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We study phenomena that involve surface fluctuations of a bag by introducing unconfined iF and cr fields which
interact with the bag only at the surface. The resulting theory is chirally symmetric. We find exact classical
solutions to the equations of motion, which have the "hedgehog" property that 8(x) = g(r) r". In addition, we
study other classical solutions perturbatively, and estimate the values of the 5 width and of F predicted by
our model. There are no free parameters except the bag constant 8, which sets the over-all scale.

I. INTRODUCTION

The MIT bag model' has been remarkably suc-
cessful in explaining the static properties of the
low-lying hadrons. The calculation of these quan-
tities (such as the mass spectra, the magnetic
moments, and the charge radii) have been per-
formed in an approximation in which the bag is
considered to be a spherical cavity filled with the
quanta of colored-quark and vector-gluon fields.
The quantitative predictions based on this approxi-
mation are quite good, but one is unable to use it
to study many interesting phenomena, such as
scattering and decay processes, in which the sur-
face of the bag plays an essential dynamical role.
In addition one would also like to be able to esti-
mate the size of the error made in neglecting the
effect of the surface on the static quantities them-
selves.

Qualitatively, we picture a strong process as
occurring through a fission mechanism analogous
to that in the string model. ' That is, in the clas-
sical limit, a bag separates at a point in space-
tirne into two bags or two bags fuse into one. The
requirement that the transition occurs at a point
ensures a causal description. To calculate quan-
tum amplitudes one naturally uses the Feynman
path-integral formalism and functionally integrates
over trajectories which describe fission and/or
fusion. The complete calculation requires a de-
tailed understanding of the constraints which re-
late the surface motion to the constituent fields.
Only in two dimensions has this calculation been
done. ' The three-dimensional problem has so far
evaded solution.

Even in the string model, however, there is an
alternative method for obtaining scattering ampli-
tudes. The idea behind this approach is based on
the fission process: The emission of a single bag
in a definite state might be well described (in the
tree approximation) by the emission of an elem-
entary field excitation coupled locally to the sur-
face of the bag. In the string model this approach

gives the exact tree amplitudes for ground-state
scattering provided only that the mass of the field
is identified with the ground-state mass of the
string. In the three-dimensional bag our hope is
that this procedure will reasonably approximate
the actual emission of a low-lying bag state, e.g. ,
the pion or the empty bag.

In this paper we should like to apply this second
method to describe the interaction of pions and
empty bags with a single bag. %e describe the
single bag ("bare hadron" ) as a cavity filled with
quarks, and the pions and empty bags as excita-
tions of phenomenological pion and 0' fields inter-
acting with the bare hadron via a local coupling at
the surface of the cavity. Our work was motivated
in part by a similar attempt by Bardeen and Ellis, 4

and also bears some similarity to recent work by
Chang, Ellis, and Lee' (who discuss a two-dimen-
sional model) and by Freedman and Jaffe. '

The model we choose to study is based on a bare
hadron consisting of massless F and X quarks in
a spherical cavity of radius R. In such a model,
the axial-vector current A„ is locally conserved
inside the cavity,

~qA"=0 for r&R,
and conservation of the axial charge is violated
only at the boundary,

n„A" &0 at r =R,
where n„ is the normal r. We introduce an SU(2)
xSU(2) multiplet (o, ~) of phenomenological fields,
which we shall couple to the bare hadron in such a
way as to restore the conservation of axial charge.
For simplicity, we shall introduce no mass or
self-coupling terms for the & and m fields, and
furthermore we shall allow them to couple to the
quark degrees of freedom only at the surface of
the bag. Since axial charge conservation is vio-
lated only at the surface, this procedure is suf-
ficient for our purposes and is also consistent with
our intuitive idea that we are trying to account for
phenomena such as fission which presumably occur
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at the surface of the bag. In addition, as we shall
see below, our simple choice of Lagrangian allows
us to find a family of exact classical solutions to
the equations of motion, which mill provide us
with greater insight into the physical properties
of our model.

In the next section we define the model. %'e then
go on to demonstrate our exact classical solutions,
and to discuss some of their properties. In Sec.
III we discuss a perturbative expansion of other
classical solutions. Finally, we present some of
the lowest-order phenomenological implications
of our model.

