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It is assumed that charmed hadrons exist, and, together with the usual hadrons, can be classified in

representations of SU(8). Hadron masses are assumed to arise from quark masses plus two-body interactions
between quarks. Mass relations among the hadrons are obtained. It is estimated that charmed vector mesons
have masses about 2 GeV and that charmed baryons have masses between 2.2 and 5 GeV.

I. INTRODUCTION

The recent discovery of very narrow mesons at
SLAC and Brookhaven' has enhanced the possibil-
ity of charm" as a new quantum number in par-
ticle physics. In the present paper, we consider
a model in which the hadrons are made up of
quarks, with a charmed quark in addition to the
usual three quarks, and derive expressions for
the hadron masses. Our main aim is to obtain
relations among the masses of hadrons, including
hadrons with charm. It will be recalled that mass
relations have proved to be very useful in the past.
For example, the Gell-Mann-Qkubo mass formu-
la led to the prediction of the mass of the 0; its
subsequent discovery led to the acceptance of
SU(3) as a broken symmetry of nature. In the
same spirit, it is hoped that, with the knowledge
of the masses of a few of the charmed hadrons,
one can use the mass relations derived here to
predict the masses of others.

We assume that the four quarks belong to the
fundamental representation of SU(4). We also
allow the quarks to have spin, so that we treat
the whole problem. within the framework of SU(8).'
In the model, the mass of a hadron belonging to a
given representation of SU(8) arises from a con-
tribution which is common to all members of the
same representation, plus two contributions which
lead to deviations from this central value. The
first contribution to the mass splitting arises
from the differences in the masses of the individu-
al constituent quarks; the second from differences
between the various two-body quark-quark interac-
tions. Calculation of hadron mass relations along
these lines have previously been carried out by
Lichtenberg' within the framework of SU(4), and
by Federman, Rubinstein, and Talmi' for SU(6).
The present work is a generalization of these cal-
culations to include both charm and spin.

We take the usual baryon SU(3) octet and deci-
met as belonging to the symmetric 120-dimension-
al representation of SU(8), and the pseudoscalar
and vector meson SU(3) nonets as belonging to the

mixed 63 8 I representations of SU(8). The bary-
on wave functions therefore are completely sym-
metric under the interchange of the SU(4) and spin
indices of their constituent quarks (with oribital
angular momentum zero). If one wishes to pre-
serve Fermi statistics for the quarks, one may
include color, ' but otherwise color plays no role
in our calculation. Our mass relations for the
baryons and mesons are derived below in Secs.
II andIII, respectively; we alsoprovide some esti-
mates for charmed particle masses. Hadrons
with nonzero charm have, of course, still to be
found experimentally. However, should they be
discovered, we expect our mass relations to pro-
vide a check as to whether broken SU(8) is a viable
symmetry or not, and if so to give an indication
as to where other charmed hadrons are to be
found.

II. MASS RELATIONS FOR THE BARYONS

20s ~ 10o + 6i + 32 + 13,

20~~ 80+ 6i +3i +32

(2)

(3)

where the subscripts denote the charm of the
SU{3) multiplets.

For the individual baryons, we use a notation
which has been introduced previously, ' namely,
we use a single symbol for all baryons with the
same isospin and strangeness minus charm, and
write the charm as a subscript. Thus, for exam-
ple, " means I =-,', S= —2, while ", means I= —,',

We first consider the baryons, including charmed
baryons. The symmetric 120-dimensional repre-
sentation of SU(8) has the following SU(4) and spin
content:

120 ~420'+'20~,

where the left superscript denotes the spin multi-
plicity and the subscripts S and M denote the sym-
metry (S = symmetric, M= mixed) of the 20-dimen-
sional representations of SU(4). The SU(3) con-
tent of the 20' and 20„ is well known, ' but for con-
venience we include it here
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S = —1, C =1. The particle content of the 120
SU(8) representation then is the following:

20~: 10,(4, Z, =, 0)

6,(Z „:"„0,)

3,(=„n,)
1,(Q,),

20: 8 (N, A, Z, ")

1(E19 1' ~1)

31(AI& 1)

3, ( „n,).
All together, there are 10 baryons in the 20s, and
11 in the 20„, yielding a total of 21 baryons in
this 120 SU(8) representation.

