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We use the Reggeon field-theory rules for inculsive reactions to study those processes in the triple-Regge
region. We first show that at asymptotic energies the dominant Reggeon graphs have a single Pomeron
connected to external fast particles. We construct the sum of these dominant graphs by obtaining the infrared
forms of the Pomeron propagator and triple-Pomeron vertex. This is done by an expanded set of
renormalization-group equations which allow one to determine the separate dependencies on all momenta and
energies. As a by-product we obtain the momentum-transfer dependence of da./dt in 2 i2 processes. The
inclusive cross section is discussed in detail as to its dependence on momentum transfer and missing mass, and
we verify that there is no violation of s-channel unitarity when Pomerons interact among themselves. We
also estimate the energy at which our asymptotic forms start to become valid.

I. INTRODUCTION

In a companion paper' we have given rules for
calculating the effects of multi-Pomeron cuts on
inclusive processes in the triple-Regge limit.
Here we shall use those rules, together with the
renormalization group, to calculate the inclusive
cross section in the triple-Regge limit. As a by-
product of the calculation we obtain the diffraction
peak in 2 2 amplitudes.

In Ref. 1 we used the hybrid diagram technique
of Gribov' to obtain the "Reggeon calculus" rules
in the triple-Regge limit. As in the case of 2 2

processes, 3~ it is t -channel unitarity which re-
quires the cuts to be determined by these rules.
(This point is made directly by Cardy, Sugar, and

White, ' who derive the "Reggeon calculus" in the
triple-Regge limit using t-channel unitarity alone. )
s-channel unitarity has not been used at all, so one
must check to see whether it is or can be satis-
fied. One of' the most sensitive checks is the
requirement that the cross section for events in
the triple-Regge region not exceed the total cross
section. This requirement is not met by a simple
Pomeron pole with ~ (0) =1 and o, '(0) finite. What

we require then is that the effects of the cuts re-
store s-channel unitarity in this restricted form.
The cuts are strong, and we shall find that unitar-
ity is indeed restored.

In Sec. II we use the renormalization group to
prove that the dominant contribution to the inclu-
sive cross section is due to Reggeon diagrams in
which a single Pomeron is attached to the external
fast particles. As a consequence, the inclusive
cross section factorizes at sufficiently high ener-
gy. A similar result has been found for 2-2 am-
plitudes. ' In both cases, the effect follows from

the manner in which the product of a number of
Pomeron field operators at a point is renormalized.
As the number of Pomerons coming together in-
creases, the dimension of the product changes,
introducing a factor which suppresses diagrams
with multiple emission of Pomerons by external
particles.

In Sec. III we begin the study of the dominant
contribution. Here we encounter a problem which
is connected with the large number of independent
variables for an inclusive cross section. If we

copy the treatment of 2- 2 amplitudes, ' we obtain
a scaling law, Eq. (29). However, a single scaling
law becomes less and less interesting as the num-
ber of variables increases. For example, the
scaling law for 2-2 amplitudes is enough to deter-
mine the energy dependence of p . , but the

total elastic
scaling law for inclusive reactions in the triple-
Regge region is insufficient to determine the con-
tribution of such events to the total cross section.
In Sec. III we therefore apply great effort to the
calculation of the scaling function which appears
in the scaling law. A simple technique for cal-
culating scaling functions was introduced in Ref.
7, and we first show why it is not really satis-
factory. The trouble with this technique is that
it is not uniformly valid in the neighborhood of
J=1 and t =0. We develop new formulas in Sec.
III which overcome this defect. The presentation
in Sec. III is for the Pomeron propagator, which
is one element we need for the dominant contri-
bution to the inclusive cross section. The cal-
culation is lengthy, but it results in real improve-
ments. We can now give detailed angular distri-
butions in both 2-2 and inclusive cross sections.
The scaling law seems to suggest that the propa-
gator has a fixed cut at J= 1, but our new formu-
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las show that there are only the moving Regge-
Mandelstam cuts. Our formulas also have some
conceptual interest in that they show what can be
learned from the renormalization group by study-
ing the dependence of Green's functions on the
most general normalization point.

In Sec. IV we complete the construction of the
dominant contribution by calculating the energy-
nonconserving triple-Pomeron vertex. Here
again, the scaling function is obtained. In Secs.
II to IV we calculate to lowest order in the & ex-
pansion, where & =4-D, and D=2 is the number
of transverse dimensions in a high-energy colli-
sion . From experience with the scaling expo-
nents, we expect the lowest term in the & expan-
sion to give the qualitative predictions of Reggeon
field theory at D = 2, and we expect the quantita-
tive predictions to be correct to within a factor
of perhaps 3."

In Sec. V we evaluate the inclusive cross section
in the triple-Regge limit and exhibit our results
in various forms. We also verify that the integra-
ted inclusive cross section grows no more rapidly
with energy than the total cross section.

Section VI is devoted to conclusions and a sum-
mary of what we have accomplished. We estimate
the energies at which our asymptotic formulas

should hold, and find they probably are not appli-
cable at presently accessible energies. Neverthe-
less, the formulas we derive have considerable
utility. %'e are able to check s-charnel unitarity,
as discussed above. The distributions we cal-
culate have all the qualitative features seen in the
data. For example, in 2-2 processes there is a
shrinking exponential diffraction peak which domi-
nates the second diffraction maximum by six
orders of magnitude. Since we know cuts are
strong, it is not obvious until the calculation is
done that the interacting Pomeron will lead to a
forward Regge pole-like distribution of this sort.
Another noteworthy feature of our results is that
the inclusive differential cross section is nonzero
at 1=0. Therefore, if one insists on fitting in-
clusive data with a simple Pomeron pole in the
triple-Regge region, we do not expect the phenom-
enological triple-Pomeron vertex to vanish. (We
emphasize that the triple-Pomeron vertex does
vanish at t, =0, J, =1. When cuts are present, the
inclusive cross section does not vanish at t =0
because J, g 1 contributes to the Sommerfeld-Wat-
son transform. ) Our results agree with other
treatments of the inclusive cross section in
Reggeon field theory where they overlap. "

II. THE RENORMALIZATION GROUP AND THE INCLUSIVE AMPLITUDE IN THE TRIPLE-REGGE LIMIT

The inclusive cross section for the process p, +p, p, +X is given by the formula

2 Dls T6(s&2 =3 +3 t& s13 =s —3e& st =I
& t1 = 0& f2 =f3 =t)

1
dt dM' 32i gs', ,=~

The six-point amplitude T, has the kinematic identifications shown in Fig. 1. The triple-Regge limit is

M
M '

m
g fixed.