II. MODEL AND EXACT CLASSICAL SOLUTIONS

The action describing the bare hadron alone can
be written

TV= d @8' x) gi y. e -B+~~ A,
"

P . 2.1

W = d~x(8s(x) [si p y $8- B+ {AS."g( +ia7' wy, )p)]

s(8~08 a+e~w'8 (2.2)

Here 8s(x) is unity inside the bag and zero outside;
furthermore, ~„19+=n„&&, where n„ is the inward
normal and && is a surface ~ function. For the
case of a sphere of radius R, 8s(x) = 8(R —r). The
field X„(x) is a Lagrange multiplier, which will
allow us to impose the desired boundary condi-
tions on the fermion field. This technique, which
is treated more fully in Appendix A, gives the
same boundary conditions as the original, more
cumbersome method of giving the field g a mass
M outside the bag and letting M-~.

In writing the action in the form (2.1), we have
clearly isolated the lack of chiral invariance in
the term proportional to $g. To restore chiral
invariance, we introduce a scalar field o' and an
isovector pseudoscalar field m and couple them to
the fermion fields in the chiral. ly invariant com-
bination p( ice+wy, )lt. Our new action is

at the surface;

2 1 1
s)|i2 A'ds i2 (Q' +s

2» 1 1
s s)iis s%7'ys48s i2 to' +w

(2.3c)

(2.3d)

and therefore T&„will be conserved if

+ Ta() + ~v(2)

at the surface. This condition can be shown to
coincide with (2.4) if we resolve the ambiguity in
(2.4} by taking

8 a -=-'[8 a""'+8 a('"'l] (2 5)

and similarly for &„m. The theory possesses in-
variance under the infinitesimal chiral transforma-
tion

/+2 T &vy,f,
0' 0'+2~v' w

m -m+2&v{J,

and therefore

A&= sg7' ysy&g 8s(x) +we&v —ae&w

(2.6)

(2.7)

is conserved.
For the case of a static spherical bag of radius

R and static w and a fields, the equations (2.3) re-
duce to

and the nonlinear boundary condition:

n„s"[P(a +i F wy, )P] = +2(a'+ w')' 'B . (2.4)

The equations of motion (2.3) impiy that a and w

have discontinuous first derivatives across the
boundary. Thus the condition (2.4) is ambiguous.
The ambiguity can be resolved by examining the
stress-energy tensor:

T„,= 8„(x)T~'J (x) + [1 —8„(x)] 1„',~(x) .
The equations of motion guarantee that

~ () ~ Zu()

Notice that we do not confine the ~ and & fields
inside 8, since we are seeking to describe phe-
nomena involving surface fluctuations whose in-
fluence is not restricted to the interior of the
static bag.

The derivation of the equations of motion and
the boundary conditions proceeds exactly as in
Appendix A. In this case, the Lagrange multiplier
(n A) is constrained to be + s(&'+ w') ' ' and we
obtain the equations

iy Bg=Q,

v'a =+—,,)„,0y&(R- r),1 1

v'w=+ —,»„iffy, (( &(R —r) .1 1
2 (o'+w' '"

(2.8a}

(2.8b)

(2.8c)

(2.8d)

i y 8$ =0 inside A,

i n yP = +, , s), ~s (a +i 7' wys)i(t(0' + I'

(2.3a)

(2.3b)

Here we have chosen the arbitrary sign in (2.3) to
recover the usual lowest-lying fermion bag states
in the limit 0 -~.

The system of equations (2.8) is solved by the
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following choice for P, I, and 0:

/ j(~r)v

(io r j,(un) v/

w =g(r)r,
o =f(r),

(2.9)

(2.10)

{2.11)

by (2.16) or by the condition that f be regular at
either the origin or infinity.

Armed with the solutions (2.18), (2.19), we now

examine the linear boundary condition (2.8b) to
obtain an eigenvalue condition for the frequency
n =- ~R. Equation (2.8b) implies that

-j,(n)v=- ([f,j,(n) -g(R) j,(n) r ro r]v .

where v is a constant spinor-isospinor with the
property that

But
A ~ A Ar ro" r v= —(r r) v=- v . (2.20)

(F+r) v=o.

