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The mass spectrum of pseudoscalar and scalar mesons is discussed in a general linear SU(4) cr model. We

study the way in which the spectrum is influenced by the symmetry of the vacuum and by terms which are

the analogs of quark mass terms and quark interaction terms. It is found that a paracharmonium-like state
can be naturally accommodated if the charmed "quark mass" is much larger than the others. Other
possibilities are also investigated.

I. INTRODUCTION

The recent discovery' of narrow' 1 resonances
in the 3- to 4-GeV region increases the plausibil-
ity of the suggestion' that four rather than three
quarks underlie the structure of hadrons. Already
many authors' have discussed mass formulas and

other properties on the basis of SU(4), the most
natural symmetry group.

In the old case of three quarks it was found that
the symmetry structure of the presumably basic
quark Lagrangian' was most readily reflected in

the mass spectrum of the pseudoscalar mesons.
By using current-algebra techniques it was
learned' that the spin-zero mass spectrum could
be explained if only quark mass terms were re-
sponsible for the breaking of chiral SU(3) &&SU(3)

and if the vacuum were almost SU(3) invariant.
The large K to m mass ratio implied that the third
(strange) quark was very much more massive
than the other two. An alternate way to get the
above results involved the construction of phe-
nomenological Lagrangians containing only the
spin-zero fields of interest and having the appro-
priate SU(3) &&SU(3) transformation properties.
These SU(3) g models' ' had the advantage that
they very clearly displayed the structure of the
theory and simplified several calculations of
complicated physical processes. ' As a bonus it
was found ' that the mass and mixing of the ninth

pseudoscalar meson —the q' (960)—could be
calculated in agreement with experiment. In the
present paper we wish to extend the discussion'
of a generalized, linear SU(3) z model to the case"
of SU(4). Our motivation is not primarily to fit the
new data with a phenomenological Lagrangian
having the minimum number of parameters; indeed,
the existence of high-mass spin-zero mesons has
not yet been conclusively established. Rather we
wish to find out what these (we hope) soon-to-be-
discovered spin-zero particles can tell us about

the nature of symmetry breaking. For example,
is the straightforward generalization to the case
where the symmetry breaker is like an exceeding-
ly heavy fourth (charmed) quark mass term and

where the vacuum is almost SU(4) invariant the
correct one? Or must we add large amounts of
new symmetry-breaking terms and/or consider a
more peculiar vacuum? It is also possible that
the present techniques are not the appropriate
ones for the treatment of the new particles. This
too should be reflected in the mass spectrum and

would be interesting to discover.
A concise description of the present model and

its connection with the quark model is given in

Sec. II. Section III presents the formulas and

curves which are predicted for the masses while
Sec. IV contains the application of these formulas
to the cases which seem most interesting. Some
approximate formulas which help in understanding
the most favored case are also given in Sec. IV.

II. GENERALIZED LINEAR SU(4j 0 MODEL

The SU(3) version of this model has been de-
scribed in detail elsewhere, "from the present
point of view. Since that description used a
tensor notation for the chiral SU(3) objects, most
of the old equations can be carried over directly
with the understanding that summations go from
1 to 4 rather than from 1 to 3. Hence we shall
be brief here, though we will try to make the
discussion reasonably self -contained.

The Lagrangian will be constructed out of a
16-piet of pseudoscalar fields, Q,

' (a, b = 1, 2, 3, 4),
and a 16-piet of scalar fields, S, . These trans-
form, respectively, like (4, 4*') w (4*,4) under
chiral SU(4). We have the standard identifications
&'= y'„K'= P'„K' = y'„etc. The three isoscalar
members of the pseudoscalar multiplet are de-
noted g, q', and q". Other particles will be
referred to by their tensor symbols. Using a
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matrix notation such that pa'- gab we write the
Lagrangian density as

Tr(s„ys„&p) —
& Tr(s„sa„s) —V, —V». (2.1)

In (2.1) Vo may be taken to be the most general
function without derivatives of the following
chiral SU(4}& SU(4) invariants:

Here the A, are analogous to the quark masses
and the 8, are presumably analogous to some
kind of effective coupling constants.