0

In this limit T, has several contributions, of which one has a discontinuity in s, . This contribution is
given by the Sommerfeld-Watson integral

c+$6o s ~2 s ~3 s ~z-~~-~3
~6( 12t 13& 1&f1) t tt &3 2 2 2 (tg4(g-tt -7 (1& 2t 3t 1

c 4~ (2fg~ m0

The signature factors are

8 i+T]
sing/,

e-f&(Eg-d2-Jg)+ ~ ~ ~I 2 3
2 3 sing (J,—J2-J3)

(4)

For Pomerons all signatures are positive, g& =1. The inclusive cross section is therefore
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Jj
4g 1 1 2

dtdM' 16~g', , (2q ) 4,(, (~ ) ( ) FIJ J,„Z ,tt (5)

As in Ref. 1, we shall replace the angular momentum and momentum variables by energies & =1-J and
two-dimensional spacelike momenta q, ~q = —t. We also replace ]~ ]~ by j (,P =1. In terms of these

2 3variables,

C+f oo s' E(E„E»E» t,=t; -q -) xp E,ln-, —(E,+E,)ln (8)

g( P)(E k)-
@-+Ok + (7)

The rules for calculating the partial-wave ampli-
tude Fare given in Ref. 1. They are stated as
Reggeon perturbation rules:

(1) Draw all topologically distinct Pomeron di-
graphs (graphs with arrows on Pomeron propaga-
tors) in which energy E, enters and energies E,
and E3 exit. Only triple-Pomeron vertices are
included, but any number of Pomerons may couple
at a point to external particles. An example is
shown in Fig. 2.

(2) For each diagram, identify the "notable"
vertices. A notable vertex has one incoming and
two outgoing lines. In addition, notable vertices
have a topological property which can be stated
in terms of paths following arrows and leaving
the vertex. The property is that no path starting
with one line leaving a notable vertex ever meets
a path starting with the other line leaving the
notable vertex. Notable vertices are identified on
the Reggeon diagram in Fig. 2.

(3) At each vertex put r, /(2g)++'it2.
(4) For a coupling to external particles in which

s Pomerons come together put (i)' 'N~/(2s)+"+ 'y'
(5) For each Pomeron momentum k and energy

E use the propagator

a factor —,'.
(7) Choose one of the notable vertices at which

energy will not be conserved. A diagram having
0 notable vertices makes k contributions in which
energy nonconservation occurs at a different no-
table vertex. (For some diagrams, the contribu-
tions with different notable vertices chosen as
energy nonconserving will be topologically identi-
cal. Even in this case, each contribution must be
retained. See Sec. V of Ref. 1 for an example. )

(8) Conserve momentum at vertices and energy
at non-notable vertices. Energy is not conserved
at the energy-nonconserving vertex chosen in
step (7). At other notable vertices insert a factor

5'(E,.„-E.„,) =i /(2~) (E E.„,+i &-) (8)

(9) Integrate d kdEover remaining internal mo-
menta and energies.

(10) Multiply by i (2w) ~+'~t' for over-all normal-
ization.

In these rules, D is the number of transverse
dimensions. Physically, D = 2. No intercept
renormalization is required to maintain a (0) = 1
within the & expansion.

We now want to study the infrared behavior of
particular contributions I to the partial-wave

Sg~S2qS3
amplitude E. I, , is the sum of all Reggeon

Z ~ 2&3
diagrams with s, Pomerons connected to the par-

(6) For each elementary two-Pomeron loop put
E

s, ]

FIG. 1. Kinematics of the six-point amplitude which
is related to the inclusive cross section. In the inclu-
sive process s& =M is the missing mass, s&2 = sf3 s
is the total energy, t2 = t3 = t is the momentum transfer,
and t) =0.

FIG. 2. A Reggeon diagram with two notable vertices
at C& and C2.
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ticles where E, enters the diagram and s, (s,}
pomerons connected to the particles where E, (E,)
leaves the diagram. In order to begin, we introduce
the renormalized contribution I& . This is

l&2s 3
calculated in the same way as I,„,but with the8l+ st

elements in perturbation theory replaced as
follows:

Propagator s: E-o.gP +ze E Z,-czar +ze
'

Vertices Jp- Z,r„
External couplings: N, „-Z„+o,,

It follows that

R&szszss ~ & q& 0&+0& 'o&sz& No, sz& No~s}

=I, (E„q,Z,Z, '/'r„Z, zr'„Z, -'z/'Z, ,pl. ..Z, -'s/'Z, ,+...Z, 's/'Z, „N, , ). (9)

W'e define renormalized couplings and slope by

+ 3/2+ -l&
3 l OP

z -1
2

Bzg(, )
(a', ) 'z,

i E=-E k ~O~ (14b)

Q =Z Q'2 0'

(10) = (2zz) +
(ro) T" '

I )z zzz =zz& = z& k =o.

(14c)

sz p(1 &1)

BE E ~E
(13a)

Then we have

Izzs (Ez & q&r& a &Ns, &Ns, &Ns )

=I (Ez &q& o& &o&No~ &No &No ) (11)

This gives the invariance of the contribution I
under renormalization.

The renormalization constants are chosen by
placing normalization conditions on the renormal-
ized proper vertices introduced in Ref. 7. The
proper vertices are one-Reggeon irreducible
Green's functions for m incoming and n outgoing
Reggeons, with external propagators amputated.
Renormalized and unrenormalized vertices are
related in a manner implied by perturbation theory
rules,

Tl(Nm)(E q r +&} (Z )(», m)/2T&(» m)(E q r &&)

(12)

(We remind the reader that proper vertices contain
only energy-conserving vertices. ) Therefore, by
placing appropriate normalization conditions on
the renormalized vertices, we can fix the Z's. The
conditions we choose are those of Ref. 7:

We do not have to introduce a separate renormal-
ization constant for energy-nonconserving triple-
Regge vertices. If we did, the normalization con-
dition would be like Eq. (14c), but I ")would be
replaced by f '), where the tilde indicates the
presence of one energy-nonconserving vertex in
each perturbation diagram for pz"), and a ()+ at
other notable vertices in f"".However, when
external energy is conserved, as it is in Eq. (14c),
f""' = F ~», and the new charge renormalization
constant equals g, .'

The renormalization constants g„3 are fixed by
placing normalization conditions on renormalized
proper couplings to external particles. These are
one-Reggeon irreducible amplitudes for two in-
coming particles and s outgoing Reggeons, with
external Reggeon propagators amputated. In cal-
culating g„3 we take N&, to be the only nonzero
bare coupling. Renormalized and unrenormalized
coupling functions are related by

I). , (Z, , q„r,e', N, ) = (Z,)" A(„Eq„r„a„N).

The normalization conditions and renormalization
constant are

-N (z)s-zi(2 )(z)+&Xs-»/z
E'"i

R
Bk2 E=-E~, k =O2=

l|l)
g -l

BE Em-E 2

I zz" i s,=zzz, =zzz s, )&,= o =r/'(2)z&

From these equations we learn that

(13b)

(13c)

(14a)

Z -' = (2)z)(z&+'Xs-»/'(N }-'P
i -, (z )z-s

(17)
Since p depends linearly on N~, Z, 3 has no depen-
dence on this parameter. "

A renormalization-group equation can be derived
for I&, „„bynoting that the right side of Eq. (9)Re8l Q2 Q3
has no dependence on E„. By applying the chain
rule we find
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8 8 8
+p —+( +(s~+s~+se} ——y —y -y I~ =0.

