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An analytic model of the forward (virtual) Compton amplitude is proposed which satisfies
v plane analyticity, s-u crossing symmetry, Regge behavior, and Bjorken scale invariance
in appropriate limits. The model is constructed using the method of conformal mapping.
Very good fits are obtained to the electroproduction data on vW2v, 2mWf, vWv2 —vW&,

vW2 /&W2, &R&, and 1+v W2/v W&, and to the photoabsorption data on cr&(yP ), o &(yn), and

cr (Vp) -ar(yn). The scale-invariance brealdng at finite Q as exhibited by the data on v &i'

plotted as a function of Q2 with cu fixed is also successfully reproduced. The p-n mass dif-
ference calculated using the Cottingham formula is finite. In particular, it is shown that a
set of parameters exists for which the general condition for no logarithmic divergence even
in the presence of Bjorken scaling given by limo& Q4nt~q( Q2, 0-) = (o/m )f7ldO[xn I &( )x
+ 2xEF &(x)] can be realized consistent with theoretical consideration and experimental data.
The final. result of our calculation of the mass difference is (-1.96+ 0.52) MeV, which is to
be compared with the experimental value of -1.293 MeV.

I. INTRODUCTION

The problem of p-n mass difference, which is
probably the oldest puzzle in hadron physics, has
remained unsolved in spite of numerous attempts'
in the past two decades. The earliest attempt can
be traced back to Feynman and Speisman, ' who con-
jectured that in the Born approximation the nega-
tive magnetic energy may supersede the positive
Coulomb contribution at sufficiently high photon
momentum, leading to a correct value of the mass
difference. This conjecture has proved inadequate
for the nucleon as both electric and magnetic form
factors fall off very fast. The "notorious" wrong
sign' of the Born contribution to the P-n mass differ-
ence provided motivation to include further strong-
interaction effects in the calculation. This was
made feasible by the important work of Cotting-
ham' which related the electromagnetic self-mass
5m, of a hadron to the forward amplitude of Comp-
ton scattering of virtual photons off the hadron. By
a Wick rotation in the photon- energy plane 5m was
further related to the experimentally accessible
deep-inelastic structure functions describing the
electron-hadron scattering. Harari"" showed

from consideration of Regge-pole exchanges in the
crossed channel that the AI = 2 mass differences
are adequately described by the Born term alone
(thus explaining the successful calculations of

and Z'- Z —2Z mass differences'5'b',
while AI= 1 mass differences (such as the P-n
or K'- IC') could have additional contributions from
the subtraction term in the invariant Compton amp-
litude t, (v, q').

The evaluation of this unknown subtraction term

in determining its contribution to EI =1 mass
differences presented one of the major difficulties.
With the advent of "scaling" of the deep-inelastic
structure functions, i.e., W, (v, Q') and vW, (v, Q')
becoming functions of a single dimensionless
variable m= 2mv/Q' in the Bjorken-scaling limits
(Q'-~, with &u fixed), it was discovered' that the
em self-mass 5m diverges logarithmically unless
some apparently unlikely cancellations occur
among terms in the Cottingham formula for the
self-mass. Moffat and Wright' examined the con-
ditions which would lead to a finite p-n mass diff-
erence den even if the self-masses were individ-

ually divergent. They showed that it would be
possible to obtain a finite mass difference rim,
provided that the differences vR'2~- vR, and

S;—S'," do not have nontrivial scale-invariance
limits. It has also been emphasized" that the cor-
rect sign for dwz, if it is finite, can come only

from the subtraction term, because hm(Born) is
known to be of the wrong sign, while the SLAC-MIT
data on the structure functions indicate conclusive-
ly that the remaining inelastic contribution Am is
also of the wrong sign. Thus, in the Cottingham
approach, the subtraction term in t, (-Q', v) plays
a crucial role in canceling" the logarithmic diver-
gence in the self-mass 5m to make it finite as well
as leading to a correct sign for the mass difference
~m.

In this paper we propose a model of the forward
|virtual) Compton amplitude which is taken to be
the sum of the contributions from the poles and the
cuts and exhibits all the usual analytic and invari-
ant properties. The cut contribution is obtained in

a novel way by mapping the cuts to a circle and
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subjecting them to Regge constraints. The sub-
traction term is evaluated in terms of measurable
quantities from an ansatz which is consistent with
experiments and theoretical considerations. A few
parameters are obtained by matching the electro-
production data. The p-n mass difference calcu-
lated by our parametrization scheme agrees quite
well with experiments. The paper is organized as
follows: In Sec. II we describe the kinematics and
state the formula for the self-mass in terms of the
forward (virtual) Compton amplitude. The various
properties of the invariant Compton amplitudes
t, (v, Q'} are listed and the relation of the latter to
the inelastic structure functions is shown. In this
section we also note the general condition for con-
vergence of the Cottingham integral for the mass
difference in presence of Bjorken scaling. Expres-
sions for the invariant amplitudes are presented in
Sec. III, using a variable obtained by the method of
conformal mapping. Section IV deals with the vari-
ous results of our model and describes the fits to
the experimental data. In Sec. V we propose an
ansatz and evaluate the subtraction term t, ( Q', 0)-
in terms of measurable quantities. The final cal-
culation of the p-n mass difference using the Cott-
ingham formula is made in this section. A brief
summary of the results and some discussions are
made in the concluding section, VI.