We denote deviations arising directly from the
quark mass differences by m for the u and d
quarks (we are neglecting electromagnetic effects),
m, for the s quark, and m, for the charmed quark.
As stated in the Introduction, we also include de-
viations arising from differences in the two-body
interactions; these are denoted by V, with sub-
scripts to indicate the various quark-quark con-
figurations. V, and V, come from the interactions
between u and d quarks in the isospin-1, -0 states,
respectively; since the over-all quark wave func-
tion is SU(8) symmetric, V, and V, automatically
go with spin-1 and -0 states, respectively, so that
no additional notation is necessary to denote the
spin dependence. The interaction of u or d with s
and c give rise to contributions V„V„while the
interactions of s and c quarks with each other give

V„, V„, and V„. Again, V„and V„act only in
spin-1 states, but V„V„and V„act both in spin-
1 and spin-0 states of two quarks. We use a super-
script a on V„V„and V„when two quarks inter-
act in spin-0 states and leave the symbols alone
when the quarks interact in spin-1 states.

In order to calculate the contribution of the inter-
actions to the baryon masses, we need to know the
baryon SU(8) wave functions. These can be readily
calculated. The wave functions are not unique,
however, unless it is specified that they are eigen-
states of particular subgroups of SU(8). In SU(6),
for example, the wave functions of the A and Z'
baryons are uniquely specified by the requirement
that they be eigenstates of the SU(2) subgroup cor-
responding to isospin. Similarly, we require that
the SU(8) wave functions be eigenstates of the or-
dinary SU(3) subgroup containing isospin and
strangeness. In so doing, we have in mind a hier-
archy of symmetry breaking, with charm breaking
the symmetry more than strangeness, and strange-
ness more than the z component of isospin.

The baryon masses can be readily calculated,
and depend linearly on m, m„m„and the V's.
The expressions for the masses are given in the
Appendix. We use the symbol for a baryon to de-
note its mass, and where necessary to avoid con-
fusion, we use the subscripts S and M to denote
that the baryons belong to the 20s and 20„, re-
spectively.

Using the expressions in the Appendix, we have
obtained the following four independent relations
among the members of the 20s:

g —a=3(:- —E),

n, —n, =3(:-,—Z, ),
0, —A=3(O, —0,),
0 -2" +Z =0 —2" +Z.

(4a)

(4b)

(4c)

(4d)

We do not get the equal-spacing rule for the SU(3)
decimet. However, we do obtain Okubo's second-
order decimet mass formula, ' which is given in
Eq. (4a). We have also found the following seven
independent formulas relating members of the
20s to members of the 20„

:-s —~s =:"~—~~

2$ ~1S 2N ~1M ~

~2s - ~1s = 2~ —1v,

g
—4 = -s -N+ ~(A —Zs),

~s- ~ =~~ -&+2 (Ai —E»)

Qs 2~s+ZS=Q1e -2 "1m+

~ls ~ ls + ~S ~1M ~1!if+ ~1M + ~At &

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

(5g)

where "» and .,'„belong to the SU(3) 6 and 3,
respectively, contained in the 20„. There are no
relations involving solely the members of the 20„;
in particular, the Gell-Mann-Okubo octet mass
formula does not hold.

The ll relations in Eqs. (4) and (5) follow direct-
ly from the use of SU(8) wave functions for the par-
ticles, and our initial assumption of the additivity
of the two-body quark-quark interactions. At pres-
ent, the only relations which can be compared with
experiment are those which contain only the mass-
es of the usual octet and deciment, namely Eqs.
(4a), (5a), and (5d). These equations are well-
known from other sources, having been derived
before'9'0 within the framework of SU(6). The
differences" between their left- and right-hand
sides are about 8, 22, and 34 MeV, respectively.
Considering that the baryons involved in these
three relations have masses in the GeV region
(about 1 to 1.I GeV), we can conclude that they
are in fact rather well satisfied. It is our hope
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of course that the other relations which involve
the charmed baryons (some of whose masses may
be as low as 2.2 GeV; see below) may likewise be
satisfied to a reasonable degree, though presum-
ably not as well as for the uncharmed baryons.
However, an estimate of charmed baryon masses
to say 100 MeV or so would certainly be of great
value to experimentalists in locating them.

We now go further and ask what additional as-
sumptions must be made in order to obtain what
are in fact the best known relations among the
known masses, namely the equal spacing rule
for the decimet and the Gell-Mann-Qkubo mass
formula for the octet:

~ —"s= "s-~s=~s- ~

2(N+ "s)= 3A+ Zs .

From the Appendix, it may be immediately de-
duced that both of these relations follow with only

one additional assumption about the two-body in-
teractions'.

2V, =V„+V, . (6)

This extra requirement involves two-body inter-
actions which are symmetric in both SU(3) and

spin: it corresponds to equal spacing in the sym-
metric (6J representation of SU(3}with the quarks
in their spin-1 configuration. No constraint is
necessary on the antisymmetric interactions.