Bg 8~ 2 1 2 3 I 2&3
(1 8}

In writing this we have replaced r by the dimensionless coupling constant

a/4-1g= (,)n4(E„)

The coefficients are

Bg Be'

N N

81nZ3 8 in@, 3
y N BE ys N BEN N

(20)

In these derivatives, the bare parameters rp and a, are held fixed. %e can use the dimensional arguments
advanced in Ref. 7 to derive the representation

E g//4Xs1+S2+s3-4) E ~g q2I~ „„=II,II, II, (Eg-' —s
~S IS E (21)

From this it follows that

$ —+a', +Es +2 I~ z z (jQ, q~, a', Es)=0I a
I N

~

~ ~ ~ ~ t
~

7
I
t N

~~~
8$ BH BEN

(22)

Combining this with Eq. (18), we obtain a scaling equation

$ ——p + (a' -g), +2+y, +y +y —(s, + s~+ss) — Is ()E&,q,g, a', Es)=0. (23)

The solution of Eq. (23) is

I~, „,()E, ,q, g, a', E„)=I, (E„qg(- in'), a'(-ln t), E„)

e P

xexp dt ' ' y(g(t)) -y, (g(t)) -y, (g(t)) —y, (g(t)) -2 (24)

where g and e' satisfy the ordinary differential
equations

dg(t) =-p(g(t}), g(0)=g,

'(-'. )
"' ' '"(.;)'

X 481 ys2 Is3 E ~ E EN N

(28)

da' (t) = a'(t)- g(a'(t), g (t)), a'(0) = a'.
(25)

Here E is a linear combination of the E, , and

Q = —2+Z(g, )—(s, +s, +s, -4)D

In Reggeon field theory, this equation is useful
when p(g) has a zero with dp/dg& 0. Let us
suppose g, is such a zero. Following the standard
analysis, we find a scaling law for the infrared
behavior of I (see Ref. t):

+-,'y(g, )(s, +s, +s, )

y., (g, ) r-,, (g, ) —r,, (-g, ),

Z(g, )=-1-" ' g'. (27)
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Equation (26) can be restated

(28)

The anomalous dimensions associated with the
couplings at a point to external particles are cal-
culated to order e'g' using the s(s-1) diagrams
of Fig. 3. The expression is

From Eqs. (6) and (28) we obtain a scaling law for
the inclusive cross section which holds for large
M'/m, ' and s/M'.

A. 1n, ,A. ln „tdo' s M'

lnM'
ln . . . , A, ~ t . (29

s(s-1)g'
6 (8s )w2

We thus find, to order &,

(8.) ~ =6» }=-12 "&}='24

(31)

This shows the shrinkage of the inclusive diffrac-
tion pattern, and that the contribution I with the
lowest index Q dominates at high energy. Note
that further work wi11 be required to determine
the shape of the diffraction pattern.

We will compute Q in the q expansion. When
D=4, g, =0. For &= 4-D small, there will still
be a zero of p with g, small, and we will work to
lowest order in ~. This means we calculate p to
order ~ and &'g', and the other renormalization-
group functions to order cog . Some of the func-
tions have been calculated before, '

P 4 4 (8 )Pl'2

(30}

g2

2(8s)n" '

y = ——s(s-1}s 6 t

Q = —3+ —+ 1 —— (s +s +s —3)]2 4

+—[s, (s, —1)+s,(s, -l)+s, (s,—1)]. (32)

We see from this that the leading contribution at
high energy comes from the contribution with

sy s2 s, = 1, which is illustrated in Fig. 4. The
leading contribution factorizes, as it does in the
four-particle amplitude and total cross section. '

In Ref. '7, the four-Particle amplitude was ana-
lyzed in terms of Reggeon contributions I„, in
which n Reggeons are emitted by one pair of par-
ticles, and m Reggeons are collected by the other
pair. The analysis of I„ is analogous to what we
have done here. However, in Ref. 7, y, was
erroneously omitted. When it is included, one
obtains for the asymptotic four-particle amplitude

ln
s -( ))&( )("Oy') ( )]'v{ ))'( )1 n 1 m 1

(33)

+ s(s-I)- I

Similar
Corrections

FIG. 3. Diagrams which must be evaluated to calculate
the anomalous dimension of the coupling to external
particles.

FIG. 4. The leading asymptotic contribution to the in-
clusive cross section.
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This equation corrects Eq. (112}of Ref. 7. None
of the conclusions of that paper is affected.

lI1. THE POMERON PROPAGATOR

One element in the dominant contribution is the
complete Pomeron propagator. To calculate it we
must determine the momentum and energy depen-
dence explicitly. The techniques used in Sec. II
and Ref. 7 must be altered to accomplish this.
Let us begin by showing precisely how those tech-
niques are inadequate.

In Ref. 7, by using the arguments of Sec. II, a
scaling law was deduced for the infrared behavior
of the renormalized inverse propagator

i(p, &) = Q e"4i"~(p),
n=o (35)

We have expressed the g, dependence of fIC), , as an
explicit dependence on e in Eq. (35). Comparing
powers of e, we find the first two terms in the ex-
pansion of Q» (see Ref. 7):

~41 1 ~ Pt
~ (o)

(36)

rII "(E,T, g„a', E„)
Y«ti E - «i I & fP

V p 41,1 p g tgl~
~

N

(34)

Since g=g, on the left, this scaling law holds for
all P and E "Our t. ask is to calculate the scaling
function g, , Since g, '=O(e) we can determine
the left side as a power series in e by using per-
turbation theory. On the right we expand

Now suppose we set E =0 in Eq. (37). Then p-~
and

/$2 2+E/24

(38)

Comparing this with Eq. (34), we find that Q, ,
must have the asymptotic behavior

e, , , (~, ~), —
(& &~)—(n) (40)

sfr31, 1)

E Ea-EN.Tf =k
(4 la)

When this is expanded as a power series in e, the
first two terms resemble Eq. (36), but the expan-
sion in powers of c obviously should not be trun-
cated. As things now stand, Eq. (35) is useful for
~p~ «e'/', while Eq. (38) is useful for ~p~ »e
What is needed is an expression which agrees with
Eqs. (36) and (38) in these limits and interpolates
between them. We turn to that task.

Our plan is to improve upon Sec. II in two ways.
In Eqs. (13a) and (13b) we normalize at a general
point so we can obtain the implications of the re-
normalization group for a general change of nor-
malization point. We also use the renormalization
constants as the objects we study. Knowing Z, and
Z„we determine the propagator through Eqs. (14).
Since Z(g=0) = 1, we avoid the undetermined
boundary value on the right side of Eq. (24). The
boundary value is equivalent to the scaling function
in Eq. (34), so we learn what we want. " The im-
proved scaling function is an infinite power series
in e, and it provides the interpolation between the
