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Light-cone current commutation relations are used to derive fixed-mass sum rules on the amplitudes
for the electroproduction of single pions. These sum rules should provide a more direct test of the
structure of the commutation relations than the sum rules previously derived.

1. INTRODUCTION

Light-cone current commutation relations are
the natural commutators to use to derive fixed-
mass sum rules for the structure functions which
describe lepton-hadron scattering.! The advantage
over equal-time commutators is that no infinite-
momentum limit (or alternately an assumption
about the convergence of a dispersion relation)
is necessary.

Many sum rules have been derived!™ by using
the light-cone commutators which follow from
abstracting the free quark® or quark-vector-
gluon® canonical commutators. These sum rules
are roughly of two types. The first are sum rules
which had previously been derived from equal-
time commutation relations and are known to be
well satisfied experimentally. These sum rules
follow from the ++ light-cone commutator. Ex-
amples are the Dashen—Fubini-Gell-Mann sum
rule,’’” the Drell-Hearn sum rule,**® and an un-
named sum rule derived from equal-time commu-
tators by Goldberg and Gross® and by Gerstein?®
and from light-cone commutators by Dicus and
Teplitz.2 This last sum rule has recently been
shown by Goldberg!! to be in excellent agreement
with experiment. The second type of sum rules
are those which cannot be derived from equal-
time commutators or have ambiguities in that
type of derivation because of the infinite-momen-
tum limit required and which require a more
model -dependent light-cone commutator (usually
+-). Many examples of these have been given' ™
but none have been carefully checked experimen-
tally. This is because they usually involve spin-
dependent amplitudes, or off-forward direction
amplitudes, or both. Unfortunately, this means

that we really do not know if the form of the model-

dependent light-cone commutation relations has
any validity.

This paper is an attempt to find sum rules which
can be more readily compared with experiment.
We present here sum rules on the amplitudes for
electroproduction of pions. These are derived by
using the technique Gerstein used to get sum rules
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on pion-nucleon scattering from equal-time com-
mutation relations.’® This involves finding sum
rules on the invariant amplitudes which represent
the commutator of axial-vector currents and then
using partially conserved axial-vector current
(PCAC) to convert these sum rules to sum rules
on the invariant amplitudes for the pion process.

Some of these sum rules follow from the ++
commutators and have been previously derived
from equal-time commutation relations. For ex-
ample, we reproduce the Fubini-Furlan-Rossetti
sum rule which relates the nucleon magnetic mo-
ments to photoproduction amplitudes.?* But most
of our sum rules follow from the more model-
dependent + - commutation relations and, we
hope, can be used to check these commutators.

In the next section we define the electroproduc-
tion amplitudes and relate them to the invariant
amplitudes of the vector-current—axial-vector-
current commutator. In Sec. III we derive the
sum rules on the current-current invariant am-
plitudes. Only the sum rules that are used to find
sum rules on the electroproduction amplitudes
are given in this section; many more sum rules
can be derived that are not directly related to
electroproduction and these are listed in an
appendix. Finally in Sec. IV we give the sum rules
on the electroproduction amplitudes and discuss
their convergence properties.

II. FORMALISM

The T matrix for the process eN— eNm may be
written as

By, (k) NPT VEOI N(D))  (2.1)

in the one-photon approximation. The photon
four-momentum is k =k, —k, and we define
P=35(p,+p;), and A=p, —p,=q —k, and Q = 3(k +q).
a and b are SU(3) indices.