We do not know of any a priori reason why quark-
quark interactions in spin-1 states should satisfy
Eq. (6}, other than the fact that Eq. (6) represents
a particularly simple form of symmetry breaking.
If Eq. (6) is not satisfied, then the Gell-Mann-
Qkubo octet and decimet formulas will not hold.
But it is well known that the actual masses agree
with these formulas to a very good approximation,
and so we conclude a posteriori that in the model
Eq. (6) holds. We should like to point out that the
situation is no better when the Gell-Mann-Gkubo
formulas are derived from group theory. In this
case, one assumes that the symmetry-breaking
term in the mass operator transforms like a com-
ponent of an octet. The justification, aside from
simplicity, is that it works.

In line with our discussion above, we extend
this idea to the larger group SU(4) to determine
the corresponding relations among the charmed
baryons. [Not surprisingly, some of the relations
we obtain at this level of approximation are simi-
lar to those found"' recently by a different pertur-
bation approach, namely that in which SU(4) is
broken by components of its 15-dimensional re-
presentation. ] The relations analogous to Eq. (6)
involving the charmed quark are

2(N+ ")=3A+Z,

2(N+ ~) = 3A, +Z, ,

(II, —=,) = (=-, —Z, ),
2(Z, —Z) = 2=-, + =, —3=,',
(0, —~)+( —Z) =2(:-, —Z, ) .

(9a)

(9b)

(9c)

(9c}

(9e)

Previously, with spin-independent interactions, 7

relations were obtained' among the 11 different
baryon masses of the 20„. Here, with the inter-
actions depending on spin, we obtain only 5 inde-
pendent relations. If charmed baryons are ob-
served, it will be interesting to see whether the
relations of Eq. (9) agree better with experiment
than those of Ref. 5.

2'= V-+V

2V„=V„+V„.
Here, of course, we do not have any justification
from experiment, and can only argue (I) that we
have broken the symmetry of the quark-quark in-
teractions in a particularly simple way, and (2)
that Eqs. (7) are analogous to the successful Eq.
(6)

Using Eqs. ('I), we obtain the following indepen-
dent relations among the masses of the 20s:

(8a)

(8b)

(8c)

These mass relations should not be considered to
be as well justified in our model as those of Eqs.
(4) and (5), especially in view of the fact that
SU(4) is more badly broken than SU(3).

But SU(3) is itself badly broken, with mass split-
tings of around 400 MeV within a multiplet. These
splittings are very large compared to SU(2) split-
tings, which are typically less than 10 MeV with-
in an isospin multiplet. We therefore feel that
there may be some deeper reason (as yet unknown)

why perturbation theory and Eq. (6) work in SU(3),
and that this may carry over into SU(4}.

From Eqs. (8), we see that the knowledge of the
mass of only one charmed baryon in the 20& (say
the Z, } would provide the masses of all the other
baryons in this representation. [The relations of
Eq. (8) are equivalent to those that were obtained
previously with a spin-independent interaction.
The reason is that only the interactions in the spin-
1 state of two quarks are relevant for the 20s in
our SU(8) model. ]

The situation in the 20„, however, is different
from the results of Ref. 5, and we obtain the fol-
lowing relations among the masses of 20„:
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As remarked above, we need to know the mass
of only one charmed baryon in the 20$ to obtain
the masses of all the others in this representa-
tion. If one knows in addition the masses of two
charmed baryons of the 20„(say the Z, and II,),
then the masses of all the other members of the
20„can be deduced from Eqs. (5) and (9). Thus,
in this scheme with approximations (6) and (7),
the whole set of charmed baryons in the entire
120 SU(8) representation (there being 13 in all)
can be determined once the masses of only three
of them are known. It would appear therefore that
Eqs. (8) and (9) are a very useful set of relations
for estimating the masses of charmed baryons,
once the first few have been discovered.

III. MASS RELATIONS FOR THE MESONS

We shall assume that the usual pseudoscalar
and vector mesons belong to the mixed 63+1
representations of SU(8). The SU(4) and spin
content of this 64-piet is

64 g'16+ '16, (10)

2+*=p+y,
2D =p +$,
2F=(p+$.