small- and large-p regions.

Our new normalization conditions are

iP',",= —t't. (1+;"p)[1n(l +-', p) 11.

So far no problem is visible, but now let us re-
write Eq. (34) as

r„"'~(E,%, g„n', E„)
o p I'&-yfn)]/e«y) —

E -ar|) ~ fa
~

~

Bar(1'1)
R I

E--E k -A

r'z "ls,*~,.~,- « I„-.=r/(2x)""".
The renormalization constants are given by

g, I-&1»
Z -1

E =-EN;k 2=AN 2

(41b)

(41c)

(42a}

(37)

We can expand $1,1 in a power series in c like Eq.
(35), with the result

i(pi&) = Q & AI&(p)~,
n=o

iI" '~
~ (1,1')

sk' a8 EN$2 AN

(42b)

and Z, still determined by Eq. (14c). Renormal-
ized and unrenormalized parameters are still re-
lated as in Eq. (10). We introduce the bare di-
mensionless coupling go:

-(o)
, 1

p
t

1 2 j. 1 ~ lop
iQ,'1 2+— ln —+——1

24 p 2 p 24p

Yo D/4-1 Z -1
go Z f XD/4 +N St

(&ol

Z Z 3/2g O/4Z
3 2 1

(43)
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We also define renormalization-group functions

&lnZ~ &ln Z3
BlnE ' Bink ' '

N 8 N B

Bln Z2
alnEN ~'

Bln Z2
81nk„'

~g eg BlnZ
3 ln E„4 8 ln E„

(44)

Bg Bin Z

pz &inZ,
(

}slnZ,
g ging ' glnx '

P~ SlnZp SlnZp
(45)

These equations can be solved for the partial de-
rivatives

ff =(r„a,)
Note that the renormalization constants can de-
pend only on dimensionless parameters; we choose
these as the renormalized parameters x = e'k„'/E„
and g. By the chain rule we have for Z,

g. =gZ '(g, x), (52a)

perturbation theory, which gives the Z's as power
series in g, . From these series we obtain the re-
normalization-group functions of Eq. (44) and then
recompute the Z's in Eqs. (48)-(50). No approxi-
mations have been made, so for the exact Z' s the
original series will be equivalent to Eqs. (48)-(50).
The only difference will be that Eqs. (48)-(50) give
the Z's in terms of g rather than g, . However,
Eqs. (48)-(50) are reformulations which will lead
to different expressions from the renormalization
constants when approximations are made. The ap-
proximation w'e shall make is the usual one of
truncating the perturbation theory expressions for
the renormalization-group functions. In this case,
Eqs. (48) -(50) are much more useful than the orig-
inal (now finite} power series. The new Z's are
infinite power series which are singular at the val-
ue of g for which t3 vanishes. This singularity
gives us the infrared behavior we want. The pro-
gression from the finite power series to Eqs.
(48) -(50) therefore goes from a less powerful to
a more powerful use of the information available
in perturbation theory.

We continue by rewriting the relation between
renormalized and bare parameters

8 ln Z, gy
Bing

&»Z ykPs -ysPk
Bing 3

where

(46a)

(46b}

aokN'
x, =- ' " =xZ, (g, x).

N

(52b)

This pair of equations has an inverse, which we
write formally

P =I3z(1+T,) +6„(1—Te),

y =ye (1+r,) +y, (1 -rz)
g = ((gp, xp),

x = r)(g„x,).
(52)

are effective P and y functions for the generalized
normalization we use. We can now integrate Eq.
(46), using the boundary condition Z, (g=0) = 1:

Z, (g, x) =exp
P(g', x)

(48)

Similar calculations produce the rest of the re-
normalization constants

p
' dg'T (g', x)Z, (g, x) =exp —

J~
(48)

T —T8 +Tk,

It is good to pause here and reflect on these
equations. Suppose we begin a calculation with

&~a, I = W ,
' ' ~

4 I ~ ~ .p.",*)1) ,
dg', 3 (g', x) e

', x)

(5o)

where

Using E, and q, we express Eqs. (42) in terms of
bare parameters g, and x„

a I (i, s)
= Z, '(](gp, xp), q(gp, x,)),

E=-BN$ =kN

(54)
~

~ (s, s)

p =-ap'Z, '((, q)Z, '((, q).
E "- SNQ "-kN

We examine the infrared behavior of these deriv-
atives by letting EN-O, with x, and n,' fixed, and

x, varying in a manner to be specified later. In
the infrared limit g,-~, and we need the behav-
iors of $ and g as their first argument tends to in-
finity. We begin with Eq. (52a). As gp-~, we see
that either g tends to infinity, or Z vanishes. We
will study the possibility that Z vanishes and later
will see that this is the relevant case. Equation
(50) tells us that Z vanishes when g approaches a
zero of P(g, x). We make this quantitative by as-
suming that P (g, x) has a linear zero at g=g, (x),
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P(g, x) =P'(x)[g -g, (x)]+higher terms.

Then for g near g„
lnZ; =c;(x) ln[g, (x) -g]+lnZ;(x)

+Q a„;(x)[g-g, (x)]",
n= 1

where Z; =Z, Z„or Z„and

(55)

(56)

scaling variable a,'I2„2/(E„)'""/" .As E„-0, this
variable must vary in such a way that P(g, q) con-
tinues to have a zero at g, (q). A sufficient condi-
tion is that the scaling variable, and hence g, re-
mains fixed as E„-0.

The inverse unrenormalized propagator is deter-
mined by integrating Eqs. (54} from E' = 0 to E' =E
at fixed g:

c(x) = —,(1+T,)„c,(x) = =, (7)„c,(x}==, (y), .
E 1 1

(57}

The suffix 1 means that g, (x) is sunstituted for g
wherever g appears. For g near g„

E sF(1,13 s F(1,13 8/2r" "(E P) = dE', +sE' -„2+ 8%', s E

The infrared asymptotic form is

(64)

Z(g, x) —Z(x)[g, (x) -g]'. (58)

As long as c is positive, we can invert Eq. (52a)
to find

(59)

Z, (,x)-Z, (x)[g, (x) -g]'2. (60)

Substituting x- (7, g- $ in Eq. (52b), we find q is
determined from

g (q)x, -()Z2((7) —
( )

We rewrite Eqs. (59} and (61) in a form which
specifies ( and g as E„-0:

(61)

2 (+ l)D/4g (q) C2,'C

+ c 1/Cc24l 2(I Z(N 0
(62a)

I

( ) E ./" ( C) gl(n}
r,Z(q)

(62b)

$(g., x.) gl(7I)— g (r()

Equation (59) is not yet a total inversion be-
cause g appears on the right side. We must also
consider Eq. (52b). For g near g„

I'(' »(E P) —
( E)1-«2/4cZ -1( )1 -ec,/4c

Ec2 (ac) ' g, ((7)1 '2'
4c r, Z(r(}

(65)

q is given implicitly by Eq. (62a), withRE' =Tt',

It is important to note that the constants c, c„
and c, of Eq. (57) are independent of x (or n) This.
can be quickly shown for c, by substituting Z, from
Eq. (56) into Eq. (46b). Since the right side has no

logarithmic singularity at g =g, (x), dc, (x)/dx = 0.
Analogous proofs hold for c and c24

In a sense, Eqs. (62a) and (65) are the desired