The hadronic matrix element is expressed in
terms of invariant scalar functions B; as
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(NPT (@ VEO) N(p))=a(p,)[5(Hy -k v ky*)BY + 2P*B3* +2¢"B3* +2k*BY + /' B
— P!y «kB2® —k*y +kB® — q"y+ kBL]yu(p,) . (2.2)
Except for B these are the amplitudes defined by Ball.!* Each B{ is a function of the variables
v=P-q=P-k,q* K t=A%,
Conservation of the vector current gives two conditions on the B;,
2k2BP=(t - k* —q?)B3* - 2vBY, (2.3a)
k2B =B +3(t -k - ¢*)B2, (2.3Db)

where B%®'=B% _ yB%’.
For most of the calculation we will find it convenient to keep the SU(3) indices general; in the end,
however, we will specialize to SU(2) and make the decomposition of the amplitudes

A A Ag A
B¥®=B{"5,, +B| >[7‘*, —22]+B(i°){—21,—23}. (2.4)

Under the transformation P— —P, a-— b the amplitudes
B(1+,o), tho), Bg—), Bt(l-)7 B;-), Bf;'O), Bg-)’ Bé-)
are even functions of v while the rest are odd in v. This means
ImB{* (v, t,q%, k%) =1, ImB (" (=v, t,42,k?), (2.5a)
ImB{7(v,t, ¢, ¥*) = =0, ImB{ ™ (=v, 1,42, k?), (2.5b)
with n; =+1 for 2=3,4,5,7,8 and ; =-1 for i=1, 2, 6.

The absorptive parts of the amplitudes B%® can be related to the commutator of an axial-vector current
and the vector current V}(0) by using PCAC in the usual way. From (2.2)

A(p)[50 v B =y - ky")ImBP ++- - |y u(p,) = %q—qu f d*x et (p,| [AL (x), V30)]| py) . (2.6)

The Fourier transform of the commutator which appears in (2.6) may be written in terms of invariant
functions in a manner similar to (2.2):

11 = [t et () (42 (), V3Ol ) (2.72)
=u(p,)ALy ysu(p,) (g"a— k—,‘;f—>. (2.7b)

The projection operator on the right of (2.7b) insures that conservation of the vector current is included.
There are 32 independent Dirac matrices:
Al =a® PP+ TPPFPy - Q + a2 PH g+ TPPF g %y - Q +aSPPF R + TP PP Ry « Q + a3 q" P + T ¢"P v - Q + alq g
+@%%q g%y Q +aq "k +TPg Ry + Q +aS%k* PO + TR Py - Q + &k g + TR g Yy + Q +alk" R
+3 R Ry Q + a3l gH T gy - Q + G+ AP (M y - Qy S =y Ty + Q) + DY PHy S+ bRy P+ b3y

+ P g 0Pk Y © + BV R + ¢} (PHio Q) + PYi0" Q) + 3" (@ i0 *MQ\ +Q %0 Q)

+ (A0 A Qy + A0 1Q, ) + B (PFio*rQ - P%i0" Q) . 2.8)
Each of the invariant amplitudes @3°, ...,d? is a function of v, ¢,¢°,k*. The combinations
A*ioorQ, - A%gH?
% N (2.9)

Q"io '@y - Q0" @,
have been eliminated from (2.8) by using the two identities
—mi(p,)[A"i0 Q- A% Q) |y au(p) =#(p,) [ty + QY =7y QyF) +mA - QichY — (PFA® — AFP)y + Q
— V(AR A% +Q - A(PY Y P yH) ]y u(p,), (2.10a)
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a

A p,)[(K*i0“ Q, — K %" 2@ )P? + P’K%0* ® + 3K*(P* A% — P“A¥)
- 30 Q(PK® — PK") + v (AFK ® — A°KH) +mK?* (P'y ® — PYy*)
—muE'y* - K%") ~m(P*K* - P°K* )y« Q]y,u(p,)=0, (2.10b)

where K*=Q" - (v/P?)P" —(A-Q/A%)A! and K2=Q% - 12/P? - (A+Q)?/A%. Gerstein'® has given the expansion
(2.8) and the conditions similar to (2.10) for the case of two axial-vector currents. The conditions (2.10)
can be derived from his conditions by simply making the transformation P+ A.

By using (2.6) the ImB?* may be related to the a?°, ..