gPv 2 Tj. &
V (3)

such that T„,(q, v) is manifestly gauge invariant,

q"T„,= q"T„,=0, (4)

pressed as an integral over the forward Compton
amplitude for scattering of the virtual photon off
the hadron (Fig. l):

+oo

27k f g ~ q +LE'

where' ~"T„,~" is the forward Compton amplitude
for scattering of photons of four-momentum q and
polarization e off a hadron of four-momentum p,
m is the mass of the hadron, and v=i). q/m is the
photon energy in the laboratory frame T.„„(q,v)

can be expanded in terms of two Lorentz-invariant
functions of q' and v as

T„„(q,v) = (q'g„„—q„q,)t,(q', v)

(2)

or, alternatively, as

II. PROPERTIES OF THE INVARIANT AMPLITUDES

AND FORMULA FOR THE MASS DIFFERENCE

which also guarantees

~P V TV)i (5}

To lowest order in the electromagnetic interac-
tion and to all orders in the strong interaction, the
electromagnetic self-mass of a hadron can be ex-

and

T,(q', v) = (v/a)[v't, (q', v) —q't, (q', v)] (&a)

The two sets of invariant amplitudes t, and T,
are related linearly:

T2(q, v) = (v/a)q't, (q-~, v), (Sb)

where n =e'/(4w) is the fine-structure constant.

(i) v-ptune analyticity~ "
The invariant amplitudes t, (q', v) for the nucleon

case have the nucleon poles located at v = a(v~ —ie),
where v~ is given by

(t) + q }'= m' + q
' + 2 v~m = m ',

i.e. , v, = q'/2m-
and cuts starting from the one-nucleon-one-meson
branch points at v= +(v, —ie), where v, is given by

(b)

FIG. 1. (a) The l.owest-order contribution to the
electro-magnetic self-energy of a hadron. (b) The asso-
ciated forward (virtual) Compton amplitude.

(p+q)'=m'+q'+2v m ={m+m )'

-q'+m + 2mml.e., v, =
22m

where m „ is the mass of the m meson.

(7b)
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The amplitudes t;(q', v) are thus real analytic
functions in the cut v plane with two poles (Fig. 2).

(ii) s-u crossing

In terms of the Mandelstam variables s= (p+ qp
=m'+2mv+q' and u=(P —q) =m' —2mv+q', inter-
changing s—u means changing the sign of v, so that

by12

and

4(q «v) «- = 'Yy(q )v ~hy
Pffxed

v't, (q', v) .„- P, (q') v "&], ,
f ixed

t, (q', —v} =t, (q', v)

implies s-p symmetry. ' The t, 's are therefore
even functions of v.

(8)

(iii) Regge behavior

In the Regge limit (v- ~, q' fixed) t, and v "t,
have the same asymptotic behavior, ' which is given

where

],= (I + e " y)/ si n( v o~) (10)

are the signature factors and n& are the (t =0) in-
tercepts of the relevant Regge trajectories in the
t channel [namely the P, P, A„and A, trajector-
ies"" in the nucleon case which have I = 0, 1 parity
(+) and c =+I]. I-spin conservation at the NN
Regge-pole vertex leads to the following relations'4
between the proton and neutron residue functions
P,& "(q') and r,'"(q'):

///rr ////////r /'///////Arrrr / rr rrrrrrr rrrrrrrrr
-v

P

(a}

«r//'/'/t// Jl ///////////////wrrrrrrrrr'rrrrrr rrrrrrr

(P, r)~, ,I = (P, r)-",„~.
(iv) Fixed-q dispersion relations

The analyticity properties in v for fixed q2 and
the asymptotic behavior in the Regge limit enable
one to write down the fixed-q', unsubtracted dis-
persion relation for t, (q', v) and the once-subtract-
ed dispersion relation for t, (q, v) (see Ref. 5):

2 v dv' Imt2(q', v') (12a)
t, (q', v) =-

7T «jp

(
2

) (
2 0) )

dv Imt«(q «v ) (12b)
V V —V

V=+V,
The Born contribution of the nucleon poles at
v=s(v~) can be separated by noting that

Imt, (q', v')
~ („,~,„)=2v«w && 5(v" —v«')f, (q'),

where f,(q') are the residues at the poles, to ob-
tain

(b)

FIG. 2. (a) The conformal. mapping of the cut & plane
of analyticity of amplitudes t& at fixed Q2 into the inter-
ior of (b) a unit circle in the Z plane. &~ and v& are de-
fined in the text, and corresponding regions in the v and
Z planes have been shown.

t, (q', v) =t, (q', 0)+,
q2 4m2V2- q4

t, (q', 0}+t, (q', sv)-+ t~~(q', v) . (14b)

(14a)

4mq'j, (q'} 2 "" «,1m'(q', v )
t 'v=

4m v —q v v' —v'+—
i v trav

""c

—= t,e(q', v) + ti(q', v) (13b)
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3 (o/~)[Gs~'(q') —Gs~'(q')]|q (15)

