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Heavy-quark models of the new narrow resonances are presented. The relative heaviness
of the assumed new quarks suggests applying the adiabatic approximation familiar from
molecular physics here. This approach provides partial justification for the use of potential
models to describe the new resonances. Vacuum polarization plays an important role in de-
termining the shape of the adiabatic potential. Model calculations of the y’’(4.1) are pre-
sented. Agreement with experiment is good. A coupled-channel formulation of the narrow
resonances and the new threshold is presented. The resulting coupled-channel Schrodinger
equations can be solved iteratively. The lowest-order approximation reproduces the adiaba-
tic picture and higher-order corrections are calculable. Several coupled-channel models are
analyzed numerically and qualitatively. Although detailed numerical results are model-
dependent, certain trends occur. We estimate that the radiative decays of the y’ (3.7) should
be less important than is indicated by naive-pure-quark-model calculations. In addition,
the §’ (3.7) is not a simple two-quark state but has considerable charm-anticharm-meson
content. The leptonic widths of the ¥(3.1) and ¢’ (3.7) are computed and good agreement with
experiment is found. Corrections to the adiabatic-potential-model approximation to R(Q?)
=0(e* e~ —hadrons)/o(e*e”—p*u ") above threshold are computed. If the coupled-channel
model uses the SU(4) charm scheme, then D*’s are expected to outnumber D’s by a wide
margin above threshold. The potential-model calculations of R(Q% which accept the con-
ventional SU4) scheme are systematically below the data for E ., = 4.6—4.8 GeV. By add-
ing the contribution of a heavy lepton with mass 2.3-2 .4 GeV to the four-quark prediction,

a curve of R vs E_ which is in good agreement with the data over the entire energy range

occurs.

I. INTRODUCTION

The discovery of two narrow resonances’ of
masses 3.1 and 3.7 GeV, respectively, and the
large value of R =0(e*e~ —~ hadrons)/o(ee = )
above 4.0 GeV strongly suggest the existence of
new, relatively heavy hadronic degrees of free-
dom.? A popular interpretation of the data postu-
lates the existence of one or more heavy quarks
which exist in addition to the colored ®, M, and A.
Then the narrow resonances are thought to be S-
wave bound states of the heavy quarks. The long
lifetimes of these states suggest that the heavy
quarks carry a new quantum number which is con-
served by strong interactions. This quantum num-
ber is often called charm.* Charmed hadrons are
then defined as bound states of a charmed quark
and ordinary quarks, while the new resonances
are bound states of a charm-anticharm quark
pair. This scheme suggests further that the broad
enhancement in R near 4.1 GeV is caused by the
existence of a bound state of heavy quarks which
lies above the threshold for production of charmed
hadrons.

12

It is the purpose of this article to analyze mod-
els of the new resonances and the e* e~ annihilation
cross section above charm hadron threshold. We
shall argue that the relative heaviness of the new
quark(s) allows one to formulate an adiabatic ap-
proximation for the new heavy states in analogy
to the Born-Oppenheimer approximation® for the
hydrogen molecule. A physical picture of consid-
erable simplicity will result. It is hoped that it
will be a useful stepping stone towards more real-
istic phenomenologies of the new states.

Before embarking on dynamical models of the
heavy quarks we must first assume their numbers
and properties. The simplest charm scheme is
the original SU(4) model.® It contains a new, iso-
singlet, charge %, charm+1 quark (the ®’) in addi-
tion to the ®, N, and A. This model is particular-
ly impressive theoretically because it was invented
long ago to explain the absence of neutral strange-
ness-changing currents and was reasonably explic-
it in predicting charmed hadrons of masses in the
several GeV range. It is also economical—only
one new quark is introduced. However, it is not
at all clear that nature is impressed by our histori-
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cal bias. However, whenever it is necessary to
assume a particular quark scheme in the text we
shall base our considerations on the asymptotical-
ly free® non-Abelian gauge theory of twelve quarks.
Then the (3.1) is viewed as a 13S &'®’ bound state
and the ’(3.7) is the first radial excitation of that
state. The broad ¢”(4.1) is the would-be 3S state
which lies above charmed particle threshold. It is
a fact that the mass spacings between the y, y’,
and y” are understandable in terms of forces of a
conventional strength.”*® This fact motivates our
assumption that the y’ and y” are radial excita-
tions.

However, these assignments for the y’s and the
SU(4) scheme in general are already in serious ex-
perimental trouble. First, R is too large at @
=50 GeV? to be understood simply by the SU(4)
scheme.®!° Perhaps several quarks with masses
of about 2 GeV must be introduced to explain the
new data.'! But if that is done, the simple assign-
ments for ¥, y’, and ¥” may not survive. Our adia
batic potential model calculations of R lie below
the data for E_ = 4.6-5.0 GeV if we use the SU(4)
scheme. However, it is noted that if a heavy lep-
ton of mass 2.3-2.4 GeV exists, then its contribu-
tion to R brings the model calculations into good
agreement with the data. The existence of a heavy
lepton will be easily confirmed or refuted experi-
mentally. Second, no charmed hadrons have been
unambiguously identified in the final states of e*e-
annihilation.'? The recent experimental searches
have not yet ruled out the SU(4) scheme but may
do so in the very near future. Third, a discrep-
ancy of a more model-dependent nature exists.
Most models of the charmonium states assume
that a quark-confining potential acts between heavy
quarks.”®!% This potential insures that 2P states
lie somewhere between the ¢ and the y’. For ex-
ample, the many authors of Ref. 8 tried

V(r)=—i:£[1 - @/aP], @=0.2, a~0.2 fm.
1.1)

The first term in Eq. (1.1) was motivated by
asymptotic freedom and the second term by the
hope of quark confinement.'* In such a potential
the 2P states lay 230 MeV below the 2S state, so
one expected copious monochromatic y rays com-
ing from the electromagnetic transitions of the y’
into the 2P levels. These spectral lines have not
been observed.'* We shall see that coupled-chan-
nel dynamics to be described in the text lead to
smaller 2P-2S mass differences. Since the transi-
tion rate for 2S5~ 2P +y depends on the third power
of the photon energy, the discrepancy between the-
ory and experiment is significantly reduced and
possibly eliminated. The quark models based on

Eq. (1.1) also predicted leptonic widths of the y
and y’ which were at odds with experiment. How-
ever, the same coupled-channel effects which re-
duce the 2P-2S mass difference also lead to new
leptonic widths which agree with the data.

Some of our results, both qualitative and quanti-
tative, follow, fortunately, just from the existence
of heavy quarks and a new threshold near 4.0 GeV.
We shall point these out in the text. One hopes
that something of what will be said in the follow-
ing pages will survive the turmoil of the next six
months.

The text is organized as follows. We begin by
reviewing the Born-Oppenheimer approximation
in the context of a many-body problem and its ap-
plication, introduced in Ref. 16, to the heavy-
quark problem. This approach provides some
justification for the use of potential models in
heavy-quark phenomenology. Our comments,
which are introduced in an intuitive fashion, are
then illustrated in two models of quark confine-
ment. These field-theory calculations produce
adiabatic potentials which act between heavy
quarks. Although the models are field theories
in one space dimension, they embody quark con-
finement in models with a high-mass charmed
hadron threshold. The lessons learned from these
exercises are then incorporated into a coupled-
channel model of the new resonances and the new
threshold in (3 +1) dimensions. These models
lead to results which are suggestive of the data.

In most cases, in fact, quantitative success can
be claimed. Some discrepancies in simpler poten-
tial models constructed without knowledge of the
new threshold are removed in a fairly natural
fashion. Although the realism of the adiabatic ap-
proximation to the problem at hand can be chal-
lenged, it does lead to numerical results which
are understandable in simple physical terms. The
coupled-channel models also make new predictions.
In general, the nearness of the new threshold
causes a substantial part of the y’(3.7) wave func-
tion to consist of charm-anticharm hadrons. A
particular model illustrated in detail suggests

that D*D* production is responsible for the bulk

of the 4.1-GeV enhancement in R. Another curious
prediction is the possibility that o(e*e~ = hadrons)
possesses narrow, but small “glitches” in the
vicinity of 4.6 or 4.9 GeV. Here the term “glitch”
means a variation in R by a factor of 2-5 in an
energy region of width 20-50 keV. These rela-
tively small effects are residues of quark confine-
ment which survive, at least in the simple models
presented here, the coupled-channel dynamics.

All of our model calculations of R(Q?) based on
the conventional four-quark scheme fail to fit the
data for E.,, 4.6 GeV. However, the addition of
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a heavy lepton of mass 2.3-2.4 GeV to R(Q?) pro-
duces good agreement with the experimental curve
over the entire energy range explored to data and
it leaves intact the dynamical models of ¥, ¥’, and
Y” discussed here. Tests of this simple (cheap)
solution to a serious problem afflicting the four-
quark scheme are discussed briefly.

II. THE ADIABATIC APPROXIMATION

The purpose of this section is to lay the qualita-
tive, intuitive groundwork for later, more precise
developments. The problem in principle is a quark
field theory consisting of four or more species of
colored quarks coupled minimally to non-Abelian
gauge fields,

L=Y(i¥ —mpy - gy ,C Y Al -
where C® are the eight, 3X3 color matrices of
SU(3)’ and the rest of the notation is standard.!’
This theory has the virtue of being asymptotically
free® if the number of quarks is not too large.
Complementing this good short-distance behavior
is the possibility that the theory is infinitely
strongly coupled at large distances in such a way
that all color nonsinglet states are eliminated
from the physical spectrum.'® Strong-coupling
methods are being developed for these theories
to determine if this hope is real.!* We shall sim-
ply assume it here and turn to simpler field the-
ories of confinement in Sec. III in order to test
some of the ideas put forward in this section.

For our purposes here we are particularly in-
terested in Eq. (2.1) in the SU(4) model with the
idealization that m ¢, > me and my. Then bound
@'®’ states might be characterized by two dis-
tinct time scales, that associated with the light
quarks and massless gluons and a second assoc-
iated with the heavy, slow ®’. In some applica-
tions it can then prove possible to define an effec-
tive potential which acts between the heavy quarks.

ﬁz 32
[' ~ 2m 9F7 ZI

i Fg, FL (2.1)

Note that the energy of the system of electrons,
E.({l}), is now a function of the positions of the
ions. Finally, ¥ must be a solution to the full
problem,

HV =EV¥ . (2.5)
Substituting Eq. (2.3) here and using Eq. (2.4)
gives

n®
B a2 edTheE(Th] v=p,
i
(2.6)

The idea is that the heavy quarks move slowly on
the scale of motion characteristic of the light de-
grees of freedom. Hence, as the heavy quarks
move in their bound state, the light degrees of
freedom have sufficient time to readjust their
spatial distribution and remain in their ground
state. Since the light quarks and gluons are not
themselves excited in this process, the energy
stored in these fields acts as a potential energy
residing between the heavy quarks. Therefore, a
“potential” can be defined even though the system
contains complicated many-body dynamics support-
ing it.