2 2
o Mg —q b b b b b b
ImB’ = —F————(-vc}’ —vcy +d}" +mdy -q-Qcy -q-Acy),

M1 *fr

.,d%®. The relations are

(2.11a)

m,2—q® _
ImB = —L g 3(va®® —mva@® +q2a2® ~mq?as® +q ka2’ —mq kG2 —2mbP + g+ AP +20c2 +q - Qc3’ - 2d2%)

2
mwzf'n

2 2
my" -9
2
. mﬂ'f'n’

ImB} =

m‘rrzf-n 2 K

(2.11b)

1 — — - - 1
3(vad —mval®+q*a®’ —mq?al+q-kal® —mq kA +ay —-ma’h - 2mdY - v’ - vel’),

(2.11c)

2 2
m.-q° 1 1%
b — — — —_—
ImB2 = —1 = —-{— = vaf —mva® +q- kal —mq - kG +g?al -mg?a? +q - ka?® —mq - kAW ~ 2mb®

2 _.ab

—2d?® 4202 +3¢2c2 +q -

k

b_mﬂz"qz ab ab 27ab ab
ImB; ———fm —(vb]” +vdy’ +q%05° +q + kDY),
™ ™
2 2
ImBZ”:mT——"m 4 (—va® —b+dP —q?a%® —q- k@),
™ m™

(g - 2k)c3’]

‘R
_4 (P _quagb+q .kagb_mq.ka‘;”+a‘;g_mﬁzg—Zmbzb—2mb§b)

, (2.114)
f

(2.11e)

(2.111)

s Mt =@V oy aap — ab —ab, pab_ paby, 4R o ap _ab , ab , pad, paby, 9 rab
ImB;° = = aP+q% A +q kG +q - kay® + b3 +b3°) + ?T(q ay +q-kag +8Y+ b3 +03) + 2565 |,

mofr LE?

(m
10

2
ImBY = T f ) (-1)(vag® + b3’ +a%y+4*a P +q - kTY).

f

m

The method of deriving sum rules is straight-
forward: Equation (2.7) is integrated over g~
from -« to +wowhile ¢* and k* are held fixed at
zero. Equation (2.7a) becomes the commutator
at x*=0 while (2.7b) becomes integrals over v of
the invariant functions defined in (2.8). (Problems
with this method of derivation will be discussed
in Sec. IV.) The invariant functions depend on
v,q°=-q,%, k= —ﬁ_l_z’ and t=29, * EJ. -4, _EJ.Z'
Finally, once sum rules are found for a’, ..., d%,
Egs. (2.11) may be used to find sum rules on the
invariant functions of electroproduction.

Of course we will not be able to find sum rules
on all of the a2, ...,d® va?, ..., and therefore to
simplify (2.11) we will eventually take the soft-
pion limit. The amplitudes defined in (2.8) are
free of kinematic singularities as ¢ -0 and so we
may drop those terms whose coefficient depends

kz
(2.11g)

(2.11h)

on q (see, however, the discussion in Sec. IV on
the Born contribution to such terms). The sum
rules we will find in the next section on the a}®
will allow us to write sum rules on

ImBY(v,0, 1, t=k2)=%(uﬁ‘j”+b‘;"+ 1), (2.122)

1 1 ~
~(m ImB’ - ImB}’ - ImBY’) = = (- 3a%° — gma@®® +c?),

(2.12b)

tmp = L, (2.120)
m

ImBY = - (Va3 + b5 +3 %), (2.12d)

m
2ImB}’ = —I—(Va’l"’ - mvat® —2mbP + 20 ~ 2477),
m

(2.12e)
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ImB‘{b—ﬁ( vet® - v +d® +md?) ,

where all of the invariant functions depend on v,¢?=0, k%, t=Fk* where k? is spacelike.

