -3v' 3
5

—3v 3 -10
5
-3

Appendix A contains an alternative expansion for
the meson mass-squared matrix.

III. LI-PAGELS RELATIONS

Table II and Table III reveal some well-known
features. Roughly speaking Table II shows that
a+is of order 1 QeV; a" is of order 0.1 QeV; a is

TABLE II. Mass matrix expansion coefficients for
baryons 8 2 . tann =-0.012+0.002.

ai = 1.511 1 + 0.000 08 GeV
aA =0.13406 +0.00011 GeV

= 0.032 66 + 0.000 05 GeV
a—=0.002 50+ 0.00006 GeV

ai ——0.002 41+0.000 07 GeV

ai =0.001 00 w 0.00014 GeV

a—=0.000 33+ 0.000 03 GeV
U

&,—' =0.000 04+ 0.000 09 GeV

of order 0.01 QeV; a&, a", , and a, are of order 0.001
GeV; and ag. is of order 0.0001 GeV. This order-
ing provides for various degrees of approximation
to the baryonic spectrum. A well-known example
is the approximation which neglects mass differ-
ences inside isospin multiplets. This amounts to
approximating az, a„a, by zero. But since a~ is
about equal to a, one may as well approximate a~
by zero. The vanishing of a~ is the Qell-Mann'-
Okubo' sum rule.

Again, roughly speaking, Table III shows that 6—'

TABLE III. Mass-squared matrix expansion coeffi-
cients for mesons 8 0 . tanp=-0. 0106+0.0003.

0.167 66+ 0.000 09 GeV2

=-0.11628+0.00011 GeV
b —"=-0.00585+ 0.00019 GeV'
5 i =—0.002 03 + 0.000 06 Ge V

b 7 = 0.000 45 + 0.000 01 Ge V
U
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and & are of order 0.1 GeV', &~ and &, are of
order 0.005 GeV', and 5+Ois of order 0.0005 Geg'.
Here again if one neglects mass differences inside
isospin multiplets, thereby approximating &~&and

~, by zero, one may as well approximate &~ by

zero, thereby recovering the Gell-Mann-Okubo
relation. However, in the 0 mesons case the ap-
proximation is less relaiable since the magnitude
of &~ is about three times larger than the magni-
tude of &,. This may be a signal for the necessity
of q-q' mixing, which we neglected.

Another well-known feature of the mass expansion
coefficient is the smallness of aP compared to a",

and a, which is similar to the smallness of a~
compared to a . This allows an approximate de-
scription of the electromagnetic mass splittings by
setting a~~ equal to zero. The relation obtained

3(m —m„) + 5(mr+ —2 mro +mr-) —3(m3, 0 —m~-)

—2(m~ —mro) (5 sin'o. +3&3sinncoso) =0 (18)

together with the defining relation Eq. (13}and the
sum rule Eq. (10) give the approximate description
of the electromagnetic mass splittings for the bar-
yons.

For the mesons the smallness of bf compared
to &, is similar to the smallness of &~ compared
to & . Here again an approximate description is
possible by setting bf equal to zero.

Finally, Table III shows that if one attempts a
very rough approximation of the meson spectrum
by neglecting not only mass differences inside
isospin multiplets, but also mass differences
among different isospin multiplets, one may ne-
glect the meson masses squared altogether. Thus,
in an approximation which sets &~&, &„&~, and b

all equal to zero, one may set ~equal to zero
since the magnitude of &—' is less than & times the
magnitude of b . This is again well known and is
the basis for the chiral-symmetry description of
the hadronic spectrum. "

In a series of papers Li and Pagels' address
themselves to the task of a detailed quantitative
understanding of the entries in Tables II and III.
They find interesting relations between corre-
sponding entries in the two tables. The theoret-
ical framework of their analysis is broken chiral"
SU(3) SSU(3) supplemented by the assumption of
Goldstone-pair dominance. ' In this framework the
Hamiltonian density is written in the form

p+

where 3C, is SU(3)8SU(3) symmetric, while Xs
breaks this symmetry. It is assumed that the
SU(3)SSU(3) symmetry of Xo is realized through
the Nambu"-Goldstone" mechanism. This means
that the spectrum of JX d'x contains eight massless

(20)

where t =(P —P')'. At t = 0 one has

F(0) =m, -m, , (21)

where m is the same for all members of the bar-
yon octet. Writing an unsubtracted dispersion rep-
resentation for F(0}, one gets

1 ",discF(t'}
tp

(22)

and the discontinuity across the cut is given by

discF= Q &vac I&a( 0)(n &&n]T )BB&

In the absence of narrow low-lying 0' states one
assumes that the sum is dominated by states

~
PP)

of two 0 mesons in the lowest-lying octet. This
is the Goldstone-pair mechanism. ' To actually
calculate the Goldstone-pair contribution to disc E,
one approximates the matrix element
(vac ~Rs(0) ~