We will work in the tree (classical) approxi-
mation. Symmetry breaking in the vacuum will
be measured by the quantities

(2.5)

(2.2)

aI, +b(I,)'+cI2+dI„ (2.3)

I, = Tr[(S+if)(s —i&()],

I, = Tr([(s+ iy)(s —iq )]'),

I, = Tr[[(s+i/)(s —i4')]'[,

I, = Tr([(S+ iq )(S —iq )]'),

I, = det(S+iQ)+det(S —iQ)

Furthermore, V» is a symmetry breaker of
simple form. If 2 is to be renormalizable, V,
should be restricted to

where the symbol ( )0 means that the enclosed
object should be evaluated at the classical equi-
librium point. This equilibrium point is formally
the solution of the matrix equations

o + SI (2.6)

The u, are analogous to the vacuum expectation
values (O~q~, ~0) in the quark model. We will also
need equations which express the chiral invari-
ance of Vp. These are seen to be in matrix nota-
tion'

where a, b, c, and d are some constants. How-
ever, our formulas will hold for the general case too.
If we prefer Vp to have the larger invariance group
U(4) && U(4) we should delete its dependence on I„
which is not invariant under "axial quark-number"
transformations.

The symmetry breaker will be constructed
using the quark model as a guide. In addition to
quark-mass-type terms which transform as
[(4,4*)+(4*,4)] we will include, for the sake of
generality, some terms transforming like [(1,15)
+(15, 1)]. The latter can be thought of as corre-
sponding to symmetry-breaking effects resulting
from the unequal effective couplings of different
quarks to vector gluons in terms with the generic
form gy„qG„(q is a quark field and G„ is a gluon
field). The simplest terms with these transfor-
mation properties are

BV 8V
~ ej ' 'eS' ='

BV BV . 9V', y — ', S = —2i 0 [det(S+i/)88 '
+ Bg'

(2 7)

V= Vp+ VsB. (2.9)

—det(S —i/ }]~ 1.

(2.8)

By differentiating (2.7) and (2.8) with respect to
the fields and evaluating the results at the equil-
ibrium point, we get Ward-type identities among
the masses and coupling constants of the model.
Here we are only interested in the pseudoscalar
and scalar masses, whose squares are given by
the appropriate components of (O'V/s@')o and
(&'V/ss'), with

V~8= —2+A, S', + Q B, (S;S,' p+' Q,~).
a, b

(2.4) From (2.5)-(2.9) we get the following mass formu-
las':

h ~~f p +a +b b p +a p ~+b +f

(..':.'.;).=- ..'.. :(("':). ('-"))-,':.. : ' ";".'" (;';).
(2.10}

(2.11)

In (2.11) we introduced the abbreviation

(2.12)

Now the needed tools are at hand. Our problem
may be restated as follows: What does the spin-
zero mass spectrum tell us about (i) the four

"quark masses" A, , (ii) the four "effective coup-
ling constants" B, , (iii} the vacuum symmetry
parameters a, [note a, = a,= a, = cy, means the
vacuum is SU(4) invariant], and (iv) the quantity
U which breaks U(4)&&U(4) down to SU(4) &SU(4)?
Actually, we will restrict ourselves further to
the case of isospin invariance (neglecting "electro-
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magnetic" effects). Thus we set

(2.13)

W:, K
Q Q

Q Q
(2.14)

Note that the leptonic decay constants of the

pseudoscalars are given" in terms of the Q, by

+, =2Q,

F» = a(1+w},

F(P',) = n(1+w'),

F(&p', ) = n(w + w ' ).