III. SUM RULES

To derive sum rules on the a?, ..., we integrate (2.7) over ¢~

1[ dq~ fd“xe’“UJI

2, VO ) -0 [ dxd?xie™ e Fa(p, (48 (x

(2.121)
V 0)]|p1>x+=0 (3.12,)

At “Pa+°")y5u(pl)<g°“’_ k_k?_>
(3.1b)

where, in (3.1b), ¢* and k" are set equal to zero before the integration is performed. To evaluate (3.1a)
we need the light-cone commutator. We will use only the commutators which are derived from both a
free quark model and a quark model with vector gluons; that is, we will use only the =+, v=+ or the

u=+, v=F commutators. These are

[Vi(x), A3(0) )+ = g = 8 AS (0)3(x7)0%(X ) (3.2a)
[Vi(x), A7 (0) )i+ = = ifpe Ac (0)0 (x7)0(x,) — Fifaped e (x7)0%(x ) )[@E (x| 0) - €740 (x| 0) ]}

- 3id,p0 e (x7)0% (%, )[GE(x] 0) + €~ V5(x| 0) ]}

- 31fped L€ (x7)8%(x, )V; (%] 0)] = 3id, 0% [€(x7)0%(x, )V (%] 0)]

+[ ie(x7)0%(x )T (x)y Y "ysAgp $(0) = H.c.]. (3.2b)

The operators which appear on the right-hand
side of (3.2b) are the Hermitian combinations of
the bilocal generalizations of the vector and axial-
vector currents:

Vf (%] 0) = [T X (0) + (01" 2, (x) ],  (3.3a)
T (x| 0) = i [F(2)y “A.9(0) = FOW* A 9(x)],
(3.3b)
@4 (x] 0) = F[PW My A, 9(0) + POy  yx . 8(x) ]
(3.3¢)
G} (%] 0) = ~2i[F (¥ v A (0) = DO  y Aadb(%)] .
(3.3d)

Because we have currents which are not conserved
the mass has been treated as an SU(3) matrix, M,
in deriving (3.2b). The final term in (3.2b) con-
tains the matrix A,, which is defined as

a*bE[M)Aa]ikb' (3.4)
In this paper we will always take M= € \,/2
+€ghg/2.5
The commutator
[A30), V5 0) ]+ =0 (3.5)

is given by (3.2b), with A, replaced by Al,. We
will use both (3.2b) and (3.5) to derive sum rules.

No new information can be derived from the +,¢
commutators that is not contained in the +,—.

Eventually we will specialize to SU(2) and con-
tinue the pion to zero four-momentum. For SU(2)
A, is zero while A}, is proportional to the pion
mass, which, because of our soft-pion approxima-
tion, we must also set equal to zero. Therefore,
we shall not write out the symmetry-breaking
terms when they occur, even when the indices
refer to SU(3), but simply note that they are easily
determined from (3.2) and (3.4).

Unfortunately, the other terms on the right-
hand sides of (3.2) and (3.5) cannot be disposed
of so easily and we must expand the matrix ele-
ments of the bilocal operators in terms of real
form factors. In terms of the nucleon spin, s*,
given by

st=aa(p, )y ysu(p,), (3.6)
we have
B VEOIp) =P L)+ e Pas)i0), ()

(Dol VL (k] 0)| b,y =PH V24 x#VE+iAF V2 4ic* (PAS)V?
+€" (Pxs)Vi+ie! (Axs)V?
+A -« se! (PAX)VT +ix + se* (PAx)VE,

(3.8)



12 SUM RULES FOR SINGLE-PION ELECTROPRODUCTION FROM... 281

(Pl AR (0)| py) = s*G4(t) + A% s+ AGH(H), (3.9)
(Pl @4 (x| 0)| p,) =s" AT+ P x+ sAZ+ x* x+ SA?

+iP* A+ sA% +ixFA - AL +ink x - SA]

+AFA - sA? +ie!(PAX)A . (3.10)
Each of the V} and Aj is a function of ¥*, x- P,
x+A, and t. We have used the notation €*(ABC)
=€“°‘BPA0(BBCP. The form factors in (3.9) become
the usual axial-vector and induced pseudoscalar
coupling constants when {=0. Time-reversal in-
variance requires V3, Vi, Vi, Aj, A, and Aj to be
zero when x - A =0. Similar decompositions hold
for U and @ in terms of V} and AS.

