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3Po model and helicity structure of photoproduction couplings
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Neglecting the DL3 2 term within the possible algebraic structure in a 35-dimensional
SU(6)z representation for the magnetic-dipole operator is shown to result in the I'0 model
for photodecays of nucleon resonances. We then expand the reduced L&-changing amplitudes
into partial waves and impose a simple SU(6)zxO(2)13 constraint on the W =1 and W =0 parts
of the 35. This leads to several more relations among helicity amplitudes for these decays.
Using vector dominance and the partial-wave parameters from resonance decays into the
lowest-mass meson 35-piet, pseudoscalar decays in particular, we get photodecay couplings
which are in good agreement with partial-wave analysis.

INTRODUCTION

Following work by Melosh' several authors have
noted that in both 0 and radiative decays of had-
ronic resonances additional freedom in the matrix
elements can avoid several previously inescapable
conflicts of SU(6)ii XO(2)l, ' Inthe Melosh construc-
tion L, -changing terms appear naturally within the 35-
dimensional representation of SU{6)v for the ma-
trix elements of the axial charge Q, and the dipole
operator D~. Assuming partial conservation of
axial-vector current PCAC one can relate the 0
decay amplitudes to matrix elements of the "good"
Q, times a "bad" kinematical factor q .' Radiative
decays can be similarly related to matrix elements
ofD ."

Pseudoscalar decays using PCAC and the alge-
braic structure of the Melosh construction have
been shown' to be equivalent to the 'P, model of
Micu." For photodecays, however, the Pp mod-
el' is more restrictive. ' We shall show explicit-
ly the results of the 'P, model parametrization of
the photodecay matrix elements. By expanding in
partial waves, several new relations among heli-
city amplitudes are obtained. Furthermore, using
vector dominance and parameters taken from the
0 decays of baryons we shall see that the model
predicts helicity couplings in quite reasonable
agreement with partial-wave analysis.

MELOSH RESULTS

The lightlike dipole operator" is defined in
terms of the electromagnetic current j"(x) by

D, = ex~x'x j (x,

where

x'= ~ (x'~x'}, j'= ~ (j'+j '), x, =(x', x'), «c

For convenience we choose the rest frame of the
nucleon resonance (N*) with +x' to be the final
nucleon (N) direction. The invariant matrix ele-
ment for N*-Ny is e, &Nlj, (0}lN*}, where e~{$)
is the polarization vector of y with helicity $. By
wave-packet arguments in the transverse x~ plane
(sum i=1, 2}

and current conservation (S,j'+8 j +S j'=0) we get

(2v)'6,'(0)&N(p)li. (0)IN*(p*))= fe &N(p) 15.IN*(p*)&.

D„-(w=o, w, =o, ~L, =+1)

+(W= 1,

+(W=1,
+(w=1,

W, =+1, sf., = 0)

W, =0, 4L, =~1)

W, =+1, b L, = +2)

corresponding to the representations

(1, 6) + (6, 1)w =0, (2, &},=,1,

(1, 6) -(6, 1)w,=o, (&, 3)w,=-i.

In this frame q'=q, =0. Hence we have our as-
sertion that the relevant matrix elements of the
"bad" I (0) have the same algebraic structure as
D~.

The fact that the measure dx6(x') is not rota-
tionally invariant means that those vectors which
carry the representations of the "good*' lightlike
charges cannot have definite spin. For this rea-
son Melosh constructed a unitary (although non-
local} operator in the free quark model which
transforms those vectors into the physical ones,
i.e. , the constituent basis. It is this basis for
the SU(6)ii xO(3) algebra of constituents which con-
tains the nucleons and their resonances.