(2.15}

[The isospin-noninvariant case for SU(3) is dis-
cussed in Ref. 9.] It is also convenient to define

III. SPIN-ZERO MASS SPECTRUM

Equations (2.10) and (2.11) give the squared
masses of a certain number of spin-zero parti-
cles (the "Goldstone bosons"} in terms of the
U(4) && U(4) symmetry-breaking parameters. The
remaining particles, those in the "direction" of
the conserved group generators, do not have their
masses specified. Of course, if we were to adopt
a specific V„ like the remormalizable choice of
(2.3), we could calculate all the masses. At

present, however, we shall consider the most
general V„ the resulting model can be considered
a phenomenological description of the quark mode.
Substituting (2.4) into (2. 10) and (2.11) gives the
squared masses of particles which carry either
charge, strangeness, or charm,

&& (&Pa) =
y I = [2(A, +A) —(n, —n~)(B~ —8~)J

(ahab),

8 V 1

&%a&lb p Qa + Qb

~'(S.') = 5 ~
= [ 2(A. Ab) —-(n. + nb)(B. Bb}] —(n {),

o'V 1

a b p Qa —Qb

and the following mass-squared matrix (in a nondiagonal basis) of the four neutral pseudoscalars
(v', g, g', q"):

(3 1)

(3. 2)

M, b
=—

g2 p
s0a~4n 0

Q2Q3Q~—U
Q~ QI

-UQ, Q,

-UQ, Q,

A2 QI. Q3Q4

Q2 Q2

-UQ, Q„

-UQ, Q,

-UQ, Q,

-UQ, Q,

Q3 Q3

-UQ, Q,

-UQ, Q,

-UQ, Q,

-UQ, Q,

A4 Q1Q2Q3

Qg Qg

(3 3)

2A, 4A, (3.4)

where for compactness we represent the particle
mass by its own symbol.

An interesting situation s the case where Vp is

In the isospin limit (3.1), (3.2), and (3.3) give us
the masses of all the pseudoscalars and all but
six of the scalars. These six correspond to the
four generators of charge, strangeness, charm,
and "quark number" and to the isospin operators
I,.

Note that the [(1, 15) + (15, 1)] symmetry breaker
makes no contribution to M, b. The pion mass
squared is seen from (3.1) to be

U(4)xU(4) invariant so that U =0. Then we see
that (3.3) takes the form

2A, /a,
2A, /n,

so that one of the isoscalars is degenerate with

the m. Hence we must have U& 0 to construct a
realistic theory. This creates a problem (the
"U(1) problem"") in a model where strong inter-
actions are mediated by color gauge gluons and
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where symmetry breaking is induced by a unified
weak-electromagnetic gauge scheme. Such models
predict that the symmetric part of the fundamental
quark Lagrangian should have the full U(4) x U(4)
invariance. Thus from our present standpoint we
should either require the above picture to be
modified or regard our nonzero U to be a phe-
nomenological description of other effects which
arise in binding the quark to form mesons.

To proceed with determination of parameters
in the model, we realize that only six experimental
quantities are available:

(wo)'-=1, (E')'= 13.60, g'= 16.54,

U
D
V)

R
& 100-

W ~1.733

W &1.732

N* t.73

q'~=50. 35, F, 1.0—1n, FgF„= 1.28. (3.5)

On the other hand, we must determine three A, 's,
three B,'s, three a, 's, and the quantity U. Thus,
to keep things within bounds we shall first suppose
that the B,'s are all zero. Furthermore, even
though we may immediately find w = 1.56 from
(2. 15) and (3.5) we shall consider it a free param-
eter which may vary in the range 1 to 2. This is
because results depend crucially on this quantity
and because the equation for F» in (2.15) is sub-
ject to modification when other (nonzero-spin)
particles are introduced into the theory. ' Thus
we end up with seven parameters and five known

quantities. We choose to consider w and w ' as
free parameters so that once these are specified,
everything else in the model can be calculated.
Now w and w' are not completely arbitrary but

1200
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FIG. 2. A4/o in (m' ) units plotted against w and w'.

w'&w &1, (3.6)

since, from (3.2}, the following squared masses
must be positive:

,(S,)
2(A, -A, )

n(w —1) '

must lead to positive values for all squared mass-
es. Adopting the requirement that the "quark
masses" be ordered according to A4 &A, &A, & 0
we must have

1000

2(A, -A, )
a(m'-m) '

~2(54) +4 1}
n(ur' —1)

(3.7)

800"
4
O
CO

z 6oo-

The pseudoscalars from (3.1) satisfy positivity:

2(A, +A, )
n(w+ 1}

400

,
(

,)
2(A, +A, )
a(w'+re) '

,
( 4) 2(A4+A, )

a(w '+ 1)

(3 8)

200

0
1

W~ ).56
I

4

FEG. 1. g" in (~ ) units plotted against w and w'.

The objects in (3.7) and (3.8) have a very simple
dependence on the parameters. It is much more
complicated to discuss g, g', and q" since we
must diagonalize the matrix M" of (3.3). This is
done in the Appendix. The interesting results are
displayed in Figs. 1 and 2 which show q"' and A, /u
each given as a function of both w and w'. For
fixed w', q"' is large around w = 1, decreases to
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a minimum at w = 1.55, and then rises sharply
nea, r w = 1.73. A, /a, on the other hand, remains
low until the region around u = 1.73 is reached.
Finally, for m ~ 1.74, rP' is unphysical (complex).

From (4.2) we identify

~
II2 2A

CM'N
(4 4)

IV. ANALYSIS OF MASS SPECTRUM

In this section we shall consider first the
"expected" case in which the q" is identified as
paracharmonium and then consider other possi-
bilitiess.

A. Very heavy charmed quark

C N
(4. 1)

We assume that the (44) matrix element N, which
is the only one involving A„ is much larger in
magnitude than all others. Then to lowest order
M is partially diagonalized by the matrix a as
follows:

gM(g ')= (4.2)

000 N

where

1
-C
N

C/N 1

(4.3)

From Fig. 2 we notice that the charmed "quark
mass" A, will be very large around w = 1.73. We
can show directly that when A4 is very large not
only is 7" close to @', (paracharmonium) but
that w must be around its value in the SU(3) u
model and the g -q' mixing must be close to zero.
To see this let us chop up M of (3.3) into a 3 &&3

submatrix ~ and the remainder as follows:

Since the elements of C/N are, by assumption,
small, we see from (4.3) that q" is essentially

Furthermore, we note that the m qg' sub-
matrix is given by ~. Now Eq. (3.10) of Ref. 8,
which is the voqq' matrix of the SU(3) g model,
coincides exactly w'ith Mwhen we replace 61/, in
that matrix by n, U. Thus all the previous results
of Refs. 7 and 8 hold; namely, if g' is to have its
correct value w must be around 1.73 (not too bad
experimentally) and the q-q' mixing angle must
be very small. Furthermore,

+au 'U= 6(-1.85}v', (4.5)

the number -1.85 being V, in the SU(3) v model.
In this way we understand why the numerical anal-
ysis gave large q"' around Mf = 1.73. Thus the

present model can accomodate the charmonium
picture in a very natural way. No [(1,15)+(15,1)]
symmetry breaker is apparently needed and the
charmed particle masses are given in (3.7) and

(3.8}. Note that if q" ' is specified the approximate
formulas (4.4) and (4.5) are not sufficient to spe-
cify ze' for a known w. In principle the numerical
analysis can do this but we see from Fig. 1 that
q"' is very sensitive tou around re = 1.73 so that
experimental uncertainties in the input would

prevent us from finding ao to sufficient accuracy.
However, if charmed pseudoscalars |,'say) are
found, we can find w'from (3.8). At any rate
u '& m, corresponding to a vacuum which still is
relatively close to being SU(4) invariant, is not
ruled out for large q" by this analysis. An inter-
esting feature is that we have a natural mechanism
giving 7' as almost a pure SU(3) singlet while q"
is, like paracharmonium, very far from being an
SU(4) singlet.