This ancient approximation scheme, introduced
by Born and Oppenheimer,* has had many applica-
tions in molecular and solid-state physics. In
these cases one can in fact estimate the region of
validity of the approximation, and compute low-
order correction terms. Let us briefly recall a
familiar application of the Born-Oppenheimer
method. Consider a crystal and the interaction
between the lattice of ions and the electrons.!®
LetTi (T;) denote the positions of the ions (elec-
trons). The Hamiltonian of the system reads

ﬁz 32 hz 32 62
He= 2 o sts = & amaeet 2 TE -E

+vATH{Fh+cdzh, 2.2)

where M (m) is the mass of each ion (electron), V
is the ion-electron potential energy, and G is the
inter-ion potential energy. Now we exploit the fact
that M > m and formulate the intuitions stated in
the preceding paragraph, by considering a trial
eigenfunction of the form

=T H{FhH odTh, (2.3)

where y is an electronic wave function which is
defined as a solution to the Schrodinger equation
in a lattice of immobile ions,

27+ VATL (D] W E) =B TH T (. (2.4)

r
which is best written in the form

0 [~ T g e EMATH+GATH] o TH
i i
+(correction terms)=yE¢({T} . (2.7
The “correction terms” in Eq. (2.7) read
2 ﬁ2 32
mﬁ'al 2 amars
(2.8)
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Ignore the correction terms temporarily. Then
Eq. (2.7) implies that ¢({T}), the wave function of
ions, satisfies

[" z z—}?; aarz‘Z*Ee({Y}HG({T})} s{TH=Eo(T},
) j
(2.9)

This equation means that ¢ is determined by an
effective potential which consists of G plus the
energy of the electrons E, computed with the ions
fixed at their lattice sites. Thus, Egs. (2.4) and
(2.9) formalize the physical adiabatic picture—the
electrons’ configuration is determined by the lat-
tice of ions which in turn move in a potential de-
termined by that state of the electrons. Clearly,
this approach only makes sense if the character-
istic time scale governing electronic motion is
much smaller than that governing ionic motion.

It is also only a practical method if the electrons
reside in their ground state.

The corrections to the adiabatic approximation
are contained in Eq. (2.8). A rough estimate of
the first term suggests that it is O((m/M)"?) of
the terms withheld in the adiabatic approximation.?®
So, if M >m, the correction terms are indeed
small. Physically, these correction terms lead
to transitions between electronic states. They re-
cord the influence of the motion of the ions upon
the electronic state and thus destroy the notion
that the electrons can remain in a given state
while the ions move slowly.

Another application of the Born-Oppenheimer
approximation is the calculation of the spectra of
molecules. Particularly suggestive is the treat-
ment of the hydrogen molecule. Our treatment of

charmonium is analogous with the correspondences.

protons —~ heavy quarks,
electrons =~ light quarks,
Coulomb field =~ massless gluons.

We are supposing that the field theory of Eq.
(2.1) generates bound states of heavy quarks with
the dominant momentum fluctuations in the states
characterized by the light quark mass. Then it is
plausible that the Born-Oppenheimer approachisa
sensible way to view these states and the nearby con-
tinuum charmed states. Most workers feel that me.
<2.0GeV while me=300 MeV, some/me~%+ withlarge
uncertainties. Therefore, me/me, maybe a reason-
able expansion parameter for certain problems.
In the solid-state example, however, the ratio
of masses is m/M =10, so in that case superb
quantitative calculations are possible. Further-
more, light-quark excitations, a ®® pair, say,
require energies of about 600 MeV. This is not

a very large energy on the scale of charmonium
physics, so the very notion of an effective poten-
tial must have a limited region of validity. In the
solid-state application, one could be assured that
by working at sufficiently low temperatures the
electronic states could not be excited with apprec-
iable probability and the adiabatic assumption—
that the electrons readjust to the ionic motion
and remain in their ground state—proved good.
In the application here, we are clearly on much
less firm ground, and a much more restricted
set of problems will be accessible to us. We will
discuss the corrections to our physical picture
further throughout the text.

III. QUARK CONFINEMENT MODELS WITH
FIXED SOURCES

The first step in an adiabatic calculation is the
determination of the effective potential acting be-
tween the immobile degrees of freedom. In the
example sketched in Sec. II, this quantity was
¢{Th+E. (T}, where G{T}) is the ion-ion po-
tential in the absence of the electrons and E,{T})
is the energy of the electrons themselves. Clear-
ly, to obtain E,({T}) precisely one must solve a
many-body problem. In formulating the adiabatic
approximation for the theory of heavy quarks,
light quarks, and massless gluons it is profitable
to think in lines analogous to this many-body prob-
lem. In correspondence to G({T}) we compute the
potential between heavy quarks treating the gauge
field exactly but ignoring the light quarks. Final-
ly, the light quarks are treated as quantized dy-
namical fields and the field-theoretic analog of
E.{T}) is obtained.

It is presently beyond a field theorist’s powers
to obtain the analogs of G and E, from first prin-
ciples [the £ in Eq. (2.1), say]. Instead, we shall
have to resort to models and prayer (not neces-
sarily in that order). The models we shall consid-
er are two field theories of confinement: the orig-
inal Schwinger model*' and the Schwinger model
with a nonzero fermion mass.” These are theor-
ies in (1 +1) dimension where confinement is a
natural phenomenon. The prayer is that confine-
ment occurs in properly constructed (3 +1)-dimen-
sional gauge theories and that the gross features
of confinement are similar to the (1 +1)-dimen-
sional models. There are reasons to be optimis-
tic here.! Assuming this, we can proceed to
identify G and E,. The analog of G is the un-
screened potential between the heavy quarks. At
short distances G should be

g 1
Gr) v In(ry/r) L 8.1)
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in accord with the asymptotic freedom® of the pure
Yang-Mills theory in (3 +1) dimensions. At larger
distances G presumably grows linearly with »,*

G@)~kr, r>r,. (3.2)

Of course, G(») itself is not the physically rele-
vant potential which acts between the ®’®’ pair—
we must also introduce the light quarks into the
picture. For a given separation between the heavy
quarks, the light-quark field will assume a spatial
distribution which minimizes the energy of the
system. This effect is particularly significant at
large ®'®’ separation where the energy stored in
the gauge field between the heavy quarks is large.
It has been argued that the light quarks will screen
the long-range force, thereby reducing the energy
of the system and insuring that only color singlet
states are physical.?® Granting this, we can rough
out the expected effect of the light quarks on the
potential between the ®'®’ pair. At small separ-
ations, the problem is amenable to perturbation
theory. If the number of species of light quarks

is not too large, then

1

g
~ <& 2
G+E ~const y Wntror)’

(3.3)
where only the over-all strength of the potential
is changed from Eq. (3.1).° As 7 is increased the
potential tends to rise faster than the Coulomb
potential, because the Yang-Mills electric field
tends to form a tubelike configuration between the
heavy quarks.* However, the long-range force
can be screened now by the appearance of a pair
of light quarks in the growing potential. It is en-
ergetically favorable for each light quark to pair
off with the appropriate heavy quark so that two
color singlet states result. There is no long-
range force between the color singlet states (a
charmed and an anticharmed meson) so one ex-
pects, on the basis of typical hadronic physics,
that

G+E~e""‘|", v large (3.4)

in place of Eq. (3.2). The energy of the ®'®’ pair
plus the screening cloud of light quarks has be-
come the sum of the masses of the two charmed
mesons as ¥ =~ <. The physically relevant poten-
tial, Eq. (3.3) and Eq. (3.4), is sketched in Fig. 1.
A few comments concerning Egs. (3.3) and (3.4)
and the curve in Fig. 1 are in order. The short-
distance part of the potential in Fig. 1 acts be-
tween the heavy quarks. It is logarithmically soft-
er than a Coulomb potential for » <7, but grows
somewhat faster for »z »,. As discussed before
Eq. (3.4) the long-range piece of the potential can
be thought of as acting between charmed mesons.

The ionization point of the potential in Fig. 1 sig-
nals charm meson production. However, in the
adiabatic approximation the long-range piece of
the potential equals the potential acting between
the heavy quarks in that state. To see this, re-
call that to calculate the potential between the
charmed mesons one would imagine a virtual dis-
placement 5T of both the heavy and light quark
composing one of the charmed mesons. The
change in energy incurred by such a virtual dis-
placement is the potential energy change. How-
ever, to calculate the potential acting between the
heavy quarks one would give a virtual displace-
ment 6T only to a heavy quark and leave its ac-
companying light quark unmoved. The difference
in energy required in these two different virtual
displacements is suppressed by a power of mg/me..
The reason is that the difference in the electronic
wave function in one virtual displacement and the
other reads 8y/81 in the notation of Sec. II. This
gradient is the same as those appearing in the cor-
rection term in Eq. (2.8). This gradient records
the sensitivity of the electronic state to changes
in the positions of the ions. Clearly, it is the
premise of the adiabatic approximation that this
gradient is small. Detailed analyses of individual
applications of the adiabatic method bear this out
and give, in general, that this gradient is sup-
pressed by a factor of (me/me:)”? compared to
the terms kept in the approximation scheme. In
short, the long-range piece of the potential in Fig.
1 is, to good approximation, the potential which
acts between the heavy quarks in the lowest-en-
ergy state of the system at that separation dis-
tance.

G+E

Y

«___ screened

Coulomb
-

FIG. 1. The adiabatic potential between heavy quarks.
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It may be instructive to compare this physical
system to the Born-Oppenheimer discussion of
the hydrogen molecule.?’ For small proton-pro-
ton separation, the interproton potential is essen-
tially unaffected by the two electrons which are
smeared over a relatively large volume. As the
protons are adiabatically separated, however, it
is energetically favorable for the electrons to pair
up with each proton to make two hydrogen atoms
since the energy of a free proton and a free elec-
tron exceeds that of one neutral hydrogen atom.
So, at large proton-proton separation the inter-
proton Coulomb force is completely screened and
all that remains in the Van der Waals force acting
between neutral atoms.