The residues f,(q') are related'" to the nucleon
electromagnetic form factors:

nucleon. It follows that

R(-Q', v)
Q2 «p

(24)

and

( a&/s) [q3G)IN'(q ) —4m'Gsv2(q2)]
f2(q — .(4 2 2) (16)

az(yN) = lim, vW, (v, -Q') .
4w2n

Q2m P

Equation (24) further implies that

(25)

where N stand for either p or n and G„and G~ are
the usual Sachs form factors for the nucleon.

lim Q'Imt, =0.
Q2 «p

(26)

f'v) Relationship with the deep-inelastic structure functions

In general it has been shown' that not only the
imaginary part of Q't, but also the real part van-
ishes,

W, (v, -Q )=w ImT, (v, -Q ), (17)

and are measurable in eN (deep-inelastic) scatter-
ing for v) 0 and q' =—-Q' &0. The relation with t,
is obtained from (6a}, (6b), and (17):

W, (v, -Q') = (I/n) [v' Imt, (v, -Q2) + Q2 Imt, (v, -Q') ],
(18)

W, (v, -Q') = (1/ o}Q' Imt, (v, -Q') . (19)

The absorption cross section cr~, cr~ for virtual
photons with transverse and longitudinal polariza-
tions, respectively, are related to the structure
functions W, and S;:

K
W, (v, -Q )—,ar,4g a (20a}

W, (v, -Q)=
4 2 . (a,+a, ), (20b)

where E= (W' —m')/2m and W' = 2mv- Q'+m' is
the invariant mass squared, such that

The deep-inelastic structure functions W, (v, q')
and W, (v, q') are related by unitarity to the imagin-
ary part of the forward Compton amplitudes for
virtual photons,

lim Q2Ret =0.
Q2 «p

(vi) ~cele invariance

(27)

Bjorken' had predicted that if one regards W, and
W, as functions of variables Q' and &u=2mv/Qa then
2m%', and vS'2 have the following nontrivial limits
as Q -~ with (d fixed:

lim vW, (v, -Q2) =F,((d), (28)
Q ~oo
uf ixed

»m 2IW, (v, -Q') =Z, (&~). (29)
Q2 w oo

tdf ixed

This remarkable property of the structure func-
tions is known as scaling in the variable co, and
the above limit (Q'- ~, &u fixed) is known as the
Bjorken limit. As we shall see, scaling holds over
a substantial portion of the ranges of v and Q' in-
vestigated, in both proton and neutron cases. The
structure functions and cross sections for the neu-
tron are significantly less than those for the pro-
ton, indicating perhaps the presence of a nondif-
fractive contribution. Bjorken scaling as express-
ed by (28) and (29) severely constrains the behavior
of Imt, in the Bjorken limit:

lim (I/o) vQ' Imt, (-Q', v) -=lim v W, (-Q', v)
(p ~ &)c) Q ~ oc)

cd f ixed tdfixed

~))'

(
(&'

) )

where

R =R(v, -Q') = a~/ar .

(21)

(22)

=E,((u) (30)
and

lim (I/o)[2mv Imt, (-Q', v)+2mQ'Imt, (-Q', v}]
Q2~ oo

aufixed

From E(ls. (21), (18), and (19), R can be expressed
in terms of Im t, :

R(-&)', )= —,)(( —™)/(+, . (23)
2m W, = u(vW, }+G (32a)

-=lim 2m W, (-Q', v) =E,(~) . (31)
Q2~oo
tdfixed

The following observations are crucial. From (31)
and (30) we note that in general"

Gauge invariance requires that in the real-photon
limit (Q -0) the longitudinal cross section a~ van-
ishes and ar-ar(ytq}, where ar(y N} is the total
absorption cross section of real photons on the

and hence

F,((d) = (dE, ((d)+ lim G(v, -Q'),
a OO

tdf ixed

(32b)
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where

G(v, -Q') =(1/n)2mQ lmt, (v, -Q'). (33)

The function G will help in calculating the subtrac-
tion constant from a simple ansatz, as is discussed

later.
We conclude this section by writing the "Wick-

rotated Cottingham formula" for the mass differ-
ence nm = 5m —5m„obtained»'" from (1) by the
rotation" q'-iq', i.e. , v i-v (in the lab frame):

(a2)'/'
dupg =-— dv Q —v '/' 3Q At, -Q', i v —Q +2v' At2 -Q', iv

0
(34)

where «, =t~( P, (i =—1,2). This is the Cottingham formula. '
The t,(-Q', iv) can then be represented by integrals over their imaginary parts by means of the fixed-q'

dispersion relation (13) and (14}, which are, for the present case of spacelike virtual photons, related
[Eqs. (18}and (19)] to the experimentally accessible inelastic structure functions and nucleon form factors.
One then obtains 4m in the form

4m = 4m ~+ Amr+ ~,„b,

where
2 1/2

&ms =—
2 dv(Q'- v')'"[3Q'«„(-Q', tv) —(Q'+ 2v') «29(-Q' tv)]' 2& 0 @'~p

(35)

is the contribution from the t, e, definedby Eqs. (13b) snd (14b) and ~m ts given by8

de ~ ( Q2 1/2 Q2
nmz= (&/2v), vdv~3nW, (-Q~, v) 1 — 1+—, +

1/2 V2 Q2 1/2
+~»'(-()*, ) (+—. ——.( — (+—, —-',

I)

x [3Q'«, (-Q', 0)]

=-» ~ dQ'Q'«&(-Q', 0).
p

(38)

Thus, to calculate hm, «,(-Q', 0) is the only piece
that remains to be evaluated in terms of experi-
mentally determinable quantities. We take this up
in Sec. V.