PP) by its value at t =0. This is the
way the 0 meson masses squared enter into the
expressions below. The matrix element
(PPI T

~
BB) is approximated at threshold by its

chirally symmetric value through the steinberg
low-energy theorem. " This is the way the f/d
value of the baryonic axial-vector couplings enter
the expressions below. Finally, the threshold &p

in the dispersion relation (22) is approximated by

zero, and the integral is cut off at t'=4A', pre-
suming dominance of the threshold contributions.
It should be noted that the approximations involved
in the Li-Pagels scheme go beyond the strict
Goldstone-pair dominance hypothesis even if one
is willing to assume threshold dominance of the
dispersion relation. This may be of some im-
portance when electromagnetic mass differences
are concerned, since the state IyPP& of one pho-
ton and a Goldstone-pair may give a non-negligible
contribution. However, accepting the way Li and

Pagels realize the Goldstone-pair dominance
hypothesis, one gets' the following Li-Pagels rela-

pseudoscalar mesons, and a vacuum state of

JX,d'x is invariant only under the diagonal SU(3)
subgroup of chiral SU(3)(3 SU(3).

As for the symmetry-breaking Hamiltonian den-
sity, its SU(3)8SU(3) transformation properties are
not important for the Li-Pagels analysis. The
only assumption we shall make here is that it is a
Lorentz- scalar field.

A concise description of the Li-Pagels method
was given by Renner. " One considers the baryonic
matrix elements of the symmetry-breaking Hamil-
tonian density X~ which has the form
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tions'.

a" =-,'v 5 CA(u' —u) b

a~ =-,'CA(2u' —6n+3) b~,

a~ =--,' CA(2n' —6u+3) b~

ay Q&5CA(Q Q) 6

a, =
& CA(2'' —6(y+3) 5

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)a~~= ——,'CA(2n' —6u+3) b~~,

[( o)& l2 SZL (
o)1/2 gZl]

—'CA(2u 6u+3) [(o)'~obzL (o)'~2bzL]

aA

aS
a—27

~A
1

Table II

0.134 06 + 0.000 11
0.032 66 + 0.000 05
0.002 50 + 0.000 06
0.002 41+0.000 Q 7

Li- Page 1s

input
input

—0.001 10+0.000 05
0.002 34 + 0.000 06

a& 0.001 00 + 0.00014

0— 0.000 33 + 0.00Q 03

0.000 57 + 0.000 02

0.000 08+ 0.000 01

TABLZ IV. Comparison of the baryon mass expansion
coefficients with the Li-Pagels relations.

a~=0 .

The constant C is given by

(24g)

(24h)

n =0.66 +0.02, a' —o. = —0.22 +0.01;
n = 0.662 + 0.018, n' —n = —0.224 + 0.006;

n = 0.635 +0.010 e' —n = —0.232 + 0.003 .

(29)

1 gC= ——" =12 85 (GeV) ',
4n' f (25)

This gives for A a value of about 0.35 GeV. How-

ever, for the polynomial 2u' —6++3 we have

where gA is the nucleon axial-vector coupling and

f is the 0 mesons decay constant. The quantity
(1 —n)/n is the f/d ratio of the baryonic axial-
vector couplings.

The general form of this relation is

n =0.66 +0.02,

a = 0.662 +0.018,

n = 0.635+ 0.010,

2u' —6m+3 = —0.089 +0.06(I;

2u' —6++3 = —0.095 +0.060;
(30)

2u —6' +3 ——0.004 +0.035 .

a = xAC P(n) b,

where x is a pure number and P(n) is a polynomial
in n. Actually there appear only two distinct poly-
nomials in these eight relations. The coefficients
a and & correspond to matrices To-"&I, with the
same n and I. Thus, since for the mesons the
combination

Thus, 2u' —6@+3 is not very well determined by
the above determinations of a and changes con-
siderably with the above values of e. As stressed
by Pagels and his co-workers, this happens be-
cause 2n' —6n+3 has a zero at n =

2 (3 —W3)
= 0.634.

One possible way to proceed is to adjust both A

and u so that (24a) and (24b) are satisfied. The
adjusted value of a will then satisfy the relation

(m„+' -m„o') —(m„+' -m, -'}
+ (mxo' —mx-'} (27)

vanishes, it is not surprising that Eq. (24h) pre-
dicts that a~ vanishes. " Also because of our def-
inition of the A-Z and g-m mixing angles, Eq.
(24g) reads 0=0.