Equation (3.1b) is conveniently reduced by using
(3.6) and the following:

a(p u(pl)— uu - 2—;,2—6“(PAS), (3.11)
_ A-s
u(bz)’)’su(pl):l—z‘mQ‘; (3.12)
A(p " y'u(p,)=g"" wu + 2—P7[P“A" P'AM]
*3 1P2 [a*e”(PAs) - A’e*(PAs)]
+ %e‘”’(Ps) s (3.13)

— 1 1 _
a(p, )" ysul(p,) = J(S“PV -sPH) + Wuue“ (AP)
A-s U Av U pv
+ gz (P AY — AFPY)
A% wpy_ wpn
+W(S P -sP ). (3,14)

The sum rules may now be derived. Using (3.2a)
we obtain

f dva®®(v,q?, k%, 1) =0, ¢*<0, k*<0
(3.15a)

(3.15b)

f dva®®=0,

—

L .17 00 _
'I—Zl—z‘fmdudgb(y’qz,kz,t)=_z§f,,,,c f_m da e(a)Vs(a),

f dv[d?® - vc2?]=0,

Jduuc‘;"=i721P2fabcf da (@78,

fdubg"=—21rf,,,,c (t)+z

L 10+ e [ dac(@Vi+ Fa

(3.15¢)

o
f dvc®=
=00

f dv(va® + b2+ b)Y = — 211, .GS (). (3.15d)
In deriving these we have treated the “reduced”
tensors [that is, the tensors in (2.7b) with
pyv=+,+]

P*P*, P*s*, P*(s*P,Q' - P*s,Q"), P*ue *(PQA)

(3.16)

as linearly independent.

More sum rules can be derived from (3.2b) and
(3.5). To derive these sum rules we take the fol-
lowing set of “reduced” tensors to be linearly
independent:

1, PP, P*s™, P s*, P,Q*,

PP 5;Q" - P"s*PQ" P*A™ (= =P,AY),

s+

F: SiQ, in PQ <siQi— SFP{QI‘>,

p*A‘(sQ‘ S—P Qi> iPQ‘ (3.17)
i "P+ i ’ P+ i ’ .

P+P,A' fue*"(PA),
aue"‘(PQ), P'P7e*7(QA),

P'AT€*(QA), e*7(QA) .

All other reduced tensors can be written in terms
of these. For example,

P,Q'e*™(QA) =Q%iue* " (PA) - Q « Altue*~(PQ) .

We will only write the sum rules which are use-
ful for finding sum rules on the B“," through the
relations (2.11). The other sum rules which can
be derived from (3.2b) and (3.5) but which are not
useful for our purposes are listed in the Appendix.
The four sum rules of (3.15) can be derived from
these commutators and the following sum rules are
also obtained:

(3.18a)
(3.18Db)

(3.18¢)

2_R? _t)fa,,c'[:o dae(a)Vs, (3.184d)
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f dv(ua‘f’+mb‘;")=%m(qz—kz—t)]‘a,,c[BGc(t)+f_ dae(a)Vﬁ]—ig(4P2+q2—kz—t)jf,,,cf dae(@)Vs,

fdu(vﬁ“"+b“")=igda,,af doe(a)@S + aAS),

f_ [P+ v(OP +b)]= ~i (¢ +RP ~ e f da € (o) (S + ad3)

[ avag=cilda, [ dac@@i+ody,

(3.18€)

(3.18f)

(3.18g)

(3.18h)

where we have omitted the argument v, ¢*, k%, { of the amplitudes on the left-hand sides of the sum rules.
Similarly on the right-hand side the bilocal form factors are each a function of x¥*=0,a,x+A =0, and ¢. ¢°

and %% are restricted to be spacelike.