Before concluding this section we note the con-
dition that the deep-inelastic contribution for the
mass difference does not diverge because it is well
known - that the latter quantity is, in general,
logarithmically divergent in the presence of Bjor-
ken scaling. The coefficient of the logarithmic
divergence is given by

Finally, hm, „b is a contribution from the subtrac-
tion term given by"

] oc) dq2 (q2)l /2

dv(Q' —v')' I'
0 0

where x=1/&u and the superscript I signifies in-
elastic contribution. Therefore, the logarithmic
divergence disappears only if' 4=0, i.e.,

1

lim ', Q»t t,'( Q',—0)= -dx[t~F, (x)+2xaV, (x)].
7l 0

(39b)

We show in Sec. IV and V how this condition is
realized. It is consistent with the theoretical con-
siderations and the experimental data, thus rend-
ering the mass difference finite, and is an achieve-
ment of our analytic model.

III. MODEL FOR t, AND t,

In this section we present our parametrization
for t, and t2. Consider the conformal mapping

1 (1 p2/p 2)1I2 1 (1 ~2/~ »)1IB

1 + (1 p2/p 2/ I2 1+ (1 ~&/(d 2)& I2

where

n = lim —()Q»t»tf( Q', 0)—-
QPi w eC)

3Q /pe+
8 dx[m, (x)+2xm, (x)],

7f p

(39a)

v, Q +2mm +m, ' v 2mv
(41}

Q2 Q2

v is the scaling variable. Z is real for v' ~ v,'
and has square-root branch points at v = +v, at
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1-X2 2XX- 2
—1, Z„—

1 X29ZI 1 Xc
(42)

such that ZZ*=Z~Z = 1.
In this way the cut-v plane is mapped into the in-

terior of a unit circle in the Z plane with center at
the origin (Fig. 2). The analytic structure of the
amplitudes t, in v is thus guaranteed by expressing
these as functions in Z. We define

1 —(1- v,'/v, ')'"
ZP ( vP} 1 + (I v 2/v 2)1/2

p c
(43}

which has the interesting property that Z~=0 at
Q'=0 and Z~-1 as Q'-~. Before presenting our
model we list some other useful properties and
uses of this variable which are suitable for the
present problem.

(i} Z is dimensionless and Z =-Z(~, ~,) =-Z(~/&u, }.
Since &u, -& „1,Z(&u/&u, )-z(ar), showing it to be
a natural choice as a variable to incorporate

which it is unity. For v'& v,', Z can Qe expressed
as

1+iX
1 —iX

with

Bjorken scaling into the theory. At finite Q', u,
could be a measure of the scale-invariance break-
ing.

(ii) The Drell-Yan-West"-type threshold behav-
ior of the structure functions is readily generated
by the combination

I (Zp —Z)/(Zp+ 1) I" which be-
haves near the threshold as (&o2 —1)' in the seale-
invariance limit (q'- ~, &u fixed) and at the same
time tends to unity at large co, thus leaving the
high-ener gy behavior unaff ected.

(iii} One can incorporate the asymptotic Regge
behavior [Eqs. (9), (10)] by noting that

(1 +Z)- n — e-10 tnn (v /vn -1)v 2 2 1/2

p&„2 2v

heft /2v

2vc
Q fixed

(iv} Z is an even function in v (or&a), i.e. , Z(-v)
=Z(v), such that the s ucross-ing symmetry [E1I.
(8}]can be taken into account.

(v) Z (iv) is real.
The properties indicated above lead us to express

t1p 2n as follows (assume these to contain all informa-
tion about the Im t1P'2"):

4m, „, ,)
Z, -Z "p.. p, „(1+Z}

2 ~ qn 4 2 2 'q/2 ( q +
Z +I / sin(a 2//2)

(44)

q' 4m'v' q' ' Z +1 g ' ~ / sin(a v/2}
tp, n( q2 V) tpi (q2n0)+ n n fpen( q2)+ p (q2 V) ~+pin

It f f

where

«q', v) = exl [-(q', /q')'I l+ Z I].

(45)

(46)

Lp, I„, and k are integers, "and a, = a/(t =0}are the (t =0}intercepts of the relevant Regge trajectories, i.e. ,
j =P, P', A„and A2'. We assume"'" as=1.0, av =a„=-,', and a„=a„—1.0. The (p, r}/p'" which are chosen
independent of q are subject to the constraints'n given by (11},which reduce their number from sixteen to
only eight, viz. , pv {=—ppv=p~), p~ (=—pp~ =p~), p„(-=pp =-p"„), and p„. (~pp„, =-p"„.), and similarly for
the y's.