Thus v is proportional to the combination

v=- (it;-& —it;+)),-= 1

(2.12}

(2.13)

So we have, with y-=j, (n)/j, (n),

(1-4)&=+if. ,

or, using $'=1/(g'+f, '), we have

where the arrows refer to ordinary spin and the +
to isospin. This property of v guarantees that
Pry, it is proportional to r:

pry, p=ij j, [v 7o"r v. + v o r rv] .

(2.21)

We also have the normalization condition (appro-
priate to the one-fermion sector of the theory} that

But
d3Xp p =1, (2.22}

V 7& 0'j V = —V 0'& 0'z V

=-2~t~V V+V 0')&t V

2~s)V V —V (7 Ts V

= —2~~V V- V TO'gv

so that

v T~(T&V = —~~~ V V

and thus

pry, g =-2i joj,v vr .
With the notation

(2.14}

1

[g2(R} +f2(R)] ~~2 (2.15)

the equations for g and f then become

f"+(2/r)f' =+ —,'t' [j,'(&uR} —j,'(u&R)] v v 6(R —r)
-=o.6(R —r),

(2.16)

g" + (2/r) g' —(2/r ') g = + $j,(~R)j,( &uR) v v6(R —r)

which fixes

Q2 ]
R' 4v(1 —j,'(Q'. )

(2.23)

Now g(R) is to be determined as a function of n
and f0 from

g= =—.. . , Yj,'(Q) — v= —t'd(n),

E= d'x O„x 2ip g —//+AD

+ —, (V;oV; o'+ V; w. V; ~))

(2.24)

which is a quadratic equation in g2. This value of
g can then be inserted into (2.21), which is a trans-
cendental equation for the eigenvalue Gas a func-
tion of f0.

In practice, however, it is easier to invert this
process and to choose 0 freely and then to cal-
culate both fo and the energy as a function of Q.
The energy is given by

which are solved by

= P6(R —r},
(2.11)

(2.18)

=—E&+E„~+Eh,

where, because of the normalization (2.22},

(2.25)

(2.26}

P g 3

g(r ) = —— 8 (R —r) r + 8(r —R)—
3 r2 {2.19}

and, after integration of the known solutions to the
m and & fields,

f, is an arbitrary constant which is not determined Z,.= —„[2sR'(ot'+-.'P')] . (2.27)
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Notice that E, (as well as E&} is 1/R times a
function of the dimensionless parameters 0 and

fQ, and hence, through (2.21), we have

~(Q)
Eg+E~~ = (2.28)

On the other hand, E,, =4vER'/3, independent of
Q.

At this point, we have a complete classical solu-
tion to the problem of a fermion confined to a
cavity of fixed radius A with its surrounding pion
and 0' fields. For each 0 there are two interesting
quantities: the energy, represented by tc(Q), and

fo, which is the value of o at r =R, or equivalently
a„which is defined to be the value of a as ~- ~
and is given by &, =f, + oR [see Eq. (2.18)J . It is
actually more convenient to study the behavior of
F(Q) = I/4s(o'OR}'. In Fig. I we plot z(Q) and F(Q)
in the first three allowed regions. The regions in
which E(Q) is negative are unphysical because oo
is imaginary there. These regions coincide with
the regions where E„(Q)&0. The stable points
correspond to the local minima of the energy,
which for fixed 8 are the same as the minima of
t((Q). In the first allowed region, this occurs at
0=1.68 and v=1.93.

The bag differs from the cavity in that the radius
is no longer independent but becomes a function
of Q through the nonlinear boundary condition (2.4).
This is essential to achieve energy-momentum

where

E, -E..=Y(Q)/R. (2.30)

[Compare Eq. (2.28).] Since the radius, and hence
v, must be positive, this leads to an additional
restriction on the allowed values of 0:

(2.31)

In the case of the cavity, only the leftmost inequal-
ity was required. The zeros of 7 correspond to
places where the pressure of the m and 0' fields,
together with B, combine to squeeze the bag down
to a point. Solving for R in terms of Q from (2.29),
we obtain for the energy [in units of (4wB)' ~]