Finally, after this lengthy introduction, consid-
er the calculation of the adiabatic potential between
fixed sources in (1 +1)-dimensional theories of
confinement. Since these theories have been dis-
cussed at length elsewhere,?' -2* we shall be brief
and to the point. In the absence of external
sources the vector current of the Schwinger model
satisfies the free Klein-Gordon equation

@+m?)j, =0, j,=yv,¥ (3.5)

where m®=g?/m and g is the analog of the (strong)
electric charge. In the presence of an external
current, Eq. (3.5) becomes?®

O+m?)j,=-m? ™, (3.6)

where j;*' will be chosen to represent a fixed
charge of +1 at ¥ =a and -1 at » =-a.** Since
both currents j, and j X' are conserved, the (1+1)
dimensionality of the theory insures that they can
be written as the curls of scalar fields,

=T €20, 5 = €, 8% 5.7
Therefore, Eq. (3.6) simplifies to

(O+m?)p==-m2pet. (3.8)
Since the external current is

Jh = 0,,[0(x +a) = 6(x —a)] (3.9)
the external field is

¢ ==V 8la-|xl), (3.10)
so Eq. (3.8) becomes

(O+m?)p==VT m?6(a-|x). (3.11)

We finally wish to calculate the energy in the
system with the sources a distance 2a apart. Re-
writing the Hamiltonian of the Schwinger model in
terms of ¢ gives

3o () Lorer].

Interpreting ¢ as a canonical scalar field, one
easily checks that the Heisenberg equations of
motion for Eq. (3.12) yield the equation of motion,
Eq. (3.8). A complete derivation of Eq. (3.12)
proves that the Schwinger model confines quarks—
its only finite-energy excitations are neutral, free,
massive mesons.?®

In the static limit Eqs. (3.11) and (3.12) become

(—;—2 +mz>¢=—\/_1? m26(a -|x|), (3.13)

E(2a)= 3 J‘d:c[ad)/«")x)2 +m2(p + o). (3.14)
Solving Eq. (3.13) for the scalar field gives

o - g . f.;.ae_mlx-x'! dx’ . (3.15)

Finally, the adiabatic energy can be evaluated,

E(2a)=-31m(e™™ -1). (3.16)

Thus, E(2a) is a short-range potential—the under-
lying massless-quark field has screened the long-
range electrostatic potential completely. In the
language of Sec. II the function G is a linearly
rising potential—just Coulomb’s law in (1 +1)
dimension. However, the adiabatic potential
G+E, is short range because the massless fer-
mions react to the long-range force and screen

it out of the finite-energy sector of the theory.
Note that for 2a <1/m,

E(za)Z—%m(— 2ma)++-

=gla+e--, (3.17)

S . L L L " 1
3

2 4 5 6 7

FIG. 2. The adiabatic potential between fixed sources
in the Schwinger model. The mass m=g A/ 7 was chosen
to be 1, and distances are then measured in these units.
x is the distance between the oppositely charged (color)
fixed sources.
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which states that for these short distances the
heavy quark interact via a force g?. This is the
only remnant of the Coulomb force. As 2a-—==,
E approaches 3 mm=3vV7 g, which represents the
ionization potential for two neutral bound states,
each containing a heavy quark. The adiabatic po-
tential Eq. (3.16) is graphed in Fig. 2.

There are several lessons to learn from this
exercise. It should serve as a warning to quark-
model builders who employ a linearly rising po-
tential to calculate the meson spectrum. Even if
the linearly rising potential is the unscreened
force law between quarks in (3 +1) dimensions, it
does not necessarily show up simply in the spec-
trum of physical states.

This example has the virtue that the field-the-
oretic analog of G+E, could be obtained exactly,
i.e., the light-quark-gluon sector of the theory is
soluble. Equations (3.15) and (3.16), although
written in informal notation, are the exact ground-
state expectation values of the quantized field ¢
and the Hamiltonian, respectively.

Now turn to a similar exercise in the massive
Schwinger model to investigate the sensitivity of
the above results to the bare fermion mass u.
Some of the effects of nonzero p can be anticipated
from the following considerations. When the two
static sources are slowly separated, energy ap-
pears in the unscreened Coulomb force between
them. This force is screened when a pair of light
quarks is created from that field. If u=0 the
screening occurs with no effort. But if p#0, the
energy in the Coulomb field must rise above ~2u
before the screening is very effective. Therefore,
one might expect the long-range field to play a
more interesting role in determining the mass
spectrum and the adiabatic potential if u# 0.

Insert the static sources, Eq. (3.9), into the
massive Schwinger model. The theory is again
most simply analyzed in terms of the scalar field
¢ (Coulomb gauge). To proceed, we need the
1 # 0 analogs of Eqs. (3.8) and (3.12), i.e., we
need expressions for the neutral composite opera-
tor Py in terms of ¢. This problem has been dis-
cussed in Ref. 22, with the result

Ly =K cos(2VT o), (3.18)

where K = pmeY /2w, y=Euler-Macaroni constant.
The generalizations of Eqs. (3.8) and (3.12) be-

come
@+m?)¢p +2V7 K sin(2V7T ¢) = = m? o™ (3.19)

and

H=%f [¢2+<2%)2+%2—(¢+¢e"‘)2—2Kcos(2~/?¢)] .
(3.20)

Choosing ¢*** as before, one can analyze the stat-
ic limit of these expressions. Unfortunately, we
cannot solve the quantized massive Schwinger
model without sources because of the presence of
the nonlinear term cos(2V7 ¢) in the Hamiltonian.
Therefore, we shall restrict our attention to those
cases where the nonlinearities are small so a clas-
sical analysis of these equations is a good approxi-
mation. This means we must take u small com-
pared to m=g/vm. One can show in fact that for

u sufficiently small the one-loop correction to

the adiabatic potential is small (of order w?) and
well behaved. It is also known that mass pertur-
bation theory for the massive Schwinger model
converges for u infinitesimal, so the classical
calculation is on firm ground.?®'*® The analysis

of Egs. (3.19) and (3.20) proceeded numerically
for several choices of small u. The resulting
adiabatic potentials are shown in Fig. 3(a) and
3(b). We see that by increasing u, the ionization
energy grows and the region over which the poten-
tial grows linearly with distance also increases.

Vix)
24

2.0

L A 1

N " e
I 2 3 4 S 6 7 8

X

FIG. 3. (a) The adiabatic potential in massive Schwin-

ger model with m=1, pu=0.34. (b) Same as (a), but
u=0.67.
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These results are in accord with the qualitative
arguments sketched above. The curves of Fig. 3
are considerably more interesting than the p =0
case. They suggest that the massive Schwinger
model has an interesting spectrum (a wedge-
shaped potential can bind more states than an ex-
ponential).

Now we shall use the adiabatic method and these
suggestions from simple models of confinement
to discuss o(e*e~ = hadrons) in the vicinity of the
new threshold.

IV. SIMPLE MODEL CALCULATIONS OF o(e*e”— hadrons)

Consider e*e~ annihilation above but near the
threshold for production of charmed hadrons. The
virtual timelike photon y* decays into a ®'®’ pair
which slowly separate. The potential (non-Abelian
electric flux) grows between them until it is en-
ergetically favorable for a pair of light quarks to
be created. The light quarks associate with the
appropriate heavy quarks such that two charmed
hadrons escape to infinity. The total cross sec-
tion for these events is given by

8n2a?

06”(Q2)= 3Q4

fd‘*x €' *(0|[J ,(x),J*(0)]I0) ,
4.1)

where J ,(x) is the @’ contribution to the electro-
magnetic current. Upon inserting a sum over out-
going hadrons into Eq. (4.1), we have

8n2a?

3Q4 z: (2")464(4 _pl _pz)
X[€01J ,(O) H(p)H (P, )F,
(4.2)

06:(Q%) =

where H(p,) is a charmed hadron of momentum p,
and H(p,) is an anticharmed hadron of momentum
p,. To compute Eq. (4.2) we need the HH wave
function in the vicinity of the origin. But here,

as discussed in the previous section, the outgoing
eigenstate of the dynamics is just a ®’®’ pair. To
couple to the photon, such a pair is in a 3S state.
Furthermore, in the adiabatic approximation in
which me, > me and the binding energy of the @’
quark in the charmed hadron is of order me, which
is negligible compared to mge,, the momentum p,
of the outgoing hadron H is closely approximated
by the momentum of the @’ just after creation.
Therefore,

(<0l , (0| HH out)|® =|&(p,, s)y,v(ps sIFIPO)E,
(4.3)

where u, v denote quark spinors and ¥(0) is the
wave function at the origin (the amplitude to
create the quark pair). Now the sum over final

states is trivial—it just reproduces the cross
section to produce two free heavy quarks. All
the dynamics is contained in the factor (0).
Therefore, the ®’ quark contribution to o(Q?) be-
comes

4na? 1
Ter(Q?) = (-%"-) 3(2)2(1 = 5,/8)V2(1 +5,/25)

X|9(0)F, (4.4)

where Vs, is the mass of the charmed meson
[equal to me: +O(me)]. The numerical factors 3
and (£)? register the number of ¢’ quarks (3
colors) and its charge squared. Therefore, the
®’-quark contribution to R (call it R¢,) reads'®

Rer=1.33(1 =s,/s)"2(1 +5,/2s)|9(0)f . (4.5)

Several comments concerning Egs. (4.3) and
(4.5) are in order. Note that the heaviness of the
®’ quark is essential to the factorization noted in
Eq. (4.3). The factorization stems from the fact
that the act of creation of the ®’®’ pair and their
eventual evolution into a pair of outgoing charmed
hadrons are independent processes. The factor-
ization is guaranteed by the presence of two ex-
plicit, very different time scales in the problem.
The first is me.~?, which is the temporal uncer-
tainty in the creation of the heavy quarks. The
second is me~!, which is a measure of the time
it takes for the final-state mesons to be formed.
In the true adiabatic limit in which »ie, can be
held fixed while me is infinitesimal, it takes for-
ever for the final-state mesons to be formed. The
act of creation can then be clearly separated from
the formation of the final state. The cross section
is then reasonably calculated as in Eqs. (4.3) and
(4.5) just in terms of dynamics which occupies a
finite time interval. Thus, this impulse-approxi-
mation calculation of the cross section can be de-
duced as a consequence of the adiabatic theorem
if me/me, is infinitesimal.

Note next that Eqs. (4.3) and (4.5) do nof apply to
the light-quark contributions to ¢(@?%) near the low-
energy thresholds, @°=m,?. For light quarks the
creation of the ®® pair and their evolution into
final-state pions occur on comparable time scales.
Then an impulse approximation, the factorization
of Eq. (4.3), is not a good approximation.