The exponential factor g(q', v) has been included in the parametrization for t, in order to reproduce the
significant departure from scale invariance at ~&5, as exhibited by the recent data" on vR (Sec. IV). It
is to be noticed that the factor g(q', v) has been so chosen that the scaling limit (q'-~) and the Regge limit
(v- ~) are both left undisturbed while the departure from scaling at finite q is characterized by the para-
meter Q,'. The AN are built up in our representation as the sum of the contribution from the nucleon poles
(i.e. , the Born term) and the inelastic contribution, while the t, contain extra pieces which are the subtrac-
tion terms. Thus, we have

tÃ-tÃ +tÃ
2 2B 2I

and

tN tN +tN +tN
1 1 Stlb 1B lI '

The structure functions vW2N and 2m 5',N, which are conjectured to exhibit scaling, are obtained from imag-
inary parts of the t", according to (18}and (19}:
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Zp+ I )
' sin(a~w/2),

and

1 2(d Zp- Z 'p. )) ~ p „(() ~g sin(-ape)
a 1 —(d Zp+1 ~&

P 2(d, sin(a v/2)

2m W f'" = (()(vW p ")+ Gp "
2

(47}

(48)

with

6'"(-Q', (o) -=(1/a)2mQ'Imt, (-Q', (d)

1 Sm'uP/(d, '
Zp —Z "p,n

g(Q', ~) y'" (d 's sin(-ape)
Q'(1 —(d') Zp+1 ', t 2(o, sin(a )t/2) ' (49)

where

8= 8(-Q', &u) =tan '((d'/(d, ' —I)'~'. (50)

It is worthwhile to examine whether the expres-
sions (44)-(45} satisfy the various properties of the
t~ listed in Sec. II.

By virtue of the conformal mapping Z, the analy-
tic structure in the v plane [Sec. II(i)], is explicitly
built into the amplitudes t,". In the limit v- +(vp),
i.e. , Z -Z, one recovers the Born amplitudes t,~
with appropriate residues f, (q') at the poles. The
s-u crossing symmetry is automatically incorpor-
ated by the variable Z. To examine asymptotic be-
havior in the Regge limit, we note that using the
property of Z as given by Sec. III(iii) we have

ant and are given by

lim vWpP'"(-Q, (d)

tdfixed 1

—EP, ))(~)

1 2(d (d —1

p „(d J sin[-aq tan-'(&u' —1)'~']
2'& sin(ap/2)

lim 2mwf' "(-Q', ~) =Ef "((d)
Q2 ~co

cof ixed & j.
—(dE pe ))( (d)

(51)

(52)

(( Q )*=.P-(*),, (-()') "(,
Q fixed

lim t (-Q', v) = Q y", (-Q')v'&t', ,

Q2f ixed

where the Regge residue functions p", (-Q ) and
y"(-Q') are given by p& (-Q') =(2v,) pp& and
similarly for y,"(-Q'), and

~ -f O)ff'/2

sin(2 ma, )

Sin Q~7F

is the signature factor. The factorization of the
Regge residue functions in the above manner signi-
fies that the Regge behavior at finite Q' is extend-
ed" " into the scaling region (Q' —~, v- ~ with (d

fixed} (Eqs. 47-49). I-spin conservation at the NN
Regge-pole vertex is satisfied by our choice of
ps&, ys& subject to the constraints (11).

In the Bjorken-scaling limit (Q' —~, (d fixed ~ 1)
the electroproduction structure functions
vW, ((d, -Q') and 2mW, (((), -Q ) become scale invari-

The functions E2P'"((d) and Ef' "(&o), as defined above,
have the following threshold behavior (lim (d- I):

Ep "(~)~ ((d I}(p,)) -~('2 (53)

are the total absorption cross sections of real
photons on the nucleon ¹ The prediction of our
model for these cross sections agrees quite well
(Sec. V and Fig. 10) with the ave, ilable data.

IV. FITS TO THE EXPERIMENTAL DATA
AND EVALUATION OF THE PARAMETERS

OF THE MODEL

Using the representations for PW2 2tfLWy Rp,
and nt, (-Q2, 0) [Eqs. (47)-(49), (23), and (62), re-

which is very similar to the Drell-Yan-%est"-type
behavior. This aspect is further discussed in Sec.
V, where we describe the fits to the electroproduc-
tion data. It may also be noted that in the real-
photon limit (Q'-0}, Q't, and B vanish, while
according to (25)

lim (4v ' a/Q') v W,"(v, -Q') = o r(yN)
Q2 ~P
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spectively] we have searched for a least-squares
fit to the experimental data on vW„2m 8'~, vS'~
—vW,", vW,"/vWf, and vR~plotted asfunctionsof &o(or
x=1/~, as the case is) for various fixed Q' values,
by varying the twelve parameters (i.e., the eight
Regge parameters P~, P~, , P+, P„&,y~, y~, , y„, ,
y„, , the two threshold exponents l~, l„, and theAg&

2parameters k and Q, occurring in t, ) of our theory.
The data selection and searching procedure is de-
scribed below.