(2.32)

Furthermore, the value of I/4voo' picks up addi-

conservation, and corresponds to balancing the
pressures due to the fermion and meson fields
at the boundary against the universal pressure B.
In the unmodified bag theory, this is equivalent
to minimizing E with respect to A; if we minimized
our expression for E with respect to R keeping Q
fixed, we would obtain the condition

4v&R' = z(Q)

However, Eq. (2.4) leads to a different condition:

(2.29)
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FIG. 1. The energy function ~(Q) (solid line) and five
times F (x) =—1/4x(OOR) (dashed line) plotted against the
dimensionless quark frequency 0 for the first three al-
lowed cavity regions.

FIG. 2. The energy function E g) (solid line) and ten
times F, '2 —= 1/4noo (dashed line) in units of (4x8)
plotted against the dimensionless quark frequency Q for
the first three allowed bag regions.
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tional 0 dependence because A varies with 0:

(2.33)
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FIG. 3. Behavior of g~g, o, I7r~ as functions of r for
three values of Q.

(again in units where 4s& = 1).
In Fig. 2 we plot the functions E(Q) and

F(Q) T' '(Q). Notice that the allowed regions are
smaller than before, as we pointed out above. In
the first allowed region the effect is large, since
0& 0&1.19 is now forbidden. In the succeeding
regions, the new forbidden strip, which is always
at the left end of the allowed region, becomes
smaller and smaller and its width approaches zero
asymptotically. The position of the energy min-
imum is also slightly shifted in the bag relative
to the cavity. In the first allowed bag region it
occurs at 0=1.73, corresponding to a value of
E(Q) of 2.195. [There is no real significance in

comparing the value of E(Q) at its minimum
against the corresponding cavity minimum, since
in one case the radius is held fixed while in the
other it is constrained to vary as a function of Q.]

(a+Ed) v„=0, (2.34)

then we continue to have a solution provided we
rotate f in the opposite direction:

v- w„-=g(r)(A 'r) . (2.35)

(ii) Despite this arbitrariness, none of the solu-
tions we have found represents a satisfactory ap-
proximation to, say, a 4'- or '2-quark bag sur-
rounded by pions, for the reason that none of them
is a state of definite isospin, and of course we
cannot superpose various solutions to obtain a
state of definite isospin because the equations we
have solved are nonlinear. In fact, our solution
has the property that when we insert it into the
expression for the total isospin,

In Fig. 3 we illustrate the behavior of the quan-
tities g g, o, and

~
rT'1 for three typical values of

Q, in the case of the bag. The first value of Q
(1.2) is near the left end of the first allowed region
(see Fig. 2). Here the radius is relatively small
and the variation in the r and o' fields relatively
large. The second value of Q (1.f35) is the one
which minimizes the energy. The third value
(2.00) is near the right end of the allowed region,
which is where the uncoupled bag solution is re-
covered at A=2.0428. Here the o' field is large
but almost constant, and the w field is very small.

In Appendix 8, we shall present some of the
calculations upon which the above remarks are
based. We shall also prove there an additional
curious fact which is already evident from an
inspection of Figs. 1 and 2: In both the cavity and
bag cases, the value of I/4soo' reaches its max-
imum at exactly the same point that the energy
achieves its minimum. We shall see in the next
section that I/o, ' enters into the definition of an
effective coupling constant, so that if the interac-
tion between the bare hadron and the meson fields
were always attractive the energy would be min-
imized by making the interaction as strong as
possible consistent with the boundary conditions.
However, we have been unable to obtain any deeper
understanding of this intimate connection be-
tween the functions x(Q) and E(Q) in the case of
the cavity, and between E(Q) and F(Q) T' '(Q) in
the case of the bag.