A final word about Eq. (4.3). In the impulse ap-
proximation the cross section is determined by
heavy-quark kinematics and the value of the wave
function at the origin. Thus, an S-wave phase-
space factor occurs in Eq. (4.5) although the had-
rons making up the final state may be in an L=1
state. This will be the case in the SU(4) model,
where the final state will be composed primarily
of DD, D*D*, FF, etc. pairs. The phase-space
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factor for the final hadronic state does not appear
in Eq. (4.5) because the evolution of the final state
occurs on a much longer time scale than the dy-
namics which determines the cross section. The
pure S-wave phase-space factor is quite sensitive
to the adiabatic picture used here, i.e., to the
idealization me, > me. If one wishes to make a
model which is more “realistic,” it is necessary
to know the details of the final-state dynamics. A
study of graphs shows that factorization and the
appearance of the S-wave phase-space factor only
emerge as me/me,—~0. The general calculation re-
quires knowledge of the charmed-hadron wave
function and the dynamics of vacuum polarization.
However, such calculations are constrained by
the limiting form of Eq. (4.5), which we will,
therefore, accept as an adequate interpolating
formula. Given the state of the art and the fact
that this idealization produces a simple physical
picture of R¢., we feel that our approach is sen-
sible. It will also yield predictions which provide
good fits to the data.

A different line of reasoning, which leads to a
slightly weaker form of Eq. (4.5) but applies even
when me/me: is not infinitesimal, can be con-
structed. Consider the massive Schwinger model
and Fig. 3. In this model and in those to be pre-
sented in Sec. V the heavy quarks can be separ-
ated a certain distance D before vacuum polariza-
tion effects begin to convert the state into two out-
going hadrons. Consider the ¢*e~ annihilation
cross section averaged over energies AE, i.e.,

1 E+AE

E(E):KE_ ),

o(E)dE .

A space-time analysis of this quantity shows that
it is determined by distances less than 1/AE. If
we choose AE =1/D, then the calculation of G(E)
involves only the physics of a pair of heavy quarks
being created in a small volume 1/me¢, and propa-
gating in a smooth potential out to distances =D.
Thus, the calculation of T(E) gives us Eq. (4.4)
with the understanding that a smearing over ener-
gies =1/D must be done. (In the models of Sec. V
1/D=m,, a small energy.) From this point of
view it follows that our calculations of R ¢» may
not be trustworthy point by point, but should be
accurate in their average features (such as the
area under prominent bumps or the presence of
dips).

We now turn to several simple model calcula-
tions of R¢s. To evaluate Eq. (4.5) we need (0)
computed in an adiabatic potential adjusted to
bind a 1S state and its first radial excitation.
Furthermore, we must choose the position of the
charmed-meson threshold. In accordance with a
host of recent arguments?” we choose the threshold

to lie in the vicinity of E_, =3.8-4.0 GeV. A sim-
ple motivation for this range of values was pro-
vided by Eichten et al.,” who, in order to obtain a
sensible nonrelativistic bound-state model of the
¥(3.1) and ¥’(3.7) with a potential of the form

Vir) == 22[1-(r/a)], (1.1)

chose a;=0.2, a=0.2 fm, and me,=1.6 GeV. With
this mass of the @’ quark, one then expects
charmed mesons with a mass nyp=me: + me

=1.6 +.30=1.90 GeV according to the naive additive
quark model.

As a first example consider a wedge-shaped
potential as suggested by the massive Schwinger
model. In cases where the edge of the wedge is
sharp,

Vir)=ar -b, r<b/a
Vir)=0, r>b/a

(4.6)

the wave function at the origin (0) can be com-
puted in terms of Airy functions.?® Instead of
dwelling on the routine calculations, we turn
directly to graphs of §(0) and R ¢, itself. These
graphs were also obtained by solving the Schro-
dinger equation numerically. In computing R ¢/,
one must obtain the wave function (r) with the
proper continuum normalization of unit flux at
spatial infinity. The computer calculations were
checked against the analytic solution for (0) in
terms of Airy functions. The comparison showed
that the numerical integration routine (which was
also used in more ambitious calculations, to be
described in later sections) of the Schrodinger
differential equation was accurate to better than
1 part in 10*. A trivial check of the over-all nor-
malization of the calculations is afforded by ob-
serving that numerically R¢,—~ % as @*—~«, in

y(0)

6F

1 L 1 1 T 1 1
40 4.2 4.4 46 48 50 5.2 54 E
(Gev)

FIG. 4. The amplitude y(0) as a function of E_
computed for the wedge potential, a =0.25 GeV? and
b=1.75 GeV.
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R4 ¥(3695)
6.0 V=.25x -1.75 GeV
- (Real Rygron y oxs)
L
4.0r
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E
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FIG. 5. R as a function of E_ computed for the same
potential as in Fig. 4.

agreement with quark counting. In Figs. 4-7 we
plot ¥(0) and R =R ¢, +2.5 for the choices a=0.25,
b=1.75 and a=0.25, b=1.72 (GeV units every-
where). We choose the sum R ¢, +2.5 since 2.5 is
presumably the light-quark contribution to the tot-
al R in this energy region. The value 2.5 is read
off the SPEAR data’® just before the new threshold.
The value for “a” insures that the energy differ-
ence between the 1S and 2S bound states of this
potential is 0.60 GeV and the values for “b” place
the threshold in the desired region. Note that
these parameters imply that the range of the po-
tential is 5/a=1.72/0.25~6.88 GeV~!. This is
roughly m, ™', which is the conventional measure
of the range of strong-interaction forces. Observe
from the figures that R possesses an enhancement
of width =300 MeV at E., 4.1 GeV. The low-en-
ergy edge of the enhancement is sharper than its
high-energy tail. Following this enhancement
there is a dip at about 4.5 GeV which is followed
by a very broad and smaller enhancement. For
very large energies R approaches 31 from above.
This asymptotic value of R is, of course, built

Yi0o)

6k

1 1 1 1 1 1 1
40 4.2 44 46 a8 50 5.2 54 E
(Gev)

FIG. 6. Same as Fig. 4 except b =1.72 GeV.

R 4{ ¥ (3695)

V=.25x-1.72 GeV

6.0 ( ]
(Reol oron ¥ axis )

4.0

ool v v b by e Ly

FIG. 7. Same as Fig. 5 except b =1.72 GeV.

into the theory by assuming the SU(4) multiplet
of quarks and the fact that the forces between
quarks are soft and therefore negligible at small
distances. It is interesting that the asymptotic
value is approached slowly. Evenat E.,, *6.0GeV, R
is still above 3.8. Of course, the approximations
underlying the calculation of R (nonrelativistic
kinematics, the potential picture) are not reliable
this far above threshold. At E., ~6.0 GeV it is
best to connect our curves to the asymptotic free-
dom calculations.?® In fact the connection can be
quite smoothly, i.e., asymptotic freedom esti-
mates of R at E.,, 6.0 GeV also give =3.8.

The results in Figs. 4-7 can be explained in
simple terms. First consider the spectrum of
bound S-wave states in the potential

Vr)=ar -0,

which is nof truncated at » =b/a. For the parame-
ters a, b, and me, chosen above, such a potential
would bind a 3S state of mass ~4.2 GeV. There-
fore, when the potential is truncated as in Eq.
(4.6), this state lies in the continuum just above
the threshold. It is therefore called a virtual
bound state.3° It is not a resonance because the
potential of Eq. (4.6) is attractive everywhere.
The presence of the virtual bound state causes
continuum states just above threshold to be high-
ly distorted with their values at the origin con-
siderably enhanced. This is the dynamical origin
of the large value of ¥(0) in the immediate vicinity
of threshold. Note that y(0) generally decreases
as the energy above threshold grows. It has no
dramatic structure itself aside from its large
value near threshold because the potential of Eq.
(4.6) does not possess any resonant states. This
will be true of all the examples discussed here
and leads us to expect only one prominent enhance-
ment in R near 4.1 GeV and no comparable
enhancement at higher energies.



The dips and secondary broad enhancements in
R result from the following mechanism. To com-
pute R above threshold one multiplies the falling
factor | $(0)F with the phase-space factor
(1 -s,/s)"?(1 +5s,/2s) which vanishes at threshold
and approaches unity as s —=. The result of multi-
plying these two factors, one which falls and the
second which rises, are the curves with bumps
shown in Figs. 5 and 7. Thus, in the adiabatic
picture the dip which follows the ”(4.1) is mostly
a kinematic effect.

Let us now repeat these calculations for a more
interesting adiabatic potential. It has been argued
on the basis of asymptotic freedom that the short-
distance forces acting between heavy quarks
should be slightly softer than Coulombic forces.
Following Eichten et al.,” this suggests that we
consider a potential of the form

Q.

V('r)=—7s

(1-@/aP]-V, 7r<a’V,/a,
(4.7)

V()= 0 smoothly as r =,

with the parameters a,, a, V,, and me chosen
such that (1) the threshold lies in the vicinity of
3.8-4.0 GeV, (2) the potential binds a 2S and a
1S states with a mass difference of 600 MeV, (3)
a, lies in the range 0.2-0.3 in accordance with
asymptotic freedom calculations,?! and (4) “a a®”’
is constrained to be = (27)~' as suggested by the
string model.®> A typical set of parameters is
a,=0.19, a=0.92 GeV~!, me,=1.6 GeV, and V,
=1.55 GeV. The resulting potential is shown in
Fig. 8. y(0) was then obtained numerically as a
function of the energy above threshold for values
of V, which were varied between 1.4 and 1.6 GeV
in order to determine the sensitivity of the results

o
—

FIG. 8. Potential of Eq. (4.7) with o =0.20, a =0.922
Gevl, V,=1.84 GeV.
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to the precise position of the threshold. A typical
curve of R which results is shownin Fig. 9. Note that
the values of R in Fig. 9 at energies above the y”(4.1)
lie roughly ; unit above those values of R calcu-
lated in a potential which omits the Coulomb piece.
This effect is expected on rather general grounds.
Recall that o(e*e~ = hadrons) is determined for
asymptotic @ (Q*> me.?, for example) by the be-
havior of the matrix elements (0|J ,(x)J#(0)|0) at
short distances, i.e., x,~1/(Q)"2. But at dis-
tances of order (me¢.)~! and less, the potential in
Eq. (4.7) generates considerable attraction between
the heavy quarks compared to the smooth potential
of Eq. (4.6). We finally note that the rate of de-
crease of R with increasing energy is also slower
in this example. In fact, R is roughly 4.2 at E_,,.
=6.0 GeV. Of course, the model is not reliable
this far above threshold, but it is suggestive of

the possibility that the asymptotic region may lie
at higher energies than simple perturbative asymp-
totic-freedom calculations suggest.