The derivation of the final sum rule (3.18h) is more complicated than the others. We derive from (3.1)

the sum rules [not listed in (3.18)]

f dv(vas® +b%") =0,

| avast b =it [ dac@)as vas),

f av[v?a®® + 2@ + v(b3 + B2+ ] = Zfa,,c(qz—kz—t)f da e(a)(aVé+a?Ve).

The high power of v in the integrand of (3.19¢) in-
sures that we can use the method of Heimann
et al.** to derive a sum rule

f dv(vas® +as®+ b + b2 +a%%)=0. (3.20)

This sum rule, together with (3.19a) and (3.19b),
gives (3.18h).

IV. RESULTS

It is now fairly simple to use the sum rules
(3.15) and (3.18) together with the relations (2.11)
to get sum rules on the electroproduction ampli-
tudes B;. In particular in the soft-pion limit,

g;— 0, the sum rules can be used to eliminate all
of the amplitudes a%, ..., d2" [see (2.12)]. Special-
izing to SU(2) and using the decomposition (2.4) the
sum rules which follow from the ++ commutator
through (3.15) are

FQV'S)U) 2m (" dv [ImB‘* 0 4 m B0

2m ng
—m ImB{?], 4.1)
v GA(t) 2m “dv (= )
Fl0 - Gy = o SamB; 4.2)

The amplitudes on the right-hand side of (4.1) and
(4.2) are functions of v, ¢*=0, k2, and ¢=Fk® with k?

(3.192a)

(3.19b)

(3.19¢)

r

spacelike. FY,FY, F$,F$ are the usual vector and
scalar, electric and magnetic, form factors. g,y
is the pion-nucleon coupling constant and the
Goldberger-Treiman relation

&unfr= _ch(O)

has been used to simplify the left-hand side of
(4.2).

The sum rules (3.18) which follow from the + —
commutators give

fdulmB;f*'“):o, (4.3)
Yo
(v,S)
E———Q— fdulmB(* :0) (4.4)
2m g'rrN
FY(t) = =[G 4(1) = (G, ()]
1 G (O) A
f dvImB{~
ger

e tiemey [ davO . (.
mG 4(0) &t )fo daV,”, (4.5)
FY(t)+FY ()= 2 f dvImB{”~

- __ (-
MGA(O)PZ,/; da Vl ) , (4.6)
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where P*=5(p, +p,)* =m?* - §t.

These nine sum rules constitute our results. The
sum rules derived from the ++ commutation rela-
tions, (4.1) and (4.2), were derived from equal-
time commutation relations many years ago. At
k*=0 (4.1) is the famous Fubini-Furlan-Rossetti
sum rule which relates the nucleon magnetic mo-
ments to photoproduction amplitudes.’? This is
not surprising since the ++ light-cone commutator
contains the same information as the “good-good”
equal-time commutators. The + - light-cone com-
mutator contains new information, however, and
we believe the sum rules derived from that com-
mutator are new and constitute an important test
of the form of the light-cone commutators.

The Born terms have been separated out of the
sum rules by using the device of giving the inter-
mediate nucleon a different mass than the external
nucleons and setting the masses equal only after
the ¢ =0 limit has been taken. This means that
terms of the form

d
q-kf;za(v,q'k)

can be set equal to zero because the Born contri-
bution is proportional to
d(v-q-k+m'? —m?),

but that terms of the form
' -m) [ Patw,q-)

will have nonzero contributions.
There are several things which are questionable
about these sum rules and the method of deriva-

tion. Unlike many of the sum rules based on
equal-time commutation relations these sum rules
are not invalidated by Z graphs. Like the sum
rules from equal-time commutation relations,
however, they are only valid in the absence of
Class II singularities. This is discussed in detail
in Appendix D of Ref. 1.5 Also the approach to
¢*=0 is from the direction of spacelike g%, not,

as one would like, from the physical mass to
q%=0.