It is of some interest to give formulas for the
qq'q" mixing angles in this case. By the above
discussion, all these angles are small. Hence we

may write

1 0 0 0

0 1 —x -y

0 x 1 -z

1/W2 -1/ 2 0 0

1/v 6 1/v 6 -2/v 6 0

1/W3 1/v 3 1/v 3 0
(4.6)

0 y z 1 0 0 0
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x, y, and z are, respectively, the q-g',
rf-g", and ti' —rf" mixing angles. Using (4.6) to
diagonalize M gives

[3s' —(2w + 1)g'+2(w —1)q' '],
v2 il' —g w+2

y=, , (v'/2 + q'/2 —g "},2 1 (I -io)
6 q"' —g' w'(co+2)

s = . . ., , (-v'/2 —q'/2 + q").1 1 (2w+1)

(4.7)

Next, we give a sample choice of "reasonable"
parameters Ta.king 7"' = 500(v')' (i}"= 3.0 QeV}
and, for definiteness, "w =so'= 1.7314 we find
that the "input" quantities, m, K, q, g', and +„
are fitted when the system is described by the
foll owing parameters (see Appendix):

D = 0.505&, N3 =wQ, Q4 =Ã Q,

A, =0.253m', A, = 9.11m', A, =214m',

U = -12.8.

One then has the predictions for the charmed
spin-zero objects

m(y, ) =2.4 QeV, m(y', ) = 2.2 QeV,

m(S', ) =4.6 QeV, m(S ) oo,

and the mixing angles of (4.7)

x = 0.95', y = 0.43', z = 2.18'.

The mass of S', is infinite [see (3.7)] solely be-
cause of our choice w=w' so that result should
not be taken seriously. It is amusing to see that
even though the symmetry of the vacuum is not
too far from SU(4) the "quark masses" stand in

the ratio

A, :A, :A, = 1:36:845.

Explicit values of the system parameters for
various choices of w=w' are listed in Table I.

As previously mentioned, the above fits require
w= 1.73 or by (2.15) Fr/F, = 1.36 which differs
slightly from the experimental value of 1.28. Ac-
tually, by including some (1, 15)+ (15, 1) symmetry
breaker in addition we may get I'~/I'„= 1.28 while
still retaining the paracharmonium picture (small
x, y, and z). In the last part of the Appendix it
is shown that the addition of terms with B J 83
10 mill shift the value of w from 1.73. The choice
B, B,= 1.2-3(v'}' is the suitable one. Equations
(4.7} for the (small) mixing angles still hold.

B. Other possibilities

Suppose we consider the case whence and w' are
both very close to 1. This corresponds to an al-
most perfectly SU(4)-invariant vacuum. Then
q"' will, from Fig. 1, still be large. However,
Fig. 2 shows that A, will be small so that the
masses of the charmed mesons will be of the same
order of magnitude as the ordinary ones [see
(3.8)]. To avoid this we may allow B, to be large
(keeping B,=B,=B,) The. n, according to (3.2)
and (3.3) our result for ti" will not be affected
but we may make the charmed pseudoscalars as
massive as we like. However, (see Table I) q"
will, in this case, be very far from I][)',.

As another possibility, suppose that we wish
to have the "canonical" SU(4) structure for the
g' and ri"; i.e. , ri= (I/2v3)(&p', +qr', +P', —3$', ) and
7"=;(p,'+ &p', + p', + y', ). With B,=B,=B„numerical
calculations show that 1.4 &w & 1.733, w' &5, and
q"= 1 GeV. Results are given in Table II and in the
Appendix. If we require w'=sv = 1.56 and q"
large, then by setting B, -B,= —4.2(m )', we get
that q" =3,2 GeV. Again the charmed mesons are
given large masses by a large term B,.

Finally, suppose that B,=B,=B, and m =w'=1. 56.

TABLE I. System parameters for various values of w =u'.