V. COUPLED-CHANNEL MODELS

It proves possible to place the naive considera-
tions of the previous section on firmer ground.
In this section we shall define a coupled-channel
model of the new resonances and the continuum
of charmed hadrons. We shall also solve it ap-
proximately in some simple cases. In so doing,
a systematic expansion of the solution of the prob-
lem will be obtained whose zeroth-order term is
the simplest adiabatic approximation.

The basic physical picture of the process y*
- ®'®'~HH discussed in the previous sections
stated that the pair of heavy quarks evolve into
the outgoing state of mesons when a pair of light
quarks is created out of the vacuum. We can for-
mulate this in the context of a multicomponent
Schrédinger equation. Let zp,‘ denote the wave func-
tion for a ®’ with spin index i and a @’ with spin

TOT

Y '(3695)
6.8

6O

a4t

36+

L I S S

- - '
37 39 a a3 a5 a7 ay 5, 5.3

FIG. 9. R computed for the potential in Fig. 8.
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FIG. 10. A light-quark pair materializing from a gluon.

index j. Let zpf} denote the wave function of a
charmed meson—anticharmed meson pair. The
meson (antimeson) is composed of a heavy quark
with spin index ¢ (j) and a light quark with spin
index & (I). The two wave functions ¢} and y}} de-
fine the two channels of a coupled-channel quantum-
mechanics problem. The first channel consists
of a ®'®’ pair. The potential which acts in this
channel is just the unscreened potential G (7).
Later we shall assume that it is a linearly rising
potential with an additional but small Coulomb
attraction as in Eq. (1.1). Note that G(r) would
bind two-body ®’®’ states of arbitrarily large
mass. The second channel consists of various
species of charmed-anticharm meson pairs. The
potential which acts in this channel, Y{r), pre-
sumably has a typical short range characteristic
of ordinary hadronic physics. In principle, it
should depend on the spins of the constituents
making up the mesons. It will not play a very
important role in what follows so we shall let it
be a short-range Yukawa repulsive potential.

The final ingredient in the model is the poten-
tial which mixes the two channels. We shall rely
on our experience with quark-confining theories
and use some elementary facts about hadronic
forces in constructing a plausible coupling poten-
tial. First, recall that it should represent the
creation of a light-quark pair. The form of the
coupling will be taken from the low-energy behav-
ior of graph in Fig. 10, where a vector gluon gen-
erates a light-quark pair in a spin-triplet, rela-
tive S wave. The spins of the heavy quarks are
undisturbed by this process. These features sug-
gest the interaction energy coupling the two chan-
nels,

H,= %; jd?w?"(r)f(r)?-?ézp’;;'(r), (5.1)

where f(r) is a scalar function of », the distance

L e
T 2ue, dr?

0 G() f)

1 a2

R A

fr) YY)+

2
2“07'2

LEONARD SUSSKIND 12

between the heavy quarks, and T is a Pauli spin
vector. The quantity (1/v2)( - ¥), insures that
the light quarks are produced in an S-wave spin
triplet. Models of f(r) will be discussed below.
If we add H,,, to the free Hamiltonians controlling
the two uncoupled channels, we obtain the follow-
ing two coupled Schrodinger equations,

1 1 i

- VYL +GY} + = fr)7 TR =By},

2uer it 4 ] (5.2)
- 5 VUL Y 07 T =B,
where E is the c.m. energy of the system and pe/
(1 p) is the reduced mass of two heavy quarks
(charmed mesons). Now we should do some kine-
matic analysis to simplify the spin structure of
these equations. We shall be mostly concerned
with the ¥(3.1) and ¢’(3.7) in which the heavy
quarks reside in an S-wave spin triplet. There-
fore, consider

1, o,
V= e T, (5.3)

where P(r) is a scalar wave function and € is
the polarization vector of the (3.1). The same
observation motivates the ansatz,

-

F)F TN o) (5.4)

Substituting Eqs. (5.3) and (5.4) into the Schro-
dinger equations gives

= 3(&

1
mp,2¢+clp+f¢=E¢, (5.5a)

5—&-;(1),2+%> ¢+Yo+fY=E¢, (5.5b)
where p, is the radial momentum, —i(1/7)(8/d7),
and the centrifugal barrier term has appeared in
Eq. (5.5b) in the usual way. It reflects the fact
that the outgoing charmed hadrons are produced
in a p wave.

Now we generate coupled radial wave equations
in a conventional form by defining radial wave
functions,

v=u'lr, ¢=w'/r. (5.6)
Then Egs. (5.5) become

<u/> <u/>
C=EL ) (5.7
w w
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Given the functions G, Y, f and sufficient strength,
this coupled set of equations can be solved for all
energies E. Instead of proceeding with brute
force, we will develop an approximation proce-
dure which relies on two approximations:

(1) The ®’ quark is much heavier than the ordin-
ary ® and ¢ quarks.

(2) The forces which act between hadrons trans-
fer only small momenta.

Introduce a 2 X2 unitary transformation U(r) which
diagonalizes the potential energy matrix in Eq.
(5.7); i.e., U(r) has the property

U@V )U@) ™ =Vyr), (5.8)
where
Gr) f@)
V)= (5.9)

Fr) Yo+ 5—572

and Vp(r) is diagonalized. Thus U(r) is a spatial-
ly dependent rotation matrix which acts on the
two-component wave function,

ey
V()= =¥ =U@)¥'(r). (5.10)
w'(r)

Although U(r) diagonalizes the potential-energy
part of the coupled-channel problem it does not
commute with the kinetic-energy operator. How-
ever, on the basis of statements (1) and (2) above
it may be sensible to treat the commutators of U
with the kinetic-energy operator as corrections to
a zeroth-order completely diagonalized problem.
To carry this scheme out, write U(r) in the form

U(r)=exp [—%cye(r)} , (5.11)

where 6(r) is a spatially dependent angle. Be-
cause of statement (2) above, we expect 6’(r) and
6”(r) to be small quantities in GeV units. Write
Eq. (5.7) in the matrix form

[T+V()]¥' =E¥’, (5.12)
where
1 42 0
~9. .. 3
o s : (5.13)
1 42
e

Substituting Eq. (5.10) and multiplying through by
U(r) allows the differential equation to be written
as

We)TUW) " + V)] ¥ =EY . (5.14)

It is straightforward to compute
Ur)TUW@) =T+Cr), (5.15)

where

- _1__ : (/ d 1 n>] 1 2
Q('r)——zupl [zoy 6 dr+29 + SM“(6’)

2

- (M) [(cos6 -1)o, +sinbo,]

4 p ar?
Her —Up
+O<———-— 6’ ) . 5.16
2uep ( )

The last term in the expression for C(») denotes
several terms which are at least second order
in the quantities we, —pp/wpuer and 6’, each of
which are presumed to be small. One could, of
course, study them in detail, but for the models
to be analyzed below they prove to be negligible.
Note that the second term in C(») is also second
order and can be dropped. The most interesting
term in C(r) will in fact prove to be the first one,

1 : ’ a 1 //)
~ S io, <6 & +36" ) . (5.17)
Anyway, in complete generality, Eq. (5.14) now
has the form
(T+Vp+C)¥=EV¥. (5.18)

Suppose that the matrix elements of C(») are
small compared to the other terms in this equa-
tion. Then it would be sensible to solve Eq. (5.18)
iteratively. We write

R GO D B (5.19)
and substitute back into the differential equation

(T+Vp) ¥ =E¥©® (5.20a)

(T+Vp=E)¥M =~C¥), ete. (5.20b)

where ¥(¥)| >0, are the inhomogeneous solutions
to this system of equations.

Now let us identify the zeroth-order Eq. (5.20a).
Define

Ar) O
Valy)=
2 NP

=Ur) V) UW). (5.21)

The eigenvalues A,(r) are

Ar) == [G(r)+ Yir)+ 2“272]

D
! 2 | 1/2
1-12— {[G(r)_Y(T)-ZLLz,)’)’z] +4f2('r)} .

(5.22)
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The potentials G(») and Y(r) +2/2up® are shown
schematically in Fig. 11. We expect that f(») has
the form also shown in Fig. 11. Why is this? Re-
call that f(r) is proportional to the probability that
a light-quark pair materialize in the gluon field
between a heavy ®'®’ pair. For small heavy-quark
separation where the gluon field is necessarily
small, f(r) should be small, as depicted in the
figure. However, as r» grows, it should become
probable for a light-quark pair to materialize.
Therefore, let f(r) be appreciable for # in the
neighborhood of m,~' which is the characteristic
length where strong interactions appear to be
quite strong. Accepting the qualitative features

of Fig. 11 we can now understand the qualitative
features of the eigenvalues A,(r), and the associ-
ated eigenfunctions ¥{°)’. At small », f is neglig-
ible so

9 0
~ 0)7 ~
ANF)=2Yr)+ T 2% 1

1

This means that at short distances ¥(°)’ is pure-
ly in the ®'®’ sector. So the reaction y* -~ hadrons
is sensitive to only A_(») and 3{®'(r) in the zeroth-
order approximation to Eq. (5.20). Now, as 7 in-
creases, f(r) becomes appreciable and allows the
potentials in Fig. 11 to mix. The smaller eigen-
value A_(») therefore approaches the smaller po-
tential Y(r) +2/2u,*? as r = and A, (r) =G () as
7 =, It follows that ¥{®)’~ () and ¥’ ~(?) as
7=, Thus ¥(°’ falls purely in the charmed-had-
ron sector at large distances. This means that

and

FIG. 11. Plansible shapes and magnitudes of the
potentials G (v), Y (), and f(7). Note the estimate of
the scales written in terms of m, on the axes.

175k
|

i
‘.25'—
!
el

FIG. 12. Specific choice of the potentials G (r), Y (v),
and f(¥) used in several model calculations.

the lowest-energy state of the system is purely
heavy-quark—Ilike at short distances and experi-
ences the linear unscreened potential, but at large
distances it becomes pure charmed-hadron-like
and experiences typical hadronic forces. Thus,
the picture which results is the adiabatic approxi-
mation discussed more intuitively in the previous
section.