ln the constituent basis the SU(6$, hL, proper-
ties of D, are"'
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respectively, in SU(3}xSU(3).
The four components of D in (1) are the most

freedom any octet operator in a 35-dimensional
representation of SU(6$ xO(3) of constituents can
have, for ~,=+I. Considering (1} in the usual
SU(6) language [not SU(6)v] the electromagnetic
M3 + 1 interactions transform respective 1y 1ike
S,L„S„L„S(L,)'. The 'P, model has only the
first three terms, i.e., no b L, = 2. Early forms
of the harmonic-oscillator models contain only S,
(from a B) and L, (from P A). More sophisti-
cated harmonic-oscillator models simply inverting
the Dirac Hamiltonian (rather than Ff2 as in Feyn-
man, Kislinger, and Ravndal" seem to generate
all the "spin-orbitlike" terms of (1) but are very
difficult to calculate for baryons. "

THE 'Po MODEL

If we impose the constraint that the &L3= 2 term
of (1) does not contribute, the algebraic structure
of two-body radiative decays of hadronic reso-
nances into 1.ower-lying hadronic states in the
Melosh construction is the same as the 'Po model. '
It is conventional in this model to impose the fur-
ther condition that the relevant reduced matrix
elements of the %=1, 4L3=1 and 8'=0, 4L3
terms of (1) are equal. In the final analysis the
validity of this assumption is purely empirical.
Simple crossing arguments from the quark graphs

can be constructed but are outside the context of
the Melosh construction. The quark-pair creation
model of Le Yaouanc, Oliver, Pene, and Raynal"
in conjunction with vector dominance will have this
property.

Demanding consistency between matrix elements
of Q, (axial charge) and D~ in meson decays, in-
sisting on vector dominance assignments of the y
to the 35 meson (W=1) multiplet, demands n. L, =2
does not contribute, but another relationship be-
tween IV=1, &L3=1 and 8'=0, &L3=1 terms re-
sults which depends on whether L is even or odd. "

BARYON STRUCTURE

For baryons we have no consistency requirement
and the vanishing of the &L3= 2 is thus speculative.
At present levels the data for the 56, L =2 reso-
nances are not sufficient to decide. Moreover,
parametrizations on the basis of constant (fitted)
reduced matrix elements"' " (multiplied by q
overall) certainly disagree with expected threshold
behavior in the 70, L =1 multiplet. That is, the
expected Ip„I behavior of the reduced L, -changing
amplitudes due to symmetry breaking in the mass-
es is inconsistent with their having constant ratios.

Let us demonstrate the point more precisely.
We write the N* Ny am-plitude as (notation and
phases q~ are of Ref. 15}

+2 I

&N~ IN*) = Q Q Q (S, & —L„L,L, I&, &)&N I » IN*&.(NIACIN*). r)v(I —L,) (2, & —I, II', 1 —L,IS, & —L,)&w".
V I3~ -2 W~O

The initial J, =X decays to a spin J~&=1 always. In

the 70, L = 1-piet we define partial-wave ampli-
tudes a"=Oi =S, a"=" = D by (here L = 1)

c, a~'~ = g(L,L„1,-L~Il, 0)41~BI (2)

with normalizations c, = (L, 0, 1, OI l, 0) chosen for
convenience (if A~z'"o' = 0, then s =D = SU(6)v xO(2)L,
amplitudes), and eliminate the parity-violating
E = L term. It can be shown that using a general
series in two partial waves" that S, D have the
correct partial-wave behavior. This is easily
seen to be the case, for example, in the D» which

is pure D wave. At threshold, near q = Ip, I
- 0 we

expect

a~" - (const} x q' (3)

necessary to cancel the centrifugal-barrier singu-
larity near r =0. The familiar Blatt-Weisskopf
barrier factors, of course, exhibit this behavior. "

Hence the reduced matrix elements

A:3-, '& =-', (D S),

Az&,"=-', (2D+S)

(4a)

(4b)

should have rather strong variations in q.
Of course, similar definitions in the case L =2

are possible if Aw~3=, '~ =0. Then we have

AQg=&)
( P)W=l

~f 3=o) {3P+ 2P )

(5a)

(5b)

The P» and I » are thus pure P wave and I' wave,
respectively.