The structure functions 8', and 8', are separated
from the cross- section measurements taken at two or
more different angles (at the same values of Q' and v).
Experimental data for vW~2 and 2~8'~ as functions
of (~c, Q') exist over a kinematical range with
W&2.6 (GeV/c), Q'&1.0 (GeV/c)', and ~ &12.
This corresponds to a region in the S"-Q' plot
(labeled Region I; cf. Ref. 23, Fig. 4) over which
scaling in (d, ~ has been substantially verified. To
each data point corresponds a value of ~ and a
range of values of Q'." R.nce the complete set of
data is not available to us in a tabulated form, we
have chosen to select a subset of data points (55
points for vR'~2 and 42 points for 2m%', ) from the
graphs~ which are "representative" of the com-
plete set (in the sense that a good fit to this sub-
set is claimed to be a good fit to the complete set).

4 0 R=OIS
W + 2.6 GeV/c

0 & I.O(GeV/c)'

/
.

3e

/,
e

/
/

; /

30-

2tn W)

2.0-

l 0-

I

I/ II»

ij

0.0
I 4 5 6 789IO 20

FIG. 4. Fit to the structure function 2mWf {a&,-Q ).
The data are from Ref. 23. The starred points corres-
pond to co& 12, and the solid (dashed) curve denotes our
fit in the region cu & (&) 12.

T

R = O. I8

W &2.6 GeV/c
2

fl & I.O(GeV/c)e' ~n& i
\IT IIII~

I - 1i

0.3-
z Til)

The vajue of Q' for each data point is chosen to be
the maximum of the range (corresponding to the
boundary of the region I, Fig. 4 of Ref. 23) in order
that the Bjorken limiting procedure is followed as
closely as possible. The 68 data points (34 each)

vW2 I.O-

0.2— 0.8- Rp= Rp

v Wz vW2

O. I-
0.4-

0.2-

0.0
I 3 4 5 67896

I

20 0.0
0.2 0.4 0.6 0.8

X=
FIG. 3. Fit to the structure function vS

2 (ao, -Q ). The
data are from Ref. 23. The starred points correspond to
u & 12 and the solid (dashed) curve represents our fit in
the regions& (&) 12.

FIG. 5. Fit to the neutron-to-proton ratio v%2/v%2
as a function of x(=1/co) for fixed values of Q2. The
data are from Ref. 22.
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lp=4,

l„=5,

k=6,

Q,
' = 1.35 (GeV/c) ',

p„=2.15 x10 3,

Pp, =0.71 x10

p~ =0.55x10 ',

p~=-0.09x10 ',

yp = 0.5626 x10 ',

yp = 0 7881 x10

y+= -0.37S2x10 ',

y~i
-—0.4107 x10 '

(54)

Our fits are shown in Figs. 3-7. An examination
of the parameters, thus determined, reveals the

0.08— Rp= Rp

0.04-

0.02—

0.2 0.4 0.6 0.8

FIG. 6. Fit to the difference vW& —vS
&

as a function
of x(=1/cv) for fixed values of Q~. The data are from Ref.
22.

for vW~-vW", and vW", /vW~ are from Ref. 22 and
the 86 data points for vA~ from Ref. 34.

%e then proceeded to make a random search for
the parameters ~p ~p ~A ~A2 y~ yp' »+
y„, and Qp lp l and k fixed at different inte-"2'
gral values ' that would minimize the total X'.~
The condition of convergence of the Cottingham-
integral as given by Eq. (39) is used as a constraint
in searching for the parameters.

The minimum value of y' obtained was 317, for
252 data points with 12 parameters the values of
which corresponding to this minimum X' are as
follow:

following features of the model:
(a) The "proton" structure functions, vW~ and

2»W~„have a threshold behavior (Eq. 53)

W P„2»W~~, (&u —1)s.s (55)

and the "neutron" structure functions behave near
threshold as

vW"„2»W", , (id —1)". (56)

The existing data on the structure functions are
thus consistent with threshold behavior other than"
(~ —1)', which is prescribed by the Drell- Yan-West"
relation if the nucleon electromagnetic form factor
G„(t) obeys a dipole behavior. Drell, Levy, and
Yan" have shown that +,(~)- (~ —1)' near thresh-
old with k even or odd if the electromagnetic cur-
rent couples solely to spin-0 or spin--,' fields, re-
spectively.

(b) In our model for vW~~, next-to-leading tra-
jectories which give rise to a falloff like (d '~'
become unimportant for large (d although they
contribute significantly for small ~ (&o, say). The
large-~ region is thus primarily diffractive in
nature, and in the scale-invariance limit the Pom-
eranchukon plateau corresponds to a value =0.3,
which is not much less than the maximum =0.33
attained in the model. %e are thus led to agree
with Harari's" suggestion that the high-~ region
is mainly diffractive in nature and not with mod-
els"' that predict significant nonleading contri-
bution in this region. Further evidence for dom-
inance of the diffractive component at large values
of ~ is exhibited by the ratio and difference of pro-
ton and neutron structure functions, which we dis-
cuss below.

(c)An examination of the fits to v W f —~W", and
vW", /vW~~revealsthat, forlarge &u, vW", approaches
vW, quite rapidly and the two are equal within 10%at
v= 10, but for small ~there is a significant differ-
ence, (vW', —vW", ) -~' ', showingdominantnondif-
fractive contribution. The value vW", /vW~ is pre-
dicted tobe 0.47 in a duality model' at co = 1 and tobe
0.25 as a lower bound in a quark model. " (3ur
model appears to be consistent with the latter pre-
diction.