It is instructive to work out examples of V,(»)
and ¥{")(»). Choose, as shown in Fig. 12,

G(r)=0.16r -1.6,
Y(r)=3.13¢702", (5.23)
f(r)=0.16[1 +tanh(1.3» - 9.1)],

where all quantities which are not dimensionless

,_24_ \ },(r)

.25k

_--heavy - quark
omplitude

, (Gev)

FIG. 13. The potentials A_(r), A, () and the heavy-
quark amplitude,

1
@, 0u <r>(0> :

computed for the choices in Fig. 12.
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are in GeV units. Note that the range of Y(r) is
on the order of m, ™ and f(r) is at most 320 MeV
which is O(me.) and/or the momentum fluctuations
in hadronic matter. Then the potentials x_(»),

A, (r) and the heavy-quark amplitude in the physi-
cal state, (®’|¥(’(»)), are shown in Fig. 13. We
note that A_(r) has roughly the same features as
the screened quark potentials arrived at from dif-
ferent arguments in previous sections. Note also
that (®'|¥(©’(»)) changes smoothly from unity to
zero over the spatial region where f(r) is chang-
ing. In other words, the state vector converts
smoothly from a pair of heavy quarks at small
distances to an outgoing pair of charmed hadrons.
The similarity of this now well-formulated state-
ment to the adiabatic picture of the ionization of a
hydrogen molecule into two free hydrogen atoms
is interesting.

It should be clear that the zeroth-order approxi-
mation to Eqs. (5.20) reproduces the model results
concerning R found in the previous section. By
adjusting the various parameters at our disposal
one obtains a A_(») potential which binds an S-wave
ground state and its first excited state. Then the
3S state lies above the threshold and gives the
$”(4.1) enhancement studied earlier. Before turn-
ing to more calculations let us anticipate some of
the new effects brought about by the coupled-chan-
nel model. The model begins with the potential
G(r) which is screened by f(r) into the potential
x_(r). If we choose G(r) to have the form of that
used by Eichten et al.,” then x_(r) will always have
non-negligible curvature near its ionization point.
Therefore, the y’(3.7) wave function will occupy a
larger volume than previously estimated. We ex-
pect that the ratio of the leptonic widths of the
#(3.1) and the »’(3.7), and the 25— 2P mass differ-
ence will be sensitive to this effect. Calculations
of these quantities will be done in a later section
following an analysis of the first-order corrections
to the adiabatic approximation.

A few words about the curious A,(») potential are
in order. At the level of the zeroth-order approxi-
mation the potential A,(r) and its eigenfunction
¥{?’ can be ignored. However, we shall see that
A7) indirectly produces some interesting correc-
tions to the lowest-order adiabatic picture. We
note that for small », A, (r) is well approximated
by Y(r)+2/2upr?, so A, (r)—== as»~0. Similarly,
for larger » A,(r) becomes G (), so A,(r)—==.
These features will obviously be true of a wide
class of models and they may be important since
they guarantee that the spectrum of A,(r) is dis-
crete. In potential models the discrete spectrum
of A,(r) also exists to infinity, but recall that the
entire approach envisioned here is only trust-
worthy near the threshold. It is very questionable

whether the high-energy behavior of X\,(r) is com-
patible with local quantum field theory, but it is
reasonable to trust A,(r) in the vicinity of its low-
est few bound states. Comparing Figs. 11 and 13
we see that the spectrum of A,(»r) will closely ap-
proximate the spectrum of G(») above its 3S level.
But the centrifugal barrier in A () insures that
these states do not have appreciable values at the
origin and do nof directly contribute to R. Their
role is more subtle and will be studied in the next
section.

VI. CORRECTIONS TO THE ADIABATIC APPROXIMATION

Now return to Eq. (5.20) and consider the first
correction, lI/(‘), to the adiabatic state vector
\I’(O),

(T+Vp-ENV=_ce@, (6.1)

There are two classes of terms in C of a rather
different character, so we shall consider them
separately. First, there are terms which are
diagonal, such as

2
-<ﬁ>[(cose- 1)oz]diir—2. (6.2)
Let us estimate this term’s effect on the eigen-
values of the zeroth-order approximation. Re-
place d2/dr? by —p?, and let 3(cos6- 1) have its
maximum value of —1. Then, keeping this cor-
rection we have the replacement

Ap 2
A_ - 0
. O . 2#0,“1’1)
0 A+ 0 ALt A “
2Uprkp

(6.3)

where A= ugr— p. Therefore, the zeroth-order
approximation will be good only if

Ap
— 1. (6.4)
2#0'#1)172
We expect Ap=300 MeV, pp=2 GeV, so this
requirement reads

P2/2up <<T. (6.5)

Thus, we can neglect this correction to the
zeroth-order approximation as long as we con-
sider only energies within 2 GeV, say, of thresh-
old.

In fact, when the system of equations was ana-
lyzed numerically, diagonal terms such as Eq.
(6.2) were simply incorporated into the zeroth-
order equation. Therefore, we were not limited
directly by the inequality above. However, since
we are using a nonrelativistic formalism we can-
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not believe the calculations except within several
GeV of threshold anyway.

The second class of terms in C which generate
more interesting corrections involve off-diagonal
Pauli matrices. We shall illustrate the physics
of such terms by concentrating on the first term
in Eq. (5.16).

g(r)=-2LD[ <9';—7+29”ﬂ (6.6)

It is convenient to write

\1/<°>=<u°>, w‘”:(u‘) 6.7)
W w,

and to write out the differential equation for u,,

1 d? 1 <,d )
[ d—;+7\ (7") }ul(‘)’)—zu‘b 9d7+ 29

20
Xwo(7), (6.8)
where w, satisfies the equation
1 d?
[ 3 @ - E}wo(r)=0. (6.9)
D

Therefore, the functions wy(7) are the eigenstates
of the discrete spectrum of A,(¥). This means that
the source term in Eq. (6.8) is nonzero only for
energies near the bound states of A,(») and that
there are no first-order corrections to uy(¥) ex-
cept near these energies. If the overlap of
~Cr)¥® with ¥ itself is sufficiently small,
then the corrections to the zeroth-order calcula-
tion of R will be small (i.e., involve little change
in the area under the curve R versus E) and will
be well isolated around the energies of the bound
states of A (7).

To analyze the coupled differential equations in
a quantitative, systematic fashion, view them as
a coupled-channel problem of the following sort.*
Define the first channel as the Schrodinger equa-
tion with the potential A _(»). Label its spectrum
of states {#{®} and its energy eigenvalues {e'}.
The {u{”} contains several discrete states, the
¥(3.1),9(3.7), various =1 levels, etc., and a
continuum above the ionization point of A _(¥). De-
fine the second channel as the Schrodinger equa-
tion in the potential A,(»). The spectrum of this
problem consists of only discrete levels {w£°’}
and discrete energies {€!}. Finally these channels
are coupled through the interaction

1 " d>
2u0,(9+8’d o, +*

These ingredients can now be fed into a coupled-
channel formalism.** Only the results of that ex-
ercise will be stated here. They can be reproduced

Clr)=-

(6.6")

upon consulting Ref. 34. First, each level {w{®}
in the potential A,() obtains a width through its
coupling to continuum states:

1“.(15):21r|<w§°’|clu‘°’>|2 (6.10)

where #”, the eigenstate of the A_(r), satisfies
outgoing boundary conditions. The shift of each
level is obtained through the dispersive integral,

I_,‘/'l"(E)dE'.

e (6.11)

And finally, the corrected wave function (out-
going boundary conditions) is

O L gD puee (6.12a)

ug(r)=u
where, for E near ¢;,

Cr)w'® @) 1
( - LWrw;
ug’ ()= [E e+ UT(E) - A, (B)

fG E V'T)C(‘V )wgo)(’,l)u(o)( )d?".
(6.12b)

The quantity G _(E;7’,7) in Eq. (6.12b) is the out-
going Green’s function calculated in the single-
channel x_(») potential. The validity of Eq. (6.12)
is limited by the assumption that the states w§°)(r)
do not overlap. This assumption will be verified
explicitly for the models of C(r) discussed in the
previous section. -

Now let us summarize our analyses of Egs.
(6.10)-(6.12) in a class of models which include
the choice of potentials sketched in Figs. 11-13.
There are several tasks one must perform,

(1) determine the spectrum {w,, €{},

(2) compute the widths I';(E) and shifts A (E)
of these states, and

(3) determine the Green’s function G.(E; 7', 7)
for the potential x_(#),35

before one can evaluate u(‘)(r) from Eq. (6.12).
Finally, after properly normalizing the continuum
state ug(*) =u'® () +u (#) to unit flux at infinity,
one evaluates #;(0) and determines a new R from
Eq. (4.5). Most of this work must be done nu-
merically, but the trends of the results can be
understood simply. First, the low-lying spectrum
of A, (r) must be determined. For the potentials

of Fig. 12 one finds

€{*)=4.55 GeV,
€{*)=4.86 GeV

(6.13)

and the states w{®(r) and w{®(») are shown in
Fig. 14. Note that the lowest state w{%(7) is well
approximated by a smooth Gaussian which van-
ishes near the origin because of the presence of
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the centrifugal barrier in A (7). It is triviai now
to compute the widths T';(E):

I,~1.5MeV, T,~16keV. (6.14)

These widths are very small on the scale of E .,
~4.5 GeV. There are two reasons for this:

(1) The goodness of the adiabatic approximation
is one reason—the functions A, and f are smooth
so 6’ and 6” are small in GeV units.

(2) The overlap integrals in Eq. (6.10) involve
w; which extend over a large segment of the »
axis. After applying C(7), they are then folded
against #{?’(r) which is a continuum state several
hundred MeV above threshold. Thus, ug’)(r)
oscillates several times within the important
integration region and the overlap integral can
be an order of magnitude smaller than an un-
educated guess.

The analysis also shows that the value I',~ 16 keV
is somewhat misleading since T',(E) is a rapidly
varying function of E in the neighborhood of eg‘ ),

The results of Eq. (6.14) were considered
somewhat peculiar so the calculation was repeated
for various other choices of potentials. A second
set of potentials is shown in Fig. 15. In this case
a smoother f(v) was chosen,

L 1 1 L 1 ! 1 L P S T L
| 2 3 4 5 6 7 8 9 0o n 12 13 14 15

_,5%

-46r

FIG. 14. (a) Ground state of A, () potential shown in
Fig. 13. (b) First excited state of A, (7).

28317

f(r)=0.39[1 + tanh(0.257 — 1.75)] (6.15)

with rather similar curves for A () resulting.
Therefore, the simpler consequences of Fig. 15
will be very similar to those of Fig. 13. How-
ever, as indicated above, I'; involve some subtle
effects. In this case one computes

I',=4keV, TI,=6MeV. (6.16)

Again, T, and T, are very small but the roles of

1 and 2 have (in a rough sense) been interchanged.
As before, the precise value for I'; is deceptive
since it changes rapidly with E. A more meaning-
ful measure of the effect of the states w{®(r) on
the continuum is obtained by calculating R.