[~ II )2

(units of
(~')') (degrees )

m (p&) m (g3) A /n

(units of (z ) )

1.0
1.2
1.4
1.56
1.6
1.7
1.71
1.72
1.730
1.731
1.732
1.733

1099.0
172.8
114~ 2
105.9
108.6
153.5
173.6
214.2
385.3
453.3
589.6

1191.2

-20.0
-12.7
-6.7
-2.7
-1.8

0.29
0.49
0.69
0.90
0.93
0.97
1.2

16.5
10.7
6 ~ 5
4.0

1.7
1 4
1.1
0.57
0.47
0.36
0.17

57.2
51.1
40.6
27.7
23.6
10~ 3
8.4
6.1
2.9
2.4
1 ' 8
0.84

32.1
36.5
42.4
51.5
55.9
90.4

103.8
130.3
239.8
283.0
369.7
751.4

44.7

45.1
47.3
52.8
55.9
82.0
92.4

113.2
199.4
233.4
301.7
602.7

31.6
39.6
50.4
65.4
72.1

121.5
140.1
176.7
326.8
386.0
504.4

1026.3

-134.4
-15.2
-7.2
-4.8
-4.4
-3.6
-3.5

3 4
3 ~ 3

-3.3
-3.3

302



12 SU(4} a MODE1

Then we predict that q" = 1.4 GeV which invites
speculation that the q" is the E(1420). The
charmed mesons can be given large masses by
taking B4 to be large, as above.

Note added in proof A. candidate for )i» has re-
cently been found at m()l ) = 2.80 GeV (reported by
H. Harari, Stanford Conference, 1975). Adopting
this value, we may compute all the quantities dis-
cussed in Sec. IV as functions of w only. Three
typical sets of values are given in Table III. Note
that we predict m(P,') (m(P4i}, as discussed in the
Appendix.

(degrees)

(g") m (Q)) m ((I53)

(units of (& ) )

1.45 5.24
1.50 6.76
1.55 9.14
1.60 13.4
1.65 22.6
1.70 60.1
1.73 63.0

-5 3
-4.1
-2.9
-1.8
-0.7

0.3
1.3

4.0 60.0
3.1 60.0
2.3 60.0
1.6 60.1
0.9 60.0
0.3 60.0
0 60.0

65.5 44.9 46.6
61 9 460 471
58.3 47.0 47.7
55.6 48.0 48.3
53.4 49.0 49.0
51.5 50.0 50.0
50.5 50.3 50.3

TABLE II. System parameters for "canonical" SU(4)
structure: &=60'; x and y &7 .

APPENDIX

It is first necessary to find the eigenvalues
(v', g', n", q"') of iif,, [Eq. (3.3)] which satisfy

det(M- A. 1) = (X —m')(A —q')(X —q")().—q"').

(Al)

Since we have assumed isotopic spin invariance,
we use (3.4) and divide out (X-v') from both sides
of (Al}. This leaves us with a cubic equation
for A.. Equating the coefficients of the powers of
~ on the right- and left-hand sides of this cubic
equation gives

A4
'g + g +'g =rl + s j +'R1UQ

A4, „~ 1' =w'[a, (q")'+ b, ] + —,[c,(q "}'+d,],

A, , a(q")'+ b,=w
u c,(q")'+ d,

The constants a, through d, are given by

a, = —(1+2w')c, 8w 2 ' —2
Q Qw

'+2 "c, 2 ' —2
QK Q Q Qw

(A, 4,],

(A4)

A,q'g' g" =s, ' +u, Uu'+v»4, Uu, (A2)

i2 2 pl 2+ 12 tt2
Qp = Pdo+ + C~)

A, A

Q QK

where

A, A3 2r= —s=2+s=—
1, 2 3 ~ ) 1

1 w'
v3 = -4 2w + ) Q1= v3 —ws1,

1 2s=- —u=- r =
w ' w' ' Q ww'

Ai A3 , , w
v, =-8 ' +2 ', &3 ~2

Qw Q w

(A3)

c, = — ' +2 ' + gg'' 4w+—

A, „A,-4(q'+ q") — ' + 2
Qw Q

=.' ' ~ " (".]'"(";]'
-"-~'(."-' ""; --'-'. (-". )' ='(-".]'