(d) The fits to the recent data" on vR, plotted as
a function of Q' to test the scale invariance of the
latter are shown in Fig. 7. Clearly, there is sig-
nificant departure from scale invariance at values
of ~d &5 and Q' &4 (GeV/c)'. Our fits give the value
of y' = 112 for the 86 data points.

With the parameters given above we obtain fits to (i)
the data" of vW, plotted as a function of Q' for various
fixed ranges of &u (Fig. 8), which exhibit scale-invari-
ance breaking at small Q' (it is to be noted that
unlike other Hegge models' ""ours does not
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need any additional mass parameter to characterize
scale-invariance breaking of vW, at finite Q, (ii)
data" on 1+(vW",/vW~2) plotted as a function of Q'
for various fixed values of W (Fig. 9), and (iii)
the data"'" on total photoabsorption cross sections
on protons and neutrons, or(yP), &rr(yn) as well as
their differences: or(yp) -o(yn) as a function of the
photon energy v (Fig. 10). The rapid approach of
the photoabsorption cross section to their asymp-
totic value in our model is consistent with the
Pomeranchukon dominance of vR', at large ~ as
discussed above. It should be emphasized that
these fits are absolute predictions of our model.

V. EVALUATION OF THE SUBTRACTION TERM
Df 1 (+ 0) AND CALCULATION OF THE P tl

MASS DIFFERENCE

R„Q Imt,
1 +R P Imt2 p2fixed

(57)

We now turn to the problem of evaluating the
subtraction piece in terms of the structure func-
tions. With reference to the definition of R in
terms of lm t", [Eq. (23)], it can be shown that in
the Regge limit (v- ~, Q' fixed) we have

5-
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FIG. 7. The quantity vR& versus Q2 for fixed values of co, The data are from Ref. 34. The solid curves are our fits.
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where

R„=R„(Q')= lim R(v, -Q')
Q& fixed

is assumed to exist. Therefore, if we define

unsubtracted fixed-Q ' dispersion relation,(, )
2 " 1m'(-Q', v')v'dv'

6 /2 2
0

but

(60)

v2 8„t~(-Q', v) = t, (-Q', v) + —, t,(-Q', v)

(56)

" Imt2 Imto(-Q, v)d v

0

(61)
then

(59)1m'( Q', -v) = 0
fixed,

V ~co

by construction, and therefore I;~ will satisfy an

The contribution from nucleon poles can be sep-
arated and the inelastic contribution can be rep-
resented as an integral over the structur func-
tions W, and W, , andoneobtainsfor &t,(-Q', 0)

«(-Q', o) =( —,)I4~&f,(-Q')/Q'+& I,R f,(-Q')/m

+, —gG(-Q, v) +&uA
"

vW,
C

—= n.l, '(-Q', 0) + n, t, (-Q~, 0), (62)

R„Q' Q, y",.(v/2v, )"~

1+R„„v,' Q,.p,". (v/2v, ) ~
' (62)

where f", and G" have been defined earlier in the
text, htf'"(-Q', 0) is the contribution from the
poles, and At, ( Q', 0) -is the inelastic contribution.
In our model,

where N is P or n and the sum includes all the rel-
evant (1=0 and I= 1) trajectories, P, P', A„and
A'~, such that Eq. (59) for Imtc, i.e. , Imto-0 for
v- ~, holds rigorously to the order v ' where
s &-,'. Thus the subtraction constant K,(-Q', 0)
satisfies the limit'
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FIG. 8. Fit to vW&~ as a function of Q for fixed values of ~, showing scale-invariance breaking at small Q . Our fits
(»&id curves) are calculated by using the average value of ~ in the range indicated for each case. The data are from
Bloom et al. , Ref. 23.
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lim Q'dt, (-Q', 0) = lim 0'dt~ "(-Q', 0)
Q o Q2 o

(pp —pn —&)~
2 S (64)

where p.„are the magnetic moments of the nucle-
ons. Further, the condition of convergence of the
Cottingham integral as given by Eq. (39) is satis-
fied since the latter equation has been used as a
constraint in obtaining the parameters given by
(54}. 'Ihe validity of Eq. (39) is illustrated graph-
ically in Fig. 11, which shows how the inelastic
contribution of the subtraction term approaches

and

( @s)
f'-st( @')-G~(-@')

u, g„(1+ Q'/0 ~ 71)'

(65)

Gss(-@*)=0,

the desired limit in order to cancel the coefficient
of possible logarithmic divergence.