Before tabulating the results of a calculation
of R, consider the character of Eq. (6.12). Note
that the relative phases of u’(») relative to
w9 (7) relative to u®(r) determine whether
| ug(0)|? will be larger or smaller than | % (0)|2.
But the value of such phases [which determine
whether there is constructive or destructive
interference between u5(0) and u°’(0)] depends
on subtle overlap integrals and the precise value
of E chosen. It will be apparent in the results
that the relative phases of u%’ and ‘2’ can be very
different at €{*) and €{*.

For the potentials of Fig. 13 we found that the
effect on R near e(l*) was negligible (a slight de -
pression) while a narrow “glitch” appeared in R
near eg"), as shown in Fig. 16. For the potentials
of Fig. 15, a similar glitch appears in R near e(l”
while only a negligible and wider depression
appeared near €{*’. Note the narrow width, 30
keV, and the occurrence of both destructive and
constructive interference in Fig. 16.

Since these glitches are very narrow and not

L75F

L 75k

FIG. 15. The potentials A_, A, and f corresponding
to Eq. (6.15) for f, G(7)=—(0.177/7)(1 -7%) —1.56 and
Y(7) =0.313¢ ~0-32r
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‘*_ % 30 keV

2 {

~ 4.86 Gev

——

E

FIG. 16. The glitch near e({) calculated for the po-
tentials in Fig. 12. Note the expanded energy scale.
The glitch is only ~ 30 keV wide.

high enough to subtend much area they will be
very difficult to observe experimentally. These
two examples emphasize that the existence of
glitches depends on phases in Eq. (6.12) which are
sensitive to the details of each model. However,
experience has suggested that if a glitch does not
occur at e‘i*) then a glitch will appear near eﬁ’;}.
It appears that the energy dependence of the rela-
tive phases is responsible for this regularity.
Therefore, perhaps it is not too unreasonable to
expect a glitch at one of the two energies €{*), ¢!,
These effects are rather odd, but similar phe-
nomena do appear in systems containing nuclear
and/or atomic resonances. In fact, the sensitivity
of the shape of glitches to the phase of the contin-
uum has been noted in these contexts.>* However,
the glitches we are discussing are very small
effects (they are narrow and subtend small area)
so we wonder whether they survive in more real-
istic models. For example, models with multi-
body final states contain more amplitudes which
could interfere with these glitches and wash them
out. At a more basic level, it is not clear that
the coupled-channel model embodies the screening
mechanism of field theories which prohibit asymp-
totic states of quarks with enough accuracy to be
trusted in their minute details. We find this last
remark particularly worrisome. Nonetheless, it
seems worthwhile to point out these curious
phenomena since they are a reflection of quark
confinement in these simple models. If glitches
were ever to be discovered in R, they could be
interpreted as evidence for the existence of long-
range forces in the theory underlying conventional
hadronic physics.

VII. CORRECTIONS TO THE SIMPLE QUARK PICTURES OF
CHARMONIUM

Quark models of charmonium”'8' 3 phenomeno-

logy were developed immediately after the dis-

covery of the ¥ and the ¢’. These models ignored
the influence of the nearby threshold on the spec-
trum of heavy-quark bound states. In this section
we wish to estimate some of the corrections to
these models coming from a coupled-channel
analysis.

First, note that the (3.1) and the §’(3.7) are
no longev simple two-quark bound states. This
fact is apparent in the zeroth-order adiabatic
approximation. Recall that to diagonalize the
potential V(7) in Eq. (5.12) a similarity transfor-
mation U(?) was introduced with the properties

UrV@u(r)=t=vp(r), ¥@)=U@¥'(r).

Recall from Eq. (5.7) that the upper component of
¥’ is in the pure heavy-quark sector while its
lower component is in the pure charmed-meson
sector,

viry= (YN (5.10)
w'(r)

The 3.1 and 3.7 states are described by the states
of the form

‘I’(O)(’)’) - uO(T)
0

in the lowest-order adiabatic approximation. The
amplitude that this vector lies in the quark sector
is

(5.19)

A7) = (1,0)U(r) ™ <“°(”>
0

(), 0) U(r)<l>, (7.1)
0

while the amplitude that it lies in the charmed-
hadron sector is

Ayr)= (0, DU() ™ (“ (”>
0

=(u°(7), 0) U(r)<°> . (7.2)
1

Let us discuss the qualitative features of these
amplitudes. For small », U(») is essentially the
identity so Ag:(7)=u’(r) and Ay(r)=0. However,
as v increases, U(7) effects the conversion of a
system of heavy quarks into a system of heavy
mesons. Thus

—_— <o 1)
10
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as ¥ -, which implies that Ag/(r) -0 and A ,(v)
—u°(7) in this limit. In Fig. 13 we plotted a quan-
titative example which showed (1,0)U(»)(;) in the
transition region. Note that the transformation is
nontrivial wherever f’/(r)#0 and that this is the
same region where the A_(7) is bending from a
linearly rising to a constant potential. Since the
¥'(3.7) lies near the threshold its wave function
extends into this region and beyond. Therefore,
the charmed-hadron piece of its wave function
must be considerable for large . The ¥(3.1) is
contained in a smaller volume so the amplitude
that it is a bound state of two charmed hadrons is
much smaller for the models constructed here.

Numerical studies of this effect show that its
strength is sensitive to the shape of f(7) and the
nearness of the threshold. If one chose f(7) to
rise from zero at smaller 7 values than in Fig.
12, the charmed-hadron part of the ¥(3.7) would
be larger than in this example.

Another sizeable correction to naive two-quark
models of charmonium states concerns the shape
of the potential acting between the heavy quarks.
Consider the quark sector of the coupled channel
model discussed in Sec. V. We suppose that the
confining potential G(r) acts in that sector so
there exists a rich spectrum of heavy-quark bound
states. Between the 1!S and its first radial exci-
tation 23S, there is a family of *P, , , states.
Just below the 13S (23S) is its spin singlet partner
115 (21S). The spectrum has been discussed in
further detail elsewhere.”*!* It was hoped that
the existence of this family of states could be con-
firmed by the observation of y-ray transitions be-
tween them.*® Using the potential of Eq. (1.1),
the center of gravity of the P states was estimated
at 230 MeV below the 23S state. Then the rates
for the decays of 23S state into the 23P states
could be calculated in the dipole approximation.
The total widths for these transitions was found to
be 215 keV, a large quantity, which suggested that
y rays would be easily detected in the final states
of 9’(3.7) production. The calculations were noted
to be quite model-dependent since the widths
depend on the cube of the energy difference of the
2P and the 2S states and on the square of the ma-
trix element of the dipole operator between these
states. We now repeat these calculations in the
coupled-channel model. Now the potential X _(7)
binds the charmonium states so the energy spac-
ings are changed. In fact, it is easy to see that
the 2P-2S energy difference in the A_ potential
is necessarily less than the same energy differ-
ence in the G(») potential. The reason is that the
X _(r) potential has curvature near its ionization
point—it bows outward, as in Figs. 13 and 15.
Since the 2S state has a node and the 2P states

do not, increasing the curvature of the potential
generally decrveases the 2S-2P energy diffevence.
Examples of this trend are the following: Ina
harmonic potential the 1S-2P-2S states are equally
spaced, in a linear potential the 2P - 2S energy
difference is less than the 1S - 2P difference, and
in the Coulomb potential the 2P and 2S states are
degenerate.

The spectrum of states of A_ potentials were
obtained numerically. The calculations employed
a potential G(7) whose Coulomb term had a
strength suggested by asymptotic freedom
(ag~0.2) and a linear term suggested by the string
model (k7, k= (27)7'). In addition, the heavy-
quark mass was chosen in the range 1.6-1.8 GeV
and the depth of the potential was adjusted so
that the threshold appeared between 3.8 and 4.0
GeV. Using the coupling potentials f(7) in Eq.
(5.23) and (6.15) it was not difficult to obtain x_(r)
potentials which bind the (3.1) and §’(3.7) at the
proper energies. Using A_(7r) wave functions and
energy differences for all the states of interest
were obtained. The 2S - 2P energy differences
which resulted lay in the range

AE(2S-2P)=120-170 MeV . (7.3)

The reason for the large spread in AFE reflects
the fact that the theoretical calculation is simply
not sufficiently constrained to generate a unique
answer. The 2S -2P energy difference is sen-
sitive to the curvature in A_ near threshold. By
varying the position of the threshold and the form
of fa range of AE(2S—2P) results as in Eq.
(7.3). For all these x_(7) the ¥(3.1) and §’(3.7)
have the correct energy difference. Note, as
expected, that the new AE are considerably
smaller than 230 MeV. The following trend in
the calculations was also noted with interest:
The nearer the threshold was placed to the §’(3.7)
the smaller AE became. Corresponding to Eq.
(7.3), one computes the radiative widths

r,(2%5-2°P,)=17-48 keV,
r,(2°S-2°%p,)=10-28 keV, (7.4)
I, (2°5-2°Py)=3.5-10 keV,
where we have left the matrix element unchanged
from the naive calculation.” Thus, the total con-

tribution to the width of the 3’ from decay into P
states is

T,(2°5,~7;2°P,)=20.5-86 keV . (7.5)

The total width of the y’ is approximately 250
keV,! so the branching ratio into P states is
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The present experimental upper bound on
I'(y' -y +anything)/I'(’ - anything) is on the order
of several percent. Therefore, accounting for
this single effect, the reduction of the 2S5 - 2P
energy difference, reduces significantly the dis-
crepancy with experiment.

Before discussing Eq. (7.6) critically, let us
calculate the ratio of the leptonic decay widths
of the ¥(3.1) and the ’(3.7). In bound-state mod-
els, it is natural to study the ratio’

u(13S;7=0)
u(23S;r=0)

- (2‘%) I;jﬁif) ’ @D

which is measured to be 1.5-1.6.) The nearness
of the experimental number to unity was a mo-
tivating factor for incorporating confinement into
the heavy-quark potential. Many authors ob-
served that n=1 for a linear potential while n=8
for a Coulomb potential. Using the potential G (7)
in Eq. (1.1) one can calculate n=1.05, which is
significantly smaller than the experimental value.
It is clear, however, that the coupled-channel
dynamics will increase this ratio. Since A_(7)
has an ionization point and curvature below it,
the 2S state will be spread out over a larger
volume [as compared to the same calculation in
the potential G(r)]. Therefore, its value at the
origin will be decreased and n will be increased.
Numerical calculations of this ratio for potentials
A _(r) referred to above predict

=8-34%. (7.6)

2

2

u(13S;7=0)
u(23S;7=0)

=1.5-1.6, (7.8)

which is in the experimental range.