We conclude this section with the following re-
marks:

In addition to the arbitrariness due to the pa-
rameter fo, which can be resolved by minimizing
the energy, our solution possesses the further
arbitrariness that the isospin axes can be rotated
relative to the spatial axes. In other words, if we
let Ar be any rotation of 7, and choose instead of
(2.12) a spinor vs satisfying
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I=& d'x g v x 8„s + 4'g nxg

(2.36}

we find I=O, because, first, %=0, and second,
v rv = 0 as can be explicitly verified from (2.13).
In order to get some idea of the properties of other
classical solutions, in which, for example, the
fermion isospinor is an eigenstate of T„we shall
turn in the next section to a perturbation expansion
in the coupling between the fermion and meson
fields.

o(x}=o, +e'(x}, (3.1}

where o is taken to vanish as (x[-, then from
the full system of equations (2.3}we see that as
+p ~ the equations reduce to the bag equations
without the pion and 0' fields. Our strategy then is
to choose, in zeroth order, a solution gp of the
ordinary bag equations, and to develop a system-
atic expansion in powers of A

-=I/o, .
Our experience in Sec. II indicates that ~ is

not really an independent parameter but should be
determined by minimizing the energy. Of course,
the first few terms of a perturbation series cannot
necessarily be used to determine an accurate min-
imum. Instead, we shall take X to be the same as
given by the exact solution in order to estimate
numerical results.

For our zeroth-order fermion field we shall
choose

j,((u,r) s,

kij, ((o,r) P.r so)
(3.2)

III. PERTURBATION THEORY

In this section we explore some of the properties
of a different set of classical solutions from the
ones treated exactly in the previous section. If we
represent the 0' field as

(2.4) in our considerations.
One can check that a systematic expansion can be

achieved of the following form:

g =gp+A. 2$, +A.4/2+ ~ ~ ~,

o=(1/X) [I+A,'o, + ],
r=kw +A3f' + ~

1 2

e = V +%2& +A4CO + ~ ~

(3.4a)

(3.4b)

(3.4c)

(3.4d)

= —P'j,' cos8 6(R —r),
where u, u, =P'. The solution is

v, =g(r) cose,

with

r g 2

g(r) = p —8(R —r}+—,8(r —R)
LA

and

p=g(R) =kRP'j. '(~.R) .

The equations to be satisfied by g, are

(~ +i a. V) P, = —ego, r & R

and

(i r.y+ 1)f, = —i p ceos'„rR .

(3.5)

(3.6)

(3.7)

(3.8)

(3.9}

(3.10)

The powers of ~ involved in expanding m' and 0' are
derived from an inspection of (2.8c) and (2.8d).
The reason that the correction to o, is O(A') is
because |t,((t, =0 at r =R. In lowest nonvanishing
order, only w

' contributes since gp7
'

y, gp =0.
It turns out to be possible to construct a solution
without ever exciting the w'~ modes. The non-
linear boundary condition may require the intro-
duction of these modes; however, we have ignored
them in the interest of simplicity. Henceforth,
when we write n we shaQ mean m

' .
Now that we have chosen g„our next step is

to solve for w, from

V'n, =-,' i/, y,g, 6(R —r)

(++i pV @/=0, r&R (3.3)

where up satisfies 0',up = v, up Prep The zeroth-
order boundary condition determines Q, =(&o,R)
= 2.0428.

The full system of equations is

The solution is

(j,(&u,r) o r u,)"
4, =~,x+t;/

(—i j,(s),r) u, )
where

(3.11)

ir yg= —...~, ( ior+wy) P, r=R0'+m' ' '
(2.8b')

—rj,((u,r) s,
(3.12)

([rjo(&oor) —(2/&oo) j,(&d'or)]io rsof
V'o= —,, „-,5(R —r) gg,

1
o +w

(2.8c') (3.13)

V w= —
( 2 «~), q2 6(R-r) if''ysg . (2.8d')

%e do not include the nonlinear boundary condition

( 2 cos8
'

&-since'+j
(3.14)
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and

v R=-0 =- — p .g
6 (3.15)

n'„but g~ picks up an additional. piece of the form

!
E, j~io ru~ j'

Eg = (gp0 + A, (3.16)

where we have imposed the normalization condi-
tion

The first term in (3.11) is a particular solution to
the equation of motion (3.9), and the second term
is a solution to the homogeneous equation which is
needed to satisfy the boundary condition (3.10).

One can already see from (3.11) one of the essen-
tial complications of this type of solution; namely,
that with succeeding orders of perturbation theory,
increasingly complicated angular dependence is
needed to meet the boundary conditions.