asymptotic expressions. However, we lose all in-
formation about the x dependence of the propagator
when these equations are evaluated in the first-
order ~ expansion. This dependence is retained
if we work out some additional equations for the
derivatives of g„Z„and Z with respect to x.
The derivative of g, can be found by substituting
Z, from Eq. (56) into Eq. (46b) and matching the
residues of both sides at the pole at g=g, :

We now have the infrared behaviors of the deriva-
tives of the inverse unrenormalized propagators,
Eqs. (54):

d lng, P~
dlnx g(1-TE) (66)

I (i, i)
(E ) C4cc2g/1( )E E Eg.gt2 k@2

(~ l)D/4g (q)- -C2/'C

rg(n)
(63)

Z, Z„and Z, are determined by evaluating

(67)
dg

+ lnZ;
d lnx ag a lnx

by both Eq. (56) and Eq. (46) and its analogs for 8

and Z, . This yields the formulas

p(1, 1)
= -e'(E ) ''2"3 "Z '(q)Z (q)E- -EgTI ~kg

(& i)D/4g (~) -(c2+c2)/c
X rP(21)'

with 21 given implicitly by Eq. (62a) in terms of the

d lnZ 8 pE Eg/4+pE
d lnx Sg 1 —TE, g(1 —1E)

d lnZ2 & pz &z

d lnx ~g 1 —78;

d lnZ, ~ g~ 'Yg

dlnx ' ag 1-7~, 1-~, ,
'

(68)
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To lowest order in the e expansion

g 2

2(BD)D/2(1+x/2) '

g'(x/2)
2(BD)D/2(1+x/2) '

(69)

1/2

g, = (Btt) I' — a, (e)(1+x/2) 'I"

-(82)D/2~ -'I'
Z =

24
a(e)(1+x/2)' ",

)D/2 - -1/24

Z2 = a2(e)(1+x/2)' ",
(74)

g 2g g
4 (Bx}DI 2(BD)D/2(1 +x/2) '

g'(x/2)
2(Btt}D/2 (1+x/2)

In this approximation,

fg 3g
4 2(BD }DI' '

g
2(BD) " ' 4(Bw)D"

'

(70)

(Bv)D/2~ 1/12

Z, =
4 a2(c)(1+x/2) 'I'.

All we know about the a(e) is the boundary value
a(0) =1. These functions will be determined in the
higher-order e expansion. Here we set tt(c) = 1.
In the higher-e expansion, additional factors will
appear on the right side of Eqs. (74), with expo-
nents of O(e"), n ~ 2.

Our expression for the inverse unrenormalized
propagator is

Equations (48) through (50) yield

2 -1/2

(Btt}D~e

6g2

(Bv) /2e

6g2 - 1/12

(Btt)D/2e

(71)

From these equations we obtain

c =-', +O(e), c, =r'2 +O(2), c, = -s+O(e),
1/2

g, = (Bn)D/' — a, (x, 2),

—

(8 )D/2/ - -1/4
Z = a(x, ~),

(8v )D/24. - - 1 /24

24

(Btt)D/2E
—1/12

Z, = a2(x, 2).

(72)

d lna, e x/2
d lnx 12 1+x/2 '

d lna e x/2
d lnx 24 1+x/2 '

d lna2 e x/2
d lnx 16 1+x/2 '

dlng2 e x/2
dlnx 8 1+x/2 '

The solutions of these equations are

(73}

The small value for g1 when e is small is what
justifies our use of perturbation theory for the
renormalization -group functions. The functions
a(x, e} approach 1 as e-0. They also satisfy
Eqs. (66) -(68}:

p(1,1)(E T2)
2

( E)1+4/12 ( D} ~ 2(ao)
1+@/12 24 r,

x [1+rt(1+a /24)](1+2}/2)'I",
(75}

a /&2 -
(BD)D/2~ -I/12 2(a i)D/4-1/2

( )1+4/24 24 0

A number of observations can be made about this
result. If we assume that the scaling variable is
very small (large), and expand in a power series
in@, we recover Eq. (36) [Eq. (38)], aside from
a renormalization. Therefore, our result "expo-
nentiates" those pow'er series and holds uniformly
for both small and large values of the scaling vari-
able. It is easy to show that there are no fixed
cuts in the energy or momentum plane, despite the
fractional powers of energy in Eq. (75). The mov-
ing cut is the two-Pomeron cut. It can be shown
that the pole and cut trajectories are related by
the familiar equation

a, (t) = 2a2(t/4) —1. (76)

(77)

At higher orders in the e expansion multi-Pomeron
cuts appear. Finally by using the explicit expres-
sion for g, in Eq. (74), one can show that Eq. (75)
holds whenever P, E, and e are small, even when
the scaling variable tends to infinity. The result
follows from the fact that g, =O(e 'I') on the phys-
ical sheet of the angular momentum plane when P
and F. are small.

The angular distribution of the diffraction peak
in 2- 2 processes can now be worked out because
the dominant contribution involves only the full
Pomeron propagator, according to Eq. (33),

do [B,(t)t32(t)]2 s 'I' (1+&/12)'
dt 162 m, ' K'[I'(1+@/12)]'
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where

F (x) -x-(1/(2)/0+1/2&)1. 1+1 12

,„( M))'"/"[1+@(1 +e/24)](2iw)'

)I(I +)I/2)~/24 —(~) 1 1/24

—
(8w)D/2e ( t)D/2 -1/12

K=
0

(78)

(79)

(80)

In Eq. (77) we have included only the imaginary
part of the amplitude. The real part of the am-
plitude is subordinate to the second term in Eq.
(33) at high energy, so it would be inconsistent to
retain the real part and ignore subdominant imag-
inary contributions. F,(x} is normalized so F,(0)

It can be put in a form suitable for computa-
tion by transforming from (() to v = 1+ I/2q as the
variable of integration. This substitution finally
eliminates the implicit function of Eq. (79). The
contour integral over v can be shrunk down to a
line integral:

x '-'" '" ")I'(I+e/12) ezpI -[x/2v, '/"(I —v )]""'")cos[ (we/24)/(1 + e/24)]]
22/((+E/24)(I +e/24)2 4 ( 01 },( + /)8)1/( + '(241)/I 'l(1 t.'2324)/(1-+1/24)

0 —~OJ

x-"'"'/'"'/"'I"(1+e/12} p ' (fv sing(v, x)[(I+e/24)v e/24]
2(1-&/24) /((+1/24) (I +e/24) (I+f /8) /(1+& /24) I & %(l E /24) /(I+e /24)7F () V (1 v)

exp(-[x/2v'"(I —v)] '~""/"' cos[(we/24)/(I+e/24)])
[(1+e/24)v --', -e/24] (81)

7[&/12 x
I+e/24 2v'"'(1 -v)

1 I+a//12
2 I+e/24 '

we/24
1+a /24

l){/e exhibit F)2(x) in Fig. 5. At sufficiently high
energy, where shrinkage is great, F,'(x} deter-
mines the diffraction peak. It is encouraging that
it has a forward peak which is six orders of mag-
nitude above the second maximum, much as is
seen in the data.

& lnZ, ~ lnZ
E- 8 in' I',

g ink 2 (83)

The treatment of Z, Z, , and Z, is unchanged
from Sec. III. Z, depends upon the renorma. lized
parameters g and ~ plus the two new ratios

IV. THE ENERGY-NONCONSERVING TRIPLE-POMERON

VERTEX

x, = F2/E, , )(, = E,/E,

The differential equations satisfied by Zo are

(84)

The energy-nonconserving vertex is the second
function we need to assemble the leading contri-
bution of Fig. 4. The calculation is a straight-
forward generalization of what has been done in
Sec. III, so we will simply list some key equations