Consider briefly the effect of the mixing phe-
nomena discussed in the second paragraph of this
section on the results Eqs. (7.6) and (7.8). Since
Eq. (7.8) involves only the wave function at the
origin and since U(r =0)=1, the calculation of 7
is unaffected by this complication. However, the
calculations of the y-ray transitions involve the
matrix element of the dipole operator between
stationary states and these can be affected. Since
the ’(3.7) lies nearer to threshold than the P
states, its wave function should have a larger
charmed-meson component in it. However, the
dipole operator does not mix charmed-meson and
charmed-quark sections, so the rates I, @' =3P,)
may be further reduced by this effect. This point

LEONARD SUSSKIND 12

may be quite important in practice because the
data® suggests —unlike our simplified models—
that the y’ lies just above a weak threshold at
3.6 GeV (a model with this feature will be dis-
cussed briefly in the next section). In the SU(4)
scheme one would like to identify the 3.6-GeV
threshold with DD production. After the experi-
mental study of final states is carried out and
the decay products of the y’ are identified, it may
be worthwhile to incorporate these qualitative
ideas into quantitative model calculations.

VIII. FINAL STATES OF o(e*e”™ - hadrons)
ABOVE THE NEW THRESHOLD

We wish to discuss briefly the composition of
the final states of o(e*e™ - hadrons) in the coupled-
channel model introduced in Sec. V. It was con-
structed with spin-independent forces so there
must be a simple relation between the number of
spin-triplet charmed mesons (D*) and spin-singlet
charmed mesons (D).}” The initial spin state of
the quarks is

fii &7 = 7. (8.1)
This expression states that the heavy quarks (spin
labels i, j) are produced in a spin-triplet state

by the photon of polarization €, and the light
quarks (labels &, I) are produced in a spin-triplet
state between the heavy quarks (# points between
the ®’ and ®’). This state contains both spin-1
and spin-0 pieces,

HE-DF D =(1)°(1h) o + 30} 6hc, (8.2)
where ¢ is the amplitude (normalized) to find a

spin-zero configuration in the tensor product. Set
i=1, k=j, and sum over the remaining indices,

Ftr7eF-7=3(2)@2)c. (8.3)
2

c=1e-7. (8.4)

Squaring and averaging over the angle between &
and 7 gives the probability to have a DD final
state,
= 1 fcos?6dcose
c)o= 7 ——F T

¢ Jdcos

(8.5)

5’»—- |

0]

Thus, in this model where the D and D* are de-
generate, the final states building up the large
enhancement in R at 4.1 GeV would be composed
mostly of the D*.

It is tempting to consider intuitively the effect
of the D-D* mass splitting on these considerations.
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Most investigations into broken SU(4) mass for-
mulas,?” or models of charm dynamics,?” suggest
that the D-D* mass splitting is on the order of
100 MeV. Bold estimates state

m(D)=1.83 GeV, m(D*)=1.95 GeV, (8.6)

so the DD threshold (3.66 GeV) occurs very close
to the y’ and D*D* threshold occurs at 3.90 GeV.
These estimates and the expectation that D*’s
will outnumber D’s by a wide margin in the final
states, suggest that R should

(1) begin to rise smoothly at 3.66 GeV owing
to a relatively weak DD threshold, and

(2) rise swiftly at 3.90 GeV where the many
spin states of the D*D* system can contribute.

The data do in fact resemble these qualitative
expectations. A more sophisticated coupled-
channel model with weak spin-dependent forces
might be productive.

Note that these model considerations ignore the
possibility that AX pairs are created by the forces
between heavy quarks. The justification for this
is the conventional wisdom that such processes
are much less likely than those involving ® and
N quarks. The relatively weak FF and F*F*
thresholds can be included in similar models if
desired.

Finally, it is amusing to observe that the D* - D
mass difference is less than m,. Therefore
D* ~ D +y is probably the most likely decay of
the D*. Thus, two relatively low-energy
(=100 MeV) photons should accompany most of
the events which build up the 4.1-GeV enhance-
ment in R.

IX. CONCLUDING REMARKS AND SPECULATIONS

In summary, it appears that simple charmonium
models explain several experimental facts in a
natural way. These include (1) the energy differ-
ence of the ¥, ¥’, and y”, (2) the behavior of R
in the immediate neighborhood of 4.0 GeV (e .g.,
the width and area under the "), and (3) the ratio
of the leptonic widths of the ¢ and y’. Other facts,
such as the ratio of the leptonic to hadronic widths
of the 3, can be understood as consequences of
asymptotic freedom?! without involving a detailed
dynamical picture. However, the original SU(4)
model in which one assumes that the ¢’ and y” are
radial excitations of the y suffers from several
potentially deadly problems. They include (1)
the lack of evidence for a family of 2P, states
lying between the § and y’, (2) the absence of
charmed mesons of mass 2.0 GeV with the ex-
pected properties, and (3) the high value of R in
the vicinity of 6.0 GeV. We have noted in the text

that the 2P, family of states may be more difficult
to observe experimentally than originally ex-
pected”’ % because the nearness of the threshold
at 3.7-4.0 GeV tends to lower the 2S- 2P, energy
difference and tends to complicate the wave-func-
tion description of the y’. Both of these effects
inhibit y-ray transitions as estimated in the text.
It is conceivable that the SU(4) charmonium pic-
ture will survive this problem although the exper-
imental situation is discouraging. On the basis
of the models discussed here, one does expect to
find some y rays with energies =150 MeV, but the
rates as estimated in Sec. VII are quite small.
Granting this, one is left with the problem of
understanding the total width (=250 keV) of the y’.
Experiments indicate that decays which do not
involve the ¥ give at least two neutral final-state
particles. No explanation of this fact has been
proposed. Problem (2) is, of course, very seri-
ous, but the theoretical estimates concerning
the decay modes of charmed mesons are subject
to considerable uncertainty and controversy.
Finally, problem (3) is also most serious. As-
ymptotic-freedom estimates of R in the conven-
tional SU(4) scheme predict R~ 3.7 at E~ 6.0 GeV.?®
The correction above 3.33 is calculated in second-
order (renormalization-group improved) perturba-
tion theory and the value of the running coupling
constant used in the calculation is inferred from
either (1) the approximate validity of Bjorken
scaling in deep-inelastic scaling, or (2) the as-
ymptotic-freedom estimate of the validity of
Zweig’s rule.® Most theorists agree that ag=0.2
at @*~10 GeV2.3! If this is accepted and if R can
be calculated in perturbation theory, then R=3.7
is inescapable. One might criticize the perturba-
tive calculation of R but one is then obliged to
explain why the asymptotic-freedom estimate of
R below charm threshold does agree with the data
(2.2 versus 2.5 experimental). The high value of
R has led to several 5- and 6-quark models.!!
Consider briefly a model which predicts a
curve of R versus E which fits all the available
data. Suppose (just for the sake of argument)
that one believes that the original SU(4) model
will survive its difficulties concerning ¥, §’ phe-
nomenology and charm searches. Then the sim-
plest (cheapest) way to bring the theoretical R
into agreement with the data is to suppose that a
heavy lepton L* exists. A comparison of Fig. 5
or Fig. 7 with the data® shows that the theoretical
estimates are low for E= 4.6-5.0 GeV. If the con-
tribution of a heavy lepton having mass between
2.3 and 2.4 GeV is added to Fig. 5 or Fig. 7, then
Fig. 17 results. Theory and experiment agree
except, perhaps, for the highest-energy point.
This detailed agreement encourages us to suggest
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FIG. 17. Heavy-lepton (m;+=2.3 GeV) and four-quark
contributions to R. The two theoretical curves plotted
for 4.0 <E <4.6 GeV correspond to Figs. 5 and 7. The
experimental points are taken from Refs. 2 and 6.

several simple (obvious, really) tests of the
heavy-lepton proposal.

First, however, one potential difficulty must
be surmounted. Below the heavy-lepton threshold
there should exist a bound state of heavy leptons,
so there is the possibility that a third spike in R
should have been observed at ~4.6 GeV. However,
because ¢®/4r is so small the wave function of
the heavy-lepton bound state is extremely small
at the origin (¢, (0) ~ [(e®/4m)m]*’?) so the spike
actually subtends negligible area and could not
have been seen.

A good feature of the heavy-lepton proposal is
that it can be put to simple tests. Most models
of heavy leptons3?:%° suggest that its purely lep-
tonic decays will account for 0.4-0.5 of its
width,

I[(L—~ u +neutrinos) 1 1

(L - all) 5 4 9.1)
I'(L- e+neutrinos) 1 1

I(L- all) 5 4°

These processes then imply small but measurable
rates for pe +neutrinos and p inclusive processes
above 4.6-4.8 GeV. For example, choose £=6.0
GeV where the heavy lepton contributes about 3
unit to R. Then the percentage of events of the
form pe +neutrinos, P(ep), is roughly

Plep)=(3/5)2(s)(3)
=1-2%. (9.2)

Similarly, the probability of an event with a muon
and anything else, P(uX), is roughly

P(uX)=(5/5)2(5)
=5%. (9.3)

These two estimates give a good first test of the
heavy muon possibility. Since there are other
sources of pe and pX events, Egs. (9.2) and (.3)
should be treated as rough lower limits (assuming
the heavy lepton has conventional properties®’ ),
In particular, leptonic decays of charmed mesons
will add to these estimates, so there is the pos-
sibility that more elaborate tests than these will
have to be passed before the existence of a heavy
lepton is established. Of course, if the experi-
mental pe and p inclusive rates fall far below
these estimates, then the heavy-lepton hypothesis
is false.

Note added in proof. The discovery of sequential
radiative transitions*! of the y’(3.7) to #(3.1) con-
siderably constrains the general theoretical frame-
work discussed in the text. Assuming that these
transitions proceed through the P states of charmo-
nium,*' we learn that the radiative transitions are
much weaker than anticipated in the simplest
charmonium models and the splitting between the
P states is larger than anticipated. Taking the en-
ergies of the P states as input, the radiative
widths of Eq. (7.4) are about 3 times too large.*
Perhaps the overlap integrals in Eq. (7.4) are re-
duced by the mixing effects discussed in Sec. VII.
The large P-state splittings mean that spin-depen-
dent terms should not have been ignored in our
coupled-channel models. These large effects are
not understood and represent a real challenge to
quark-model builders.

Several numerical challenges obviously remain
for charmonium spectroscopists. One should cal-
culate the rates y’— yyy and ¢’ -~ y7, in a model
with realistic D-D* splitting to prove compatibility
of the charm picture with the data.
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