(12a)

(12b)

(12c)

These are the sum rules that were obtained pre-
viously' for the vector mesons. The first of these
relations agrees well with experiment, since 2&*
= 1.78 GeV and (p+ qr) = 1.79 GeV. According to the
second and third, the D and F vector mesons
should have masses

where the 16 is a mixed 15+1. The charm con-
tent of the 16 is

16 g100+3, +3 (11}

where the 3, and 3, are antiparticles of each
other. The 10, of vector mesons contains the
nonet of SU(3) including the p, ~, y, fC*, K*. We
identify the tenth state as the recently discovered
g (J) meson. ' As in the work of Ref. 5, we as-
sume that the p and + are comprised only u and
d quarks, the y of strange quarks, and the g of
charmed quarks. ' The 3, mesons consist of an
isospin doublet D and singlet F in the notation of
Gaillard, Lee, and Rosner. ' If we assume that
the quark-antiquark interactions conserve iso-
spin but nothing more, we get no relations among
the meson masses. If, however, the quark-anti-
quark interactions satisfy in their symmetric con-
figurations the same relations as the quark-quark
interactions, namely Eqs. (6} and (7), we obtain
the following sum rules

D =1.94 GeV,

E=2.06 GeV .

The pseudoscalar mesons K, m, and q' do not sat-
isfy a mass relation analogous to that of Eq. (12a}
for the vector mesons. Within the model, there
are two possible explanations for this. The first
is that the quark-antiquark interactions satisfy
Eq. (6} in spin-1 states but not in spin-0 states.
[Recall that in order to obtain the Gell-Mann-
Qkubo octet and decimet mass relations, we
needed to assume only that the quark-quark inter-
actions satisfied Eq. (6) in spin-1 states. ] The
second possibility is that the q contains some ad-
mixture of uu and dd pairs in its wave function in
addition to ss pairs. In any case, because the
mass relation analogous to Eq. (12a) does not hold
for pseudoscalar mesons, we cannot predict the
masses of the charmed pseudoscalar mesons with-
out further assumptions.

IV. DISCUSSION

As we have remarked in Sec. II, the baryon
mass relations we have derived do not allow us
to predict the masses of any charmed baryons
until at least one of them is discovered to set the
scale. However, if the g(3.10) is indeed a cc
state, then we can obtain a rough estimate of
charmed baryon masses as follows. In the model
the mass difference of about 2 GeV between the g
and the y meson arises from the replacement of
two strange quarks by two charmed ones in the
same configuration, or about 1 GeV for each such
replacement. If a similar effect holds for the
baryons, then replacing a strange quark by a
charmed one in the Z, for example, would in-
crease its mass by about 1 GeV. Thus, the Z»
and Zy$ would have masses of about 2.2 and 2.4
GeV, respectively. The mass relations of Eqs.
(5), (8), and (9) then tell us that the baryons of
the 120 should all have masses below 5 GeV.

In summary, we have extended the usual SU(3)
and SU(6) symmetries to the higher symmetries
SU(4} and SU(8} in order to incorporate charm, an
additional quantum number strongly suggested by
the recent discovery of narrow mesons at Brook-
haven and SLAC. ' Qn the basis of simple additive
contributions arising from quark mass differences
and different two-body quark-quark interactions,
we obtained at different levels of approximation,
relations among the masses of the charmed and un-
charmed baryons and mesons. We calculated the
masses of both the D and Fcharmed mesons' to be
about 2 GeV. We would also expect the lowest-mass
charmed baryons to have masses of a little over
2 GeV. If a few charmed baryons are indeed
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found, our mass relations can be used to see
whether SU(8) is a worthwhile symmetry scheme,
and if so these relations can be used to indicate
where other charmed hadrons are to be found.

We would like to thank C. S. Kalman for a help-
ful conversation.

APPENDIX

We list here the masses of baryons belonging to
the 120-dimensional representation of SU(8) in
terms of quark masses and interactions.

20, : 10,: ~=3m+3V„

Z =2m+ms+ V, +2V, ,
:- = m + 2m, + 2 V, + V„,
Q =3m, +3Vss i

6, : Z, =2m+m, +V, +2V, ,

rn + rn, +m, + V, + V, + V„,
Q, = 2~ + rn, + V„+2V„;

32.' ~ = m + 2m +2Vc+ Vcc s

Q, =~+2mc+2V„+ V„;
13.' Q3 Smc+ 3Vcc '

80:

3.:

N =3m+~V, +2VO,

A =2m+m + Vo+~ V, + 2V,',
Z =2m+~+V, + 2Vs+

"=m+2~+V +~V +~V';

A, =2m+m, +V +-'V, + —V,',
-,'=m+m, +rn, + —V, +4V,'+ 4V„+gV,', + V,';

Z, = 2m+ m, + V, + p V, + p V,',
-, =m+~+ rn, +V, +4V, + —'V,'+4V„+&V,', ,

Q, = 2m, +m, + V„+2 V„+~ V,', ;

",=2m, +m+ V„+2V, + &V,',
Q2 =2nh+w+ V„+ 21 Vs. +2V
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