The additional constraint of the 'Po model is the
relation

(6)

This leads to the prediction for the D»(1520)E '&3/2
(70, L = 1 } that (notation is of Walker, Ref. 18)
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Asia(n)
A„,(P) Y (7)

for the neutron vs proton A. = —,
' excitations. Present

data are in agreement with this ratio which is quite
independent of (2), having -0.75+ 0.05," -0.72
+0.10," -0.85+ 0.j6."

A similar prediction for the F»(1688)E '8, /,
(56, l. =2')

On the basis of these two assumptions {A~if,'i =0,
and Ae'iP, 'i

=Asap,'E) we are thus prepared to make a rel-
atively large number of one-partial-wave predic-
tions among helicity amplitudes. (See Table E.)
Within the VO, I.=1 multiplet we get for the
D„(1520)E '8, i,

1s wave: A, i,(n)+ 2/2 A3/2(s)

= —l A, ),(P) +
~2 A, /, (P), (8)

A, g, (n)

A„,(P)
(8)

is also consistent with the data, but is not com-
pelling.

TABLE I. Photomatrix elements for nucleon resonances. Amplitudes are for A, helicity ex-
citation of proton (p) or neutron (n) from helicity + 2 nucleon in c.m. frame of resonances:
written A &(p or n). Partial-wave amplitudes S,P,D,E are related to meson decay amplitudes
{Tables III and IV} by S = {e/VPS', P = {e/yPP', D = {e/V)D', E = {e/V+' up to mass-breaking
dependence on q =c.m. 3-momentum.

70, L =1

28 J=—'

A ig2(p)

(2D+S)
36

—(2D +S)
18

A 3/2 (p)

6~3 (D -S)1

Ai)2(S)

(4D -S)
108

—(D+2S)
1
54

A3/2(")

1—— —(D -S)
9v'3

48 J

J-—3
2

5
2

(2$ -D)

1
54~10 (~ -'D'

1
enOD

1
18~30 (~ "D'

210 J 1

108 (5S —2D)

—(4D -S)1
54

1
1m 3 'D-"

56, L =2

8 J =+2

J=-52

—(3E+2P)2
75

2

2~6~ (3F+2P)

(E -P)
75

(E -P)
75

(3E+7 )

~ (4E+P)

(E -P)

(E -P)

410 J

5

2—P
45

(3F +2P)2

2

7&21~—(7P —2E)

&/- (4P+E)

45vVf

1$v 14 3v'210
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the second being the familiar Melosh result (Hey
and Weyers, ' Love and Nanopolous'). We get only
one for the D»(16V0)E '8, /,

1
d wave: A, /, (n) =

~2 A, /, (n),

plus the Moorhouse selection rule A z(P) = 0."
Similarly we get predictions for the 56, L = 2'.

If the P„(1&60)H2&, /„

P wave: A, /, (n)+J3A, /, (n)

= —~[A /2(p) +~3AS/2(p)] (12)

NUMERICAL RESULTS

In some cases [notably the A, /, (p) for the D»]
the cancellation between S - and D -wave terms is
somewhat delicate. " In order to incorporate mass
breaking we shall use the simple dependence (3),
which gives the best g' in the 0 decays. "" W'e
set

S =—S,
Yp

e - qP =—P

7f wave: A, /, (n) —
~3 A3/2(s)

2 I

= —s A, /2(p) —
~3 A, /, (p), (13)

e - q
2

D =—D

e - q
3

F =—F
'Yp 90

(20)

a linear combination of these two giving

A, /, (n }= —3A, /, (p).

And for the F»(1688}E 8,/,
1

p wave: A, /, (n)+ 2~2 A, /, (n)

(14)

4= ——' A /, (P) +
~2 A, / (P), (15)

f wave: A, /, (n) -~2A, /, (n}

A, /, (p) = A i/2(p). (17)

This magnetic dipole dominance is an SU(6)v

xo(2)i, result.
A further prediction for the P»(1236)&'10,/,

in the lowest order 56, L = 0' is magnetic dipole
dominance

3[AS/, (p} -v 2A, /, (p)1, (16)

the second being the Melosh result. " Finally, we
get the f wave rel-ation for the fourth resonance
F„(1950)E410,/, .

where qo = 0.5 QeV is a convenient scale, to make
S,P, D, F dimensionless. We shall use the Orsay
determination"

r='M r
M

(22)

where r is dimensionless, M& = nucleon mass,
M = resonance mass.