To this order, the energy of the fermion fields
ls

where

3 cos 6}-1
—2 cos6}single'~) '

In the next order, n', has angular dependence pro-
portional to P, (cos8), and o, (which finally enters
the calculation) hasapiece proportional to P,(cos6).

One also learns by looking at these higher-order
corrections that the effective expansion parameter
is not ~' but rather the dimensionless combination
X'p with p given by (3.8).

The calculation of the ~' contribution to the
energy involves nothing more than some additional
algebraic complexity. The result is

d3gg /=1 (3.1V)
R 18 (Q0 —l}~ ' ' 4 Qa-l

as in the previous section. The energy of the m
system is

8 = —
A.
' d'x Vm '

= (0.0144) —(A p}2.
R

So, to this order, the energy is

(3.21}

= 2n p'RA. ' (3.18)
E = (1/R) [2.0428 —0.1632(X'p) + 0.0144(&'p)~].

(3.22)
From (3.8) we see that p, which enters into both
ro, and E«, contains P' as a factor, and is there-
fore to be determined from the normalization con-
dition (3.17). To this order, it suffices to deter-
mine p from

This function does have a minimum, but it occurs
at the unreasonably large value of A.'p = 5.67.

The value of P.'p which gave a minimum of «(Q)
in the exact cavity solution was

)Pp = 0.1813. (3.23)

with the result that

4»R

(3.17')

(3.19)

If we regard this as a typical value even for our
proton-type quark state and evaluate & we get

E = —[2.014+ O(X'p)~]
1
R

E = 4)0+ pA, (d~. (3.20)

Observe that the O()F) correction to the normal-
ization, which will be of the form

p~p+A, p~,

produces a change A'~, p, /p in &'~„and a change

41fpp~RX = —h. (d~p~/p

in E, , so that the corrections to (3.1V') do not
affect the total energy until O(a').

To calculate the next corrections (g„vm, and
the O(A.') term in the energy), one expands Eqs.
(3.3}and (2.8) to the required order. It turns out
that m, has the same cos6! angular dependence as

and therefore &„=-2~'cu„so that the total energy
to this order is

as compared to 1.93/R in the exact solution.
There does not seem to be much point in carrying
the expansion further. Ne have learned that rea-
sonable solutions seem to exist, at least to the
cavity problem, but that they involve all values
of the angular momentum. As ~ is increased from
zero, the energy decreases as it does in the exact
solution. However, since we know only the first
few terms in a power-series expansion in ~, it
would be sheer speculation to suggest that there
exists a stable value of E(X), and that it gives
the same value of E as did the minimum of the
exact solution in the previous section.

IV. DISCUSSION

One of the interesting features of our phenome-
nological Lagrangian for pion emission is the
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absence of any coupling constant. (&" is a dynam-
ical variable fixed by an equation of constraint. )
In an exact solution, we could see this expl. icitly:
oo, the onl. y free parameter in the solution, was
fixed by minimizing the energy. Thus, in princi-
ple, the strength of the strong interactions, the
forces responsible for hadronic decay, is calculable.

The difficulty we face in estimating this strength

is that we only have a perturbative solution with
realsitic quantum numbers, and the mechanism
is definitely nonperturbative. We can, of course,
develop any transition amplitude in a power series
in 1/o, : For example, the amplitude for decay
of a baryon via one-pion emission may be ex-
tracted from the Fourier transform of a suitable
Green's function:

( G ( T [:rP(~):v, (y):g'(~): ] ( G)

= Jl J&t&0&~~»7 (*) ('x)P(*'I

p oo I o+t7'' v I

& exp i dt d'x 6j„x —,'i $z ~ ag-B +0/ x 2]/g p Bpv + 8„0)'
+~OO

8 8 2 oR + vn)1/2

One can calculate this Green's function in the cavity approximation (A a sphere of constant radius) by
shifting o-o+o, and expanding in a power series in 1/o, . o, would then be fixed by requiring

( O' I ~(&) I 0)
IxI

The amplitude for single-pion emission in lowest order can be obtained more quickly from the equation
of motion