Since the equations (A.2) are linear in (q")'
but second order in U and A„we did not solve
for (q "}'directly but rather we solved for 2,/u
by eliminating U in two different ways to get the
following two equations:

Note that a, through d& are independent of w'. We
can then solve for (q")' by equating the two ex-
pressions for A, /u in (A4}. The result is a
simple quadratic equation for (q")'.

(q")'(a, w' +c, /w)c, +(q")'[( ,a,d+bc, —a,)w'+(c,d, +d,c,)/w']+(d, b, —b,)w'+ ', ' =0, (A8)
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TABLK III (added in proof). System parameters for various values of w for m(g") =2.80 GeV.

m(p~) (GeV) m($3) (GeV) m(S&) (GeV) m (S&4) (GeV) x (degrees) y (degrees) z (degrees)

1.7307
1.732
1.733

1.7307
2.422
5.045

2.21
2.34
2.55

2.01
2.16
2.43

4.27
3.63
3.12

5.12
3.42

0.92
0.95
0.97

0.51
0.36
0.17

2.57
1.81
0.86

where q" is now a function of only A, /n, A~/n, w, and w'. To complete the picture it is necessary to
calculate the q-q'-q" mixing angles. For small mixing these are given in (4.6); for the general situation
we replace the left-hand matrix in (4.6) by

Y(y)Z(z)X(x), (A7)

where Y(y), Z(z), and X(x) are, respectively, rotations through y, z, and x in the q-q", q'-q", and qq'
"planes. " The matrix elements of (3.3) can now be expressed in terms of the masses and mixing angles as
follows:

M = —+ —(x 'cos'y+x, 'sin'y sin'z)+ x,'cos'z

X+X
+ " (x 'sin'y+x, 'cos'y sin'z)+ (q"' —q')sin2y sinz;

2 /2

M»= —(x,'cos'y+x 'sin'y sin'z)+ x 'cos'z

II 2

+ (x, sin'y+x cos'y sin'z] — (q"' —q')sin2y sinz;9 2 ~ 2 2 2 ~ 2 +++-

~« = g'sin'y cos'z + q "sin'z + g" 'cos'y cos'z;
2 /2

M»= (cos y —sin y sin z)+ cos z
—g XpX 2 . 2, 2 g X~X

3 2

(AS)

I/2

(sin'y —cos'y sin'z)+ —(q"' —q')(x '-x, ')sin2y sinz

2 /2 I/2
fJ X+ 2 g X+~ sin y sin2z — ~ sjn2z+ ~ cos y sin2z+ ~ (q" —q )sin2y cosz;g ++ 2 ~

2 /2 I/2'g g 2 g g g g 2 X+M„= ~ sin y sin2z — ~ sin2z+ ~ cos y sin2z — ~ (q" —q )sin2y cosz,

where

x~ = &2cosx + stnx)

x = cosx -v 2 sinx, (A9)

which are given by

(4U'n')(2w'+1)/n +a +n
(4U'n')(2w'+ l) /a+2m, +n —n" '

x+ +x =3.
2

We can now solve for x, y, ~, and « in terms of
known masses and quantities previously calculated,
the only unknowns being w, w ', and (B, -B,).
First, by looking at the trace of , we see that

2 i q"'+q" +q' —z' —2(A, ~nw) —2(A, Inw')
Un — —~ 2ww'+I '/w +w/w'

W'e then solve for the mixing angles x, y, and z,

cos 8 =
4"cos y-4 '

W3 1 1
, [ -6"sin2y cosz

(A11)

+ age sin2z(h" cos'y —d, )],

vY , [u 2wk" sin2y cosz
Un' 1+2' '

+ sin2z(c" cos'y —n)],
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where

4=q —q,/2 2

4" =g"

g =2 ' 2UQ'—
QW

and from (A9)

cosx =-,'(V2x++x ).