S -wave mixing has been chosen to agree with
earlier analysis based on the simple approxima-
tions, '

{NtVIS„(1700))= (NK IA(unseen))

= {NIc I A (1670)}
={1vlA(1670)}

= 0.06 (21}
Yp

and take the S,P, D, F from the 0 decays Hence.

we fit the photo matrix elements with no fitted
parameters from pion photoproduction. (See Table
11.)

Tables III and IV give parameter fits to the pseu-
doscalar decays. The normalization is the famil-
iar one" in terms of the "reduced widths*'

1
A, /, (P) =

~3 A, /, (P). (18) (23)

Considering the P „(1470)H'8,/, [56, I = 0'] in a
"radially excited" L = 0', we get

2
A, /, (n) = -3A, /, (p} (19)

At present levels it is hard to discern the ac-
curacy of some of these relations, many of which

are harmonic-oscillator or SU(6)v xo(2)~ results.
However for the D» and F», (7) and (8), these
predictions differ significantly and seem to agree
somewhat better. Other analyses ' ' use the D 73

and F» as input.

Similar fits have been done before (see Ref. 23
for the 70, I-=1; and also see Ref. 16} with more
complicated mixing. It is our intent only to do the
simplest thing possible; the monthly variation in
these resonant parameters suggests such compli-
cations are probably superfluous.

Our E-wave para. meters are

ls I
= 7.6~ 0.5,

ID1=4 5*o 2,
(24)

in contrast to ISI=4 1, IDI =4.9, IPI =2 2, IFI =2.2
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TABLE II. Resonance photoproduction couplings [for normalization, see Eq. (25)]. Signs in

parentheses are signs of xN couplings relative to S(P).

Resonance Ref. b A i/2
P

A3/2
P A i/2

N
A3"/2

P33(1236) Q ~10 /2

(56, L=0+)0

Pii(1470) ~ Si/2
(56, L =0 )2

S„(1530)
(70, L=1 )

28
i/2

(28 48)
v2

Si i (1700)
(70, L=1 )

48
i/2

(28+48)1

D g (1520) p 2Q(2
(70, L=1)

S3 f (1650) E- ~10 /2

(70, I =1)

D33 (1670) H ~10 /2

(70, L=1 )

Di3(1700)~ ~8/2

(70, L=1)

Dis(1670) E ~8/2

(70, L=1)

KMORR
MW
DLR
GK'
3p a, d

0

KNORR
MW

DLR
P0

KNORR
MW

DLR
P0

P0

KNORR
MW
DLR
3P

P0

KMORR
MW
DLR
3p

KMORR
MW
DLR
3p

KMORR
MW
DLR
3P

KNORR
MW
DLR
3p

KNORR
MW
DLR
3p

-143~ 2
-140+ 6
-134+4
-110
-110(+)

—80 ~4
-70 ~23
-78 +14
-82 (-)

89 +21
63 ~13
78 +20
4(+)

3(+)

52 ~11
12 +15
29 +18
0(+)

35 (+)

-19+21
-6~6
-8+15
-3(-)

27+18
105+38

-10~17
78(+)

79+32
0+48
54 +29
54( )

22 +39
0+ 34

-48 + 50
0

7~24
10 ~13
19~21
0

-257 ~ 7
-253 +20
-249 ~14
-190
-190

170 +7
165+11
171+12
X 73

61+39
0 +41
72+14
60

61~32
0 ~29

-6 ~14
0

17+31
42+ 24
14+4
0

0+2
-43 ~ 35

62+ 24
55

-52 + 21
-51~21
-37 k 23
-49

-18

-55 ~ 39
—19+22
-6 +31
-16

-70+ 21
-66 + 10
—89+19
-32

73 ~67
0+34

-21+ 98
44 (+)