(6'-~, ')&B'I v;(~)IB) = o(~- It)( B'lg~~, plB)+O(1/o, '),
0

which we can use directly in the reduction formula:

the z
(&'k I»=- J&'

&
-& ~ .~(8'- .*)(&'I (*)I&)

8' 2v 5(ms + m„- me) -ik z

P„g))ir (2"„)sr

where k and i are the momentum and isospinlabelsof the emitted pion. We are neglecting recoil and take
the mass difference nz~ —me ~ from experiment. We calculate (B'~ $(z)T,. y, g(z)~ B) in the static bag model
in the approximation that gluon interactions are neglected. Keeping only the creation and annihil. ation
operators of the quarks in the lowestmode (ru =—Q/B) we have

dQe (& .~sq(By)r y ](By)
2 J~(Q)j~(Q)j~(K k~ T k u~ o' ku

20

where u is a two-component Pauli spinor.
As an example, we calculate the width for

k "(Z,= —,') -P + v '.
We obtain

*'j,(A)g, (D)z, (aR) )'
6v (1 —j,2(Q))o,B

2

Q (P(b„"v', 5 )6")u~oQM
g,a I m~'

k . 4x j (Q)j,(Q)= 3,(. 8) j:(m} (1 'j (Q'})

From the experimental value of the 4"-p mass
difference, we have

2 2- 1/2

k=6M 1 — ' —= 265 MeV.

If we used massless pions 0 would be 300 MeV.
While we have evaluated the transition amplitude
in lowest-order perturbation theory, it is amusing
to try to take nonperturbative effects into account
in the following crude way: We take 0, R, and

croR as evaluated with our exact solution appropri-
ate to a three-quark system. We find
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0 =1.74,

1
4 ( B)2

=0.182,

4m BA' = 3(l.54).

We fix B by fitting the average &N mass =1180
to obtain

(4rB)'~' = 236 MeV.

Inserting all these values into the expression for
I'~ we have

1"~=—50 MeV.

The experimental value is 120 MeV. Since we
performed a very crude zero-parameter calcu-
lation, it is perhaps interesting that the result
has the correct order of magnitude.

One can also use our model to estimate the ef-
fects of pion emission on various bag-model cal-
culations, for example on the value of g~. The
most important result of these estimates is that
the effects seem to be small, which lends sup-
port to the neglect of surface fluctuations.

Finally, we can inquire into the value of F,
predicted by our model. Unfortunately, at the
level of approximation to which we are working,
there does not seem to be an unambiguous way
of calculating F„directly. Nevertheless, we can
make the following estimate, which would hope-
fully be borne out by a more sophisticated cal-
culation.

We observe that in our model we have a con-
served axial-vector current, and hence a Gold-
berger- Treiman relation:

gh

Our ~-width calculation, as compared to the con-
ventional SU(6) calculation using the experimental
value of g„„'tells us that our value of g„, is
about 1/M3=0. 58 what it should be. In addition,
we know' that the bag model predicts a value of

g& =1.09, which is 0.8& what it should be. Thus
it is plausible to assume that the value of F, pre-
dicted by our model is of the order of 1.5 times the
experimental value.

While this work was in progress we became
aware of a report by T. Inoue and Toshide Mas-
kawa' in which they consider a chiral-invariant
bag model similar to ours but for isoscalar pions.
However, they do not study the solutions of that
model.
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APPENDIX A

In this appendix we wouM like to develop a La-
grangian formalism for the full bag theory involv-
ing quarks interacting with color gluons. We pro-
pose the following action:

-~n yg+n (+,P =0,

n„F~'+ (.qq =0,

F„„,F~" B+Qs„A",gp+ $A",s„pp =0.

Since (in y)'=1, (Al) implies

4(n A. P)'=1,

(A 1)

(A2)

(AS)

from which we can write, choosing 2n A, $, =+1
and n„ the inward normal,

in yg=g,

n„F,"'=0,
——'F„„F,"' —B+-'n. ~4'/=0,

which are the usual bag equations. The only dif-
ference is that the gauge must be selected in such
a way that

2n'A, (, =+1

at the boundary. No physical quantities depend on

the value of $, . However, the convention for the
sign in the fermion boundary condition is now

linked to the choice of gauge. One can of course
free oneself from this link by calling g,A", =A, " a
free Lagrange multiplier. If one neglects the glu-
on coupling and sets F,"'=0 one must choose X"

=8 "A in the former case, X" arbitrary in the lat-
ter.