along the way.

The normalization we use is that of Eq. (41),
except we now set E„=E„and k„=k, where -E,
is the energy entering the nonconserving vertex,
and+k are the momenta flowing out. The renor-
malization constants are given by Eqs. (42a),
(42b), (14c), and there is a new constant related
to the energy-nonconserving vertex:

Z 1 = (2w)(D+1&i2(» )0

Xf '')( E, , -E, , E, , O, k2, k', r, , (2 )-0(82)

20=2, when E, =E,=E,/2, k'=0. Renormalization-
group functions associated with Z, must be defined:

&lnZ, g p.

sing tf '

& ln Zo
a ln~,.

where

SlnZ, i).,P~ —(Zp, })3,
~ lnx P

(85)

i2 = (Z P.w)(1 + T,) +)).,(1 —rw}

Thus

(86)

Z.(, ...,)=,.1()' '
"0 (87)

The unrenormalized energy-nonconserving ver-
tex is given by

(
(D 1)/2ZO 1(g(gO x) )I(g0 x) &') (88)

The infrared limit is studied as in Sec. III, with
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the result

( )(~,)/, (E,) o 'Zo '(rl, X,)

sion, the only new feature is the evaluation of the
"energy-conserving diagrams" of Fig. 6. The
new renormalization-group functions are

g2 pl
PE. = o/q l

dyy —+ —,
(8&) ' .o A A'

n'k'
0

(@ )1+ fc2 &4c
1

1
Co= —,(p), .

-
(~/)D/4 g (q) c2/c

() (891)

(89c)

(o')'" S (n)
Z( ), (89a. g2 f'1

o/ Z dy(1 —y)—
(8p}

1
dy(1 —y)—„,

0

g x 1 1},= — i, — dy(1 —y') —+—,
(8&) ' 2 o A A'

(91}

One can show that c, is independent of both x and

In the & expansion we will also need the dif-
ferential equations for the parameter dependence
of Zo:

where

A = y + (1 —y)a, + (1 —y') —,
(92 }

~ lnZO
»„~' =(v, ),.

(90}

A' = y + (1 —y )A, + (] - y 2)—.
Thus, to thzs order,

6~2
——2 ]S

(8~)+/2 l 0 (8 }&/2+

When calculating in the lowest-order e expan-
(8~)&,2~ ) I/3

c,= ——', +0(e}, Z, = a,(x, /I, ).

(93)

Equations for a, (x, A, ) follow from Eqs. (90):

10 alna, e x/2 ex '& (, 1 1

8lnx 6 1+x/2 6 2, A A'

10 ~ lna, 1

alnx, 6 ' A'dy(1 -y)— (94)

IO & lna, E f' 1'= ——&, &) dy(1 —y) —,.

IO
The solution of these equations is

IO

E2, k

IO

IO

IO
0 6

X
8 IO I2

E, , k=0

E, , k=o

FIG. 5. The function E& (x) which determines the
diffraction pattern in 2 —2 processes at asymptotic
energies. In the graph we have set e =2.

FIG. 6. Perturbation diagrams contributing pE. and

p& in the lowest-order ~ expansion. The vertex C is
energy nonconserving.
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a, = u, (e) (1 +x/2)

t 1

xexp ——) dy(lnA+lnA')
6 ~0

(95)

8 1

,~,» „(-E,)' 'exp — dy(lnA +lnA')

Again we choose a, (e) = l. Our final infrared as-
ymptotic form is

( E i+ 4/24
yj

(96)

In this equation, x is replaced by q in A and A'.

V. THE INCLUSIVE CROSS SECTION IN THE TRIPLE- REGGE REGION

The leading contribution based on our results is

do r,K' 4 ' '"" dE dE/E (-E )'/'
dtd lnM 162 12 i . (2vt)2[( E )( E )( E )]i+«2

exp[ E,ln-(M'/m, ') —(E, +E2)ln(s/M'} + (e/6)J 22dy(lnA +lnA')]

f(r)2)f(rt2)

where

f(q) = [1 + q(1 + e/24) ][1 + q/2 ] '/'2,

l 2„,i24 =Kg, (1 +rt,./2}'/24,

(97)

(98)

and in A and A' we set x= g, . The triple Sommerfeld-Watson integral cannot be evaluated explicitly for
general t, s/M2, and M'/m2' because the integral over A and A' links E„E2, and E, in a complicated way.
However, the key limits can be studied. Let us recall the kinematic fact that if rapidity y, is required for
a Pomeron to appear, then the triple-Regge region is characterized by

y In(M2/m, 2) In(s/m 2)

ln(s/m ') In(s/M2) y
(99)

The ratio In(M2/m, 2)/In(s/M2) can be either small or large. In both these limits Etl. (97) can be evalua-
ted.

We begin by studying the region In(M2/m, ')»In(s/M2), which is the dangerous kinematic limit for s-
channel unitarity. When the contour integral in Eq. (97) is converted to a multiple line integral, the E,
integration is dominated by values of E, in the range [E,~

I/In(M2/m, 2). The integrals over E, and E,
are dominated by values [E2i, [EJ-max[1/In(s/M'), (-n,'t/K)(1/I+a/24)]. The first term holds near t=0
and stems from the exponential factor e ' 2' s~n™'; the second term holds when it i is larger and the
Pomeron poles and cuts have moved away from E=O. For any t, iE, i is negligible compared with ~E2i,

iE, (, or iE,q, i in the integration over A and A'. The reason ATE@, i is not negligible is that it has a finite
limit as E, vanishes:

(100)

(101)

where

d~exvJ erg&/t&+&/24) 1/1 + 4&(&+&)t 37)
F ( ) = 8-'"1.(I —4/12)x" / "»& ~/-&

Z/'&+6/2C

lim E, g =~2&. =~3&a.2K
The last two approximate equalities are exact at a=0. However, since the integral over A and A' already
has a coefficient of order ~, we are free to make the replacement E,gy +27/2 in A and &y7/z &,7/, in A'.
The three energy integrals are now uncoupled:

M2 Sd ee', (1 /12)'e ' 'le, (D)li, '4l (l I'/ 'l'",'l "' " l, l, )dtd InM 16vt'(1 + e/12)1' (1 —e/12) (lns/M )'+ K M

X (1 +7)/2) '&i+2/»/2 2
( II/)~ 4/44 = g(1 + q/2)4/24 (102)
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F,(x) is normalized so that F,(0) = I, and it is an entire function of x. We treat F2 by the transformation
used for +,. The resulting integral is

(6/12& /(1+6/26& 6 (/61 (I ~/12}
) 1 + 6/24

1/1+&/24cosp&(vo& x) (& 2(U» . (» I x
4(1„/24) ( — o} ( o} '( 'o- } 'e P) 2„./2. (I, )

1/2 p pl
+ — d u sin(t&, (v, x) (1 -2v)'" ' +— d v s in(t&, (u, x) (2 v —1)'"'

-r 0

u(1+ ~/24) —6/24 x
[1 + 6/12 —2u(1 + 6/24)1 2v'/26(1 —v)

1/(1+6 /24)

/24)I)' (103)

where

1 1+&/12 6 &/12 6

2 1+6/24' 6 1+6/24 6(1- v) '

6/12 6 6u

I + e/24 ' 6 6(1 —u)
'

(104)
((6/12 &(eu x

6 1 + e/24 6(1 —u) 2v' (1 —v)

1/(1+ & /24) &(6/24

1 + &/24

v e/12 x
1 + 6/24 2v' (1 —u)

/o(+ /246&
&( 6/24

1+6/24

F, (x} is displayed in Fig. 7. It is qualitatively similar to F, , but has a more prominent secondary maxi-
mum. In both these functions, the oscillations are due partly to the fact that the Pomeron is a pair of com-
plex poles, and partly to interference between the poles and two-Pomeron cuts. In Eq. (101) the factor
(InM'/m, ')' " is what one expects for the high-energy behavior of the Pomeron-particle total cross sec-