The f-channel helicity amplitudes indicate that
the Regge behavior of the electroproduction am-
plitudes is'®

By, B,, By, By, By~ s, 4.7)

B,~s%.
This makes all of the new sum rules (4.3)-(4.6)
appear divergent if @ >0. Since we are considering
electroproduction we can choose ¢ (=%?%) sufficiently
spacelike that a(t) is less than zero. The t=0
case can then be evaluated by analytic continuation
if necessary."

This is not a new situation; similar cases of di-
vergent sum rules were found by Cornwall,
Corrigan, and Norton®® and in Ref. 1 and Ref. 2.'°
Cornwall, Corrigan, and Norton subtracted the
leading Regge contribution at {=0 and then wrote
a sum rule for the remainder. We could also do
this. In fact the asymptotic behavior may well be
better than (4.7) indicates; further improvement
could be expected to result from the proper in-
sertion of factorized Regge poles into the ¢-
channel parity-conserving helicity amplitudes.

In addition the { =0 behavior may be improved by
the use of the conspiracy conditions.

APPENDIX

There are many fixed-mass sum rules on the amplitudes (2.8) that are not included in (3.15), (3.18), or
(3.19) because they are not directly related to electroproduction amplitudes. These are derived by using
(3.2b) and (3.5). Each invariant amplitude is a function of v, ¢%, k?, and t while the bilocal form factors
in the integrands on the right-hand sides are functions of a,x*=0, x+A=0, and £:

f dvci=0,
f dvcd =0,

[

2m

(A1)

(A2)

L] -] . ﬂ 00 .
dv <b‘;" + —Pfdgb> == 21, G4 (8) = z;—r %(2m2 +8 = q*) fone fm dae(a)Vs - z(q2 — B2+ t)f e f_w da €(a)Vy,

(A3)

R +t—q® (° N | ” - ” 7e
_kz_f dva; =—z1r%fmf dae(a)V’i+21rfa,,cf dae(a)Vs, (A4)

| avag=4mm 050 +i T [ da @)V = I [ dae(@)T5, (45)
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f dv(@*+a) =0,

DUANE A. DICUS 12

f dv(-h‘“’+ﬁ""+P2d;")=_n]§bc f dae(a)Vs, (A7)
f dv[a?®+a?]=0, (A8)
f_ dv (-a:”+a$° - %d’;’) = —8Tmf,,G5(t) —igfmf da €(@)VS +mmf,y, f da €(a)Ve, (A9)

f av[v¥as® - kva () + 2 (6% + b3) + 3(¢® - k2

-0

- )(ag+vbe)] = %kz(q2 ~ k2 +1) f da €(a)(aVi+a®Vy),

(A10)
f_ dvu(&‘:"+?2?,"—P2c2> z%da,,cf da e(a)ads, (A11)
f dv[ua +va?®+at +———-(q - k2 ]——z mda,,cf dae(a)[AS+ R+t - g?)AS], (A12)
f_mdv<c P2 2)——17da,,cf da e(a)ads (A13)
f_mdvv[va *+ b3 +3(g2 - k2 - )+ Wd‘“’ Pzd';b
+7V;;(C‘;_b—cs )+ 4P2 (@2 =K% = t)c® - 2%;;(3k2+t—q2)c§”]= _z%kzdm f_wda e(a)ads, (A14)
S avslap ma e n(@ - e - 1@k £ - ) - 5k 41— ] <0, (a15)
f_mdu[ V& + (K +1 - q®)vald + &Y — ymb® + 4P2(4m +R2 g~ 1) d’”’+——(q - k2pdz?

1
-V + @ )—Ez—

(@* = k)2 (e}’ - c§)

* 16P2(

% - R (K +t —q?)vc®+ 8P2(q - (3k%+1t — Z)ch”]

._.i%mkzdabcf_ dae(a)[A+(g*+t-)A;]. (Al6)

*Work supported in part by the U. S. Atomic Energy
Commission.
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