APPENDIX B

The purpose of this appendix is to discuss in

somewhat greater detail the formulas for the en-
ergy and the radius of the bag for the exact solu-
tions of Sec. II.

As remarked in Sec. II, it is most convenient to
treat 0 as the independent parameter, and to cal-
culate both o, (or equivalently f,) and the energy

—B + h.s„(A".04)].

Since the last term is a total divergence, it only
affects the boundary conditions and the field equa-
tions are the usual ones. The boundary conditions
are
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as functions of Q. From Eqs. (2.15), (2.21), and
(2.24) we have, with g-=g(R),

12(1 -y')
A,*(Q)A, (Q)

(a4)

and

=foy 1/( ~e also need to calculate o (Q). Equation (2.4) can
be written as

g=-d$, (a2) 2B—[g(o+iV my, )g) = ——,
By

(a5)

where ( = 1/(f, '+g')'i' and d =- oRyj o'(Q)v v. From
(a1),

f,(1 y')
2y

and

1+y
] =fo

2

Therefore, from (a2),

where

Bo 1 BO,„Bo',„,+ =2@,
By 2 By By

g001y ~ + ""' = ~Py = ———y.
By 2 By By 2 R

Thus

g(o+iv ~ fy, )g] =(v v)j,' f[&aR—(1 —y') -gy]

1 y4

From (2.17},

(as)
+[4f,(y' -Qy)

+ 2gQ (1 -y'} -4gy])y

9g
R

9 1-y'
, d

a'= ('j,'(1 y')'(v'v}'

Thus

(1 y2 2
~

4 4mR4 1-g,2
y 1+y'

E„= [2nR'(a'—+ &P')]

Q2' 2 1—. (- '+ ')
8R 1 —j o y(1+y')

=—(1 y')A, (Q)A, (Q),

where

g, (O) =- 3 2y'+ 3y',

Q2j 2

A, (Q)

The quantity

2
F(Q}—= », where a'o =fo+aR

4@a'p R

can easily be shown to be

3 x'j o'(Q) y(1 -y')4'' 1 -j,'(Q} 1+y'

where we have used the value (2.23} for v v. Sim-
ilarly,

where the first term in square brackets comes
from differentiating the m and v fields and the sec-
ond from differentiating the P field. Using

aR 3 (1-y')'
f. 4

and

f,(1-y')-

the first term becomes

v vg o ~A(x). , 1-

4'' 1-j ' 8 y

1 Q fo 1 fo 1 — o

1 1,=
2,„, [.'(1-y')A~-, ]-.

The second term is

0—'(y y')[yy —0+y'yy](y

aut using the explicit form y = 1/Q —cotQ one can
show that

Q2' 2
1.o, [Q (1 +y') —2y] =Q

1 ~gp

and therefore the second term is -(1/2'')(Q/f)
Therefore, the second boundary condition (a5) is

4m BR =Q - o (1 -y')A yA o

= ~(n)

= (Eo —E„o)R.
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tgy 1 -go
dQ ~'jo' ' (86)

which can easily be proved from the explicit form
of y. It then follows that

Finally, we shall show that F(Q) and e(Q) have co-
incident extrema, as do F(Q)r'~' and E(Q}. To this
end it is helpful to have the formula —= 2+ —(Q r)-d7 F'

dQ F

The condition that

(89)

(F7—"")=0
cR

and therefore z'and F' vanish together, as re-
quired. Furthermore, since v = 20 —w,

(1 -y')'
dn A, (n)

Now

(BV) is

F 2
(810}

So

g(Q) =Q +—,'(1 -y')A, (Q)A2(Q)

~ (1-y')'
A, F(n)

12(1 -y'}
A, '(Q)F (Q)

from (84), and therefore

(BS)

The condition that

dF. d ~+ 37.

dQ dQ ~"4

is

47'T'=
0+7

But substitution of (89} into (811) reveals that
(810) and (811}are the same condition, which was
to be proved.
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