tion.

It can be shown that F,2(x) =e * for small x. This behavior is evident from Fig. 7, and it allows us to
integrate over momenum transfer. In doing this we assume that s/M2 is so large that the t dependence
of p22(t) can be ignored (it would be easy to include the t dependence if it were exponential):

r
0 d(& +~ 3(1 + ~/12)3e (/3p (p) p 2(0) [in(M2/&33 2)] 612/

„dtd lnM' 32&((roI"(1 + e/12)F2(1 —6/12) [ln(s/M )]""' (105)

This can be further integrated over M'. Let us suppose that Eq. (105} is accurate for lnM'- p Ins. This
gives the lower limit on ~, and the upper limit is chosen so that at high energy the integration over t ex-
tends all the way to x =0. At large ~',

(106)

If we choose &&' c5s, with 6 small, we integrate arbitrarilyclose tox =0andean use Eq. (105}. This re-
striction also keeps s/M2 large enough to Reggeize, and avoids multiple counting of exclusive events in
the inclusive cross section. The integrated inclusive cross section is

p &6(~/~op-& ((/~& o do 3r +3(1 + 6/12)3o 3(/(&p3) p 2(0) [In(s/&&2 2)](/12
din(M2 m 2) dt 0 1 2 ~ 0

dt's lnM' 20((6(261"(I + e/12) I' '(1 —6/12)(- Int) )"'
0

(107)

By unitarity, this cannot exceed the total cross section, and we see that it rises with the same power of
ln(s/mo') as the total cross section. Since the large /»I' end of the spect-rum is where a simple Pomeron
pole violates unitarity, the interacting Pomeron corrects that inconsistency. The factor 1, 6 in Eq. (107)
does not indicate an infinite result at 6=0. There is another term, also proportional to I/e. , which has
been dropped in Eq. (107). This term is subordinate for 6&0, but not at 6=0. The factor I/6 is therefore
associated with a Stokes's phenomenon in the asymptotic behavior at ~ =0.



2812 ABARBANE L, BARTELS, BRONZAN, AND SIDHU 12

(106)

The other limit we study is the triple-Regge region just above the resonances, ln(M'/m, ') « ln(s/M').
We now have two subcases according to the value of t T. he first case is that of large t, ( o.,'-t/K)
[ln(M'/mo')]'"~" »1. In this case we can still ignore E, relative to E, and E, because the Pomeron poles
and cuts have moved sufficiently far away from E, , =O. Therefore, Eq. (101) continues to apply.

The small-t region (-o.,'t/K)[ln(M')]'" '4 «1 leads to different approximations in the treatment of the
triple-Pomeron vertex. We now drop E, , E, , and E,q, relative to E, in A and A'. As a consequence, the
inclusive diffraction pattern bears a close resemblance to the diffraction pattern in 2-2 processes. This
is expected in the resonance region, and it continues to hold into the low ~ part of the triple-Regge
region. We find for ln(M'/m, ') « tn(s/M'), (-o~t/K)[ln(M')]'" '4«1,

do K'x,e ' '(1 + e/12)'p, (0)p '(f) [ln(s/M')]' ' o.,'t s
dfd lnM 16vi'(I —e/4)I' (1 +e/12) [ln(M /m )]' ' K

As before, we can integrate over t, and over ln&&'

from y to p lns. This contribution falls like
(lns) ' ' at high energy, so the proof that s-chan-
nel unitarity is not violated is complete. Note also
that when ~' is fixed, the inclusive cross section
has the same high-energy behavior as the 2-2

amplitude in Eq. (76). This is expected for reso-
nances, and it carries over into the low &~ ' part of
the triple-Hegge region.

In Fig. 8 we show the lnM' distribution at t =0.
For pure Pomeron poles with o.(0) =1, this distri-
bution is flat. In this interacting Pomeron theory
it rises at the small-M' (resonance) and large-M'
(Feynman x=0) ends of the triple-Regge region.
The singularities at M'=0 and ~ = s lie outside
the triple-Regge region.

IO

10

IO

EO

lO

F,' (x)

VI. SUMMARY AND CONCLUSIONS

We have calculated the effects of Pomeron cuts
on inclusive cross sections in the triple-Regge
limit using Reggeon field theory and the e expan-
sion. In the leading contribution only one Pomeron
couples to each fast particle (Fig. 5), so the main
task was to calculate the complete Pomeron pro-
pagator and the "energy-nonconserving" triple-
Pomeron vertex. The special version of Reggeon
field theory rules for the "energy-nonconserving
vertex" was derived in Ref. 1.

We calculated the complete propagator and the
new vertex using the renormalization group. We
first used this technique to obtain scaling laws for

lO

IO

lO
0 6

X
8 l 0 l2

der
dtdgnM

t=o

resonance) triple Regge l small x

KlNEMATICALLY ALLOWED

Xn(s/m', )

I I I
I I„' (gnM )+

(gns-jInM~) +
/

I

~(LnM )'"~

FIG. 7. The function E2 (x) which determines the dif-
fraction pattern in inclusive process where ln{M /m() )
»ln(s/M )»1. Here e =2.

FIG. 8. The inclusive cross section in the triple-
Regge region at t =0. The distribution for a pure Pom-
eron pole is a horizontal line. The middle of the triple-
Regge region is an interpolation between Eqs. (101) and

(108).
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the inclusive amplitude. We then saw that a com-
plete description of the ~&' and t dependencies of
the amplitude would require knowledge of the scal-
ing functions appearing in the sealing laws. In
Sec. III we developed the renormalization-group
machinery which permits a consistent evaluation
of the scaling functions. We believe this technique
may be useful for the calculation of multiparticle
Green's functions in other applications of the re-
normaliza, tion group.

We first applied this improved technique to the
calculation of the Pomeron propagator. We dis-
covered that there is no fixed cut at j =1 in the
angular momentum plane, even though the scaling
law for the propagator hints that one is present.
We were also able to calculate the leading contri-
bution to do/dt for 2-2 processes. The resulting
diffraction peaks show a gratifying qualitative
agreement with the data.

For the inclusive cross section we were able to
obtain explicit formulas when 1n(M'/m, ') is near
either the low or high limits of the triple-Regge
region. The high range is the dangerous one which
leads to a violation of unitarity for a pure Pomeron