IV. ANALYSIS AND CONCLUSIONS

a u 5 2a —6++3
a 10 a' —a

derived by Li and Pagels.
Let us denote by R(n) the rational function

2u' —6m+ 3R(e}=
—A

(31)

(32}

Nieh e& al e = 0.66+0.02;
Brene et al. ,

' a. =0.662 +0.018; (28)

To compare the Li-Pagels relations with our
Tables II and III let us first substitute the experi-
mentally determined values for n:

As mentioned above, R(a) vanishes at e= D.634.
It increa. ses monotonically to 1 at u =-,'(5 —v 13)
=0.697, passing through the value & at n= —,'. Thus,
the answer to the question of whether or not R(n)
provides a suppression factor is extremely sensi-
tive to the value of n. As a matter of fact, if we
calculate R(a) and a from Eq. (31}we get

Garcia, " n =0.635 +0.010;
R(a) = 1.089 +0.003 (33)

and adjust A so that Eq. (24a) holds. As noticed
by Li and Pagels the polynomial aP —n does not
change drastically with the above values of a.
Indeed, we have

and

n =0.7024 +0.0002 . (34)

The value of a in Eq. (34) slightly changes the cut-
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off mass A to about 0.37 GeV.
In Table IV we compare the baryon mass expansion

coeff icients calculated through the relations in Eqs.
(24) with the entries of Table II. It is encouraging to
note that all calculated coefficients have the cor-
rect order of magnitude. However, the coefficients
a ~ and a', calculated according to Li and Pagels are
too small byabouta factor of 2, and a ~ calculated
according to Li and Pagels is too small by about a fac-
tor of 4 and a~ has the wrong sign. This should be
contrasted withthe value of n, . Indeed, the relation

A b$
1 I
X (35)

This gives

which follows from Eqs. (24a} and (24d) holds quite
well. We note that all the calculated coefficients
which are too small are proportional to the prob-
lematic polynomial 2n' —6a+3. Writing Eq. (35)
in terms of masses we have"

(mp -m„}+2(mr+-mr-) +(mxo-mx-)
m3,'mg

3(mr+' —mxo') +2&3(m„' —m„o') sinP cosP
2m@ +m

yt
—3m~

(36)

A possible criticism against this relation having
any significance is the neglect of g-g' mixing. In
other words, the mesonic sector is different from
the baryonic one by the existence of a relatively
low-lying q' so that the states

~
t}) and

~
q') may be

linear combinations of an SU(3) singlet and an
I= F=O member of an SU(3) octet. This may mean
a theoretical uncertainty in the diagonal I = Y=0
matrix element of K'(P) in Eq. (15). We over-
looked any such uncertainty in calculating the en-
tries in Table III when we neglected g-g' mixing.

To get a feeling for the theoretical uncertainty
involved, let us adjust m,

'—the diagonal I= Y= 0
matrix element of 3}I'(P}—so that it fulfills the
Gell-Mann-Okubo relation:

4m ' —3m, '-m '=0

TABLE V. Mass-squared matrix expansion coeffi-
cients for mesons 8 0 . tanP= —0.0106+ 0.0002.

b = 0.20364+0.000 10 GeV
0.012 76 + 0.000 10 Ge V

b-'= -0.005 85 ~ 0.000 19 Ge V'

b
&

= -0.002 09 + 0.000 06 Ge V

b
U

= 0.000 45 + 0.000 01 Ge V

Therefore, g-g' mixing does not jeopardize Eq.
(36).

We conclude that the Li-Pagels relations give a
rough description of the relation between the me-
sonic andbaryonic mass expansion coefficients.
What is needed is a way to incorporate the tail of
the dispersion integral (22) so that one can judge
the validity of the Goldstone-pair dominance hy-
pothesis. Ideas of duality may be of importance
in such an evaluation.
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= (JL) ' ~2 T—' (w) ' ~2 Tas

T (~)1 l2 T 1 + (~)1 l2 Tgg

(A1)

(A2)

The matrix T, describes a spectrum in which
m, ' = 0 and m&' and m „' fulf ill the Gell-Mann-
Okubo relation

4m '=3m„' .

Expressing 3R'(P) in terms of T, and Tq we write

APPENDIX A

To bring out the fact that m„' is a small number,
one may alter a little bit the expansion of the me-
son mass-squared matrix. Define the matrices
T, and Ts by

m,
' =0.32128 ~0.00009,

compared with

{38) II '(P) = b, T, + b g Tg + b~ TP.
+ I. o. o. o+b~ (A4)

m„' = 0.3012 +0.0007 .

With the above value for m„' we get

b', = —0.002 03+0.00006 GeV',

b =-0.1195+0.0001 GeV',

(39)

(40)

(41)

decreasing the value of b, /bz from 0.01V5+0.0004
to 0.0170+0.0004. Comparing this with the value
of n, /a which is 0.0180 +0.0005, we see that Eq.
{31)holds within the experimental accuracy.

and calculate the entries in Table V.
Again we have a familiar pattern where, roughly

speaking, b, is of order 0.1 GeV'; b~ is of order
0.01 GeV; b~ and b, are of order 0.005 GeV', and
b~~ is of order 0.0005 GeV. Therefore, we may
consider a rough approximation to the meson spec-
trum where bq, b~, b„b~~ are all neglected com-
pared to b, . This fact is again well known and
serves as a basis for the Gell-Mann-Oakes-Ren-
ner model of chiral symmetry breaking. "
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