Using our model for the structure functions W",. '"

with parameters given by Eq. (54} and the dipole
fit to the nucleon form factors,

& DESY (p'hotoproduction)

~ II/ SS-S~C (photopro du cti on)
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FIG. 9. The quantity 1+ (vW&/v Wf) =D/H plotted versus Qt for different fixed values of tr. The solid curves are our
fits. The data are from Bloom et al. , Ref. 23, and the dashed line corresponds to the prediction of Ref. 30.
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the various contributions [Eqs. (36)-(38)] to the
p-n mass difference have been evaluated by direct
numerical integration. The Born contribution is
given by

~p + ~sub, poles

where ~e is given by (36) and bm„b is the
pole contribution of the subtraction term:

The Q' integration is rapidly convergent by virtue
of the form factors and the results for d rn~
and ~sub poles are found to be

bw~ =+1.41 MeV

and

respectively, leading to

bm~. ,„=-0.70 MeV. (66)
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FIG. 10. The photoabsorption cross sections az(yP), ozQn) and their difference ~z.(yp) —oz (yn ), plotted as function

of the photon energy E. The data for the proton and neutron cross sections (J&(yp), o'z, |)n) are from Ref. 32 and those
for o'z QP) -ez~) are from Ref. 33. The soBd lines are our fits.
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lo which lead to

incl
= —2.66 MeV. (7o)

The Born and inelastic contributions as given by
(66) and (70) add up to give the final result for the
mass difference:

lO

~~ = -1.96+Oe52 MeV. (71)

a
IO

0
CJ

-5
lo

lo lO'

Q [(Gev/c) ]
lOO lO'

The inelastic contribution can be represented as

"dQ'
Am, „„=gm/„e+~m, = —. , [A(Qe) B(Qe}]

0

(67)

where A(Q') = e Q'K,'(-Q', 0) is the inelastic con-
tribution of the subtraction term. B(Q') is defined

by Eq. (37) and represents the remaining inelastic
contribution. The Qe integration in (67) is also
rapidly convergent by virtue of the convergence
condition given by Eq. (39}. In (67) the major sup-
port comes from the region of low Q', Q'&A'
where A' =3.0 (GeV') (Fig. 11}. The respective
contributions from subtraction and other terms
from this region are given by

~ hedQe
zm,'„, =—,A(Q') =-3.8 MeV

4 0
(66)

and

A' dQ'
~m, =

e B(Q') =+0.14 MeV,
0

(69)

FIG. 11. Illustration of validity of the condition [Kq.
{39)of text] for no logarithmic divergence of the Cot-
tingham integral. for the mass difference. The dashed
line represents the value of

3am d~[aF 2(~) + 2x~F, (~)],8r p

A (Q ) and B (Q ) are the inelastic contributions from the
subtraction term and other terms defined [Eq. (67)] such
that the mass difference is given by

d+2
~m

p

nd C (q2) =g (Q2) gg (Q2)

The error quoted in A~ is mostly due to the errors
in the parameters, and these errors have been
determined to be about 4% of their quoted values.

The above result shows that the subtraction term
is mainly responsible for the correct sign and
magnitude of the mass difference. This has been
made possible by the fact that the inelastic con-
tribution of the subtraction term (which has the
right sign) is several orders of magnitude larger
(Fig. 11) than the rema. ining inelastic contribution
at finite Q'. lt cancels asymptotically with the
latter, and the net result for the mass difference
is rendered finite.

VI. SUMMARY AND CONCLUSION

We have. proposed a model for the forward (vir-
tual) Compton amplitude in very simple form con-
sisting of contributions from Born, inelastic, and
subtraction terms. We have ensured manifest
analyticity in the v plane, s-u crossing symmetry,
Regge behavior, and Bjorken scale invariance for
the amplitudes in appropriate limits as well as the
various real photon (Q'-0) limits. This has been
made possible by appealing to the technique of
conformal mapping, which exhibits considerable
flexibility, making it possible to incorporate in a
much more transparent manner all the above prop-
erties simultaneously into the theory. In this re-
spect the present model differs significantly from
most other scale-invariant Regge-pole and vector-
dominance models, ' '"' although there exist cer-
tain resemblances with these models in some spe-
cific kinematical regions, such as the Regge or
scale invariance regions. The main results from
our model are summarized in the following:

(a) Very good fits to the existing data on electro-
production structure functions vW2 2~TV

vWt —vW", , vWe/vWee, and vA~ are obtained. The
scale-invariance breaking as exhibited by the data
on vW~ plotted as functions of Q' for various fixed
values of u as well as the behavior of the quantity
(1+vW", /vW', ) plotted as a function of Q' at various
fixed values of 8" are quite successfully predicted
from the model. Further predictions are very good
fits to the data on photoabsorption cross sections
or(yp), or(yn) and or(yp) —&rr(yn) as a function of
the photon energy.

(b) We have evaluated the subtraction term
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t,(-Q, 0) from a simple ansatz which is consistent
with experimental and theoretical considerations.

(c} The principal result of the present model is
the parameter-free realization of a finite p-n mass
difference having correct sign and right order of
magnitude which is quite close to the experimental
value. The fact that excellent fits to various avail-
able data on electroproduction and photoabsorption
have been obtained is significant in itself and lends
additional support to the model.

It is not surprising that the subtraction piece
plays the most important role in this successful
calculation of the mass difference, since the origin
and physics of the contributions from other terms,
i.e. , the Born and deep-inelastic pieces, are un-
derstood well in the light of the data on the electro-
magnetic form factors and the deep-inelastic
structure functions of proton and neutron, whereas

the dynamics lying hidden in the subtraction piece
has not yet been explored in detail.

The present calculation mould lend support to the
conjecture put forth by some authors" that the in-
elastic contribution of the subtraction piece trans-
forms as a Coleman-Glashow" tadpole in the tad-
pole model, which successfully accounted in a
pure phenomenological way for the mass splittings
between the various hadronic isomultiplets.
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