—43+ 24
4+15

-29+ 23
44(+)

-128+ 7
—118+13
-155~ 19
-115

51+81
p y44

-26 ~ 69
9

-90+ 53
-9+30
-68+ 20
-31

Pi3(1770)~ ~8/2
(56, L=2)

E i5 (1688)—2~8/2

(56, L =2')

KMORR
MW
DLR
3P0

KMORR
MW
DLR
3P

26 ~16
0+25
25+34
10(-)

-25 +3
-8+11

27+19
-14(+)

-12+ 12
0 +22

-87~ 57
-47

96~4
129+16
163+11
83

14~14
0+50
13~45
14

33k 7
8 +18
31+28
29

-23+ 23
p y44

-83+ 90
-16

-15+15
0+30

-21~28
-28
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TABLE O. (Conti nled)

Resonance

P3 f (1860)& ~10 /2

(56, I =2+)

P33(2000) m ~10 jp
(56, L =2+)

E'35(1870)& ~10 /2

(56, L =2+)

+37{1950)6 107/2
(56, L =2+)

Ref b

KMORR
MW
DLR
Pp

KMORR
DLR
Pp

KMORR
MW
DLR
3P

KMORR
MW
DLR
3P

A (/2
P

18~5
-32 ~65

0+25
22 (-)

-34+8
-33+37
-30(+)

25 ~10
47~67
19+27

-29(-)
-67+7
-59 +29
-88+25
-60(-)

A3]2
P

-9 ~9
8 +46

-27

-44+ 18
-28+ 66

78+ 20
—13

-80 + 16
-93+24
-80+ 21
-78

A 1/2 A3/2

Parameters used in Pp calculations: P =10.1 for P33(1236)E ~10 /2 (56 L =0 )p from
elastic width of 1„~=114;P =2.7 for P&, (1470)E 8,/2 (56, L =0')2 from elastic width of
F~&=124; S=7.6+0.5, D =4.5+0.2 from Table HI fits to (70, L =1 )& baryon 0 decays;
P =2.8+0.2, E =2.0+0.1 from Table IV fits to (56, I. =2+) baryon 0 decays.

b Experimental analysis: KMORR is G. Knies, R. G. Moorhouse, H. Oberlack, A. H. Rosen-
feld, and A. Rittenberg, LBL Report No. LBL-2673, 1974 {unpublished); MW is W. J. Metcalf
and R. L. Walker, Ref. 25; DLR is R. C. E. Devenish, D. H. Lyth, and W. A. Rankin, Ref. 20.

GK refers to the theoretical analysis of Gilman and Karliner (Ref. 15) .
Goodness of fits gives X, of

KMORR DLR

70, I =1 49/20 D.F. 61/20 D.F. 22/20 D.F.
56, L =2 7/15 D.F. 18/15 D.F. 56/15 D.F.

based on 45' mixing of S» states, and no fitted parameters.

from Ref. 16.
In order to compare the photocouplings to that of

partial-wave analysis we need the normalization
pf Walker' and

A, g, (P) (I/18)(2D +S)
(~) =(I/6~~)(D S)

fo the D, (1520) (26)

1/2
A„" = 7) — A &, (P or n), (25) A, y, (P) (-W6/75)(3F + 2P)

(p) (4~3/75)(F P)
fo th F„(1666)

where g is the sign of the mN vertex in pion photo-
production. The sign is determined by comparing
the yN-N*- mN residue to the one-pion exchange
Born term.

SIGNS OF PARAMETERS

Early work involving meson decays suggested
S/D& 0, ' further reinforced in mN mn. .'6 In our-
model, the signs are clearly determined by not-
ing the weakness of the A, ~,(P) signal in the second
and third resonance regions, namely the ratios

(27)

are known to be small. Hence the determinations
S/D&0, P/F&0. While the 'anti-SU(6)" solution
S/D & 0 is now generally agreed upon, the second