(A12)

(A13)

1200

CV

0 5

800-
O

I-
600 Q-81

85- 8 t 1.237

8 -8 ~ -4.45
iooo-

-8 -Bt 1.235

(i) Let us now consider the case where all B's
are equal to zero. By (2.4), (2.11), (2.13), (2.14),
and (3.1) we see that g- 400-8~-8

2 ~ = (v')' 2 ~ = (K')' —(v')'+w(K')'. (A14)
Q Q

and

A 4

Q

(A15}

These two equations are consistent only if the
mass of the g" is infinite. By referring to Ref. 7,
Eq. (45), and replacing A, /n and A, &a inc, by
their values in (A14), we see that setting c, = 0
is equivalent to assuming this sum rule which re-
quires that gu = 1.733. We also see that A, /a is
infinite in this case. Thus if w is near its old
value, we expect the mass of the q" and A, /a to
be large.

Mixing angles, charmed pseudoscalar masses,
and the U(4) breaking parameter U are listed in

Table I for various values of w =w'. Note that all
three mixing angles are small only around w = 1.7.
It is amusing that in this region Table I gives
m'(4', ) &m'(g), which is the opposite of the ad-
ditive quark model. The reason for this is seen
by referring to (3.8) and taking A, large.

It is of some interest to ask if this model has
solutions where q" is close to a pure SU(4} sin-
glet, and g close to a member of an SU(3) octet.
This situation corresponds to the choice of mixing
angles, x=y=0 and z =60'. It can be achieved
for w in the range 1.45 to 1.73 and w'&5. Some
representative values are shown in Table II.
However, all these solutions are characterized

The general results for this model can be seen in

Figs. 1 and 2, and in Table I. For 1 & w & 1.7,
A, /a remains small. An interesting case discussed
in Sec. IV occurs when w =1.73. Here the mass
of the g" is quite large. We can understand this
by examining the quantity c, in (A4) and (A5).
When c, =0, Eqs. (A6) become

= ~m'(q")'+ ' d 40A d

200-8
8) -8

I

W

FIG. 3. q" in (7t' )~ units plotted against u 'znd&3 g3 f
for u =1.56.

by masses of the g" and the charmed pseudo-
scalars on the order of 1 GeV. Thus, they are
unrealistic.

(ii} Let us now look at the case where the B's
are not equal to zero. Equations (Al) through
(A13) are still valid, and the only change from
the previous discussion results from the identi-
fication of A, /a. By (2.4), (2.11), (2.13), (2.14),
and (3.1)

2 ~ = (K )' - (w'}'+w(K )'+ (w —1)(B, B,). -A

(A16)

This gives (q")' as a function of w, w', and (B,
B,). We now le-t w = 1.56, its experimental value,

and consider (q")' to be a function of w' and (B,
-B,}. From numerical calculations we find the
following:

(a) for B, —B, & 1.24 (w )', (g")'is complex;
(b) for 1.24&B~ B,&1.23,-(g")' is large;
(c) for 1.23 &B3 B,& -5, (g")-' decreases until

B, B,=O, then start-s increasing as (B, -B,) de-
creases;

(d) for (B~ B,}& -6, -(g")' is negative.

In analogy with the previous discussion, these
results can be understood by noting that when
(B, B,)= 1.235, c, =0-. Thus we see that this
new mass spectrum is similar to the previous one
where the value of (B, -B,) now determines the
critical value of ce (see Fig. 3}. It is thus possible
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to have so = 1.56~&@' with large g". In this case
the numerical calculations show that we can have
either paracharmonium for (8, -8,)= 1.23(w )' or
an SU(4) singlet q" for (8, 8,)—= -4.2(wo)'.

It is interesting to note that this model places
strict limits on (8, -8,). It seems that SU(3)
cannot be badly broken in the quark-gluon term
contribution to the mass matrix.
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