pole. In our theory we find that the high range of
ln(M'/m, ') leads to an integrated inclusive cross
section which grows at the same rate as o...~
[ln(s/mo')]' '. We thus confirm the finding" that
Reggeon field theory removes the violation of uni-
tarity. We also found that at large ln(M'/mo') and
fixed f and s/M', the inclusive cross section grows
like [ln(M'/m, ') ]" ', that is, like the total cross
section. ln this region the t distribution (Fig. 7)
differs substantially from &o/dt for exclusive pro-
cesses (Fig. 5), and has a more prominent second-
ary maximum.

When M' is small (just above the resonance re-
gion), the angular distribution is the same as do/dt
for exclusive processes, provided t is not too
large. For fixed t and ~', the inclusive cross
section grows like [ln(s/M')]' ', that is, like the
total cross section. In Fig. 8 we give an interpo-
lation between the low- and high-~&~' limits of the
triple-Regge region at t =0.

This is a good place to emphasize the approxi-
mations that go into our calculations, and the rath-
er slight contact we expect our results to have
with current experiments. In the first place, we
evaluate only the leading behavior in the relevant
partial-wave amplitude at 4,. =1, t =0. This re-
striction comes about because we have calculated
with a linear bare Pomeron trajectory and with
only a structurel. ess bare triple-Pomeron inter-
action. These terms are infrared dominant, a,nd

give the infrared behavior of almost every inter-
acting Pomeron. ' We do not calculate the next
term in the expansion about the infrared limit, so

r (o oI= f oo)
0

2 1/6+, , (110)

This agrees with Eq. (75) near E=O, but deviates
strongly at the transition energy 3ro'/(8w) n,'

Therefore, we expect our formulas to apply for
rapidities

s M s 8mn'ln, -ln, -ln~,ni, m, ~ 3r,
When the energy is small compared to the transi-
tion energy, one should expand the integrand in
Eq. (110) in ascending powers of r, ; i.e. , one
should use Reggeon calculus perturbation theory.

It is worth emphasizing the importance of fac-
tors such as in Eq. (111). These make a tremen-
dous difference in the estimate for s, and it is
just to get them right that we have used Eq. (110)
rather than simply evaluating some typical per-
turbation graphs. For example, looking at the
lowest-order contribution to the Pomeron self-
energy would lead to y &16vox,'/ro', which is a fac-
tor of 6 larger than Eq. (111). To be sure, our
estimate will change in the higher-order e expan-
sion, but we hope the factor will be less than 6.
Note that the phase space factor {8&) ' has not
been expanded in powers of ~ in this paper. It
would be a serious error to have done this, for

we obtain only the leading term at high M'/m, '
and s//&~', and at small t. The crucial question,
then, is how large M'/m, ' and s/&VI' must be, and
how small ~& ~

must be, in order for the leading
term to be adequate. To answer this we must rely
on reasonable estimates.

The t dependence will surely be wrong when the
angular momentum of the Pomeron is changed by
one unit of angular momentum because we have
evaluated Pomeron signature factors at J =1. For
this reason, a reasonable restriction is ~t ~

~0.3.
A second reason for this restriction is that we
have ignored the t dependence of the Regge cou-
plings. Phenomenological fits generall. y require
substantial t dependence for ordinary Regge cou-
plings and triple-Regge vertices.

The limit on rapidity can be estimated by deter-
mining how far from L =0 we ean trust our lead-
ing expression for the discontinuity across the cut
in the energy plane in iI""'". For this estimate
we set k'=0, but now we keep all the corrections
to the leading infrared behavior. We do this by
rewriting our expression for Z, in terms of the
unrenormalized coupling and slope

—- j. /'6 6 2 — 1/6
Z = 1—3 (6v)&/2$ (6v(y')&/2$E 2 Dl21+

(109)
We can now set D =2 and integrate Eq. (42a):
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it would have led to an extra factor of 8&-25 on
the right side of Eq. (111).

Let us assume Reggeon perturbation theory can
be used at Fermilab energies. Then for proton-
proton scattering we can use the simple formulas

d o P'(0)r, (or)'~'r,
d]d ln~ 2,= 16@ 16m

From the data we estimate"

(112)

8rz'
sr: (114)

This rapidity corresponds to s-150 GeV'. It is
to be emphasized that Eq. (114) is uncertain by
a factor of 2 or more and is probably low. The
triple-Pomeron part of the inclusive cross sec-
tion, and therefore r„ is uncertain by at least
W2, and there are further corrections connected

ro=0.7 GeV '.

~,' we estimate from the slope parameter in pro-
ton-proton elastic scattering as 0.3 GeV ' " Thus
we find

with the e expansion and the fact that we have ig-
nored multi-Pomeron couplings, t dependence of
couplings, and so forth. These parameters all.
set rapidity scales which must increase the bound
on y if they exceed 5. It is interesting that our
estimate is much smaller than the rapidity 9 es-
timated by Amati and Jengo. " In any case, one
can hope to see scaling behavior in 0~ and the
2-2 diffraction peak some day, but it is unlikely
that it will be seen in inclusive processes.

We have mentioned above that for inclusive pro-
cesses atpresent energies one should evaluate
perturbation graphs. This may seem to be a sim-
plification, but the graphs are not dominated by
the triple-Pomeron coupling and the single-Pom-
eron coupling to fast particles. The elegant uni-
versality of the high-energy limit is lost, and one
must be guided by trial and error in the construc-
tion of an adequate bare Pomeron and its inter-
actions. The task is to restrict the number of
parameters at finite energy in a believable wa, y.

The final approximation we have made is the use
of the e expansion. It is more purely technical
than the other approximations and one might hope
to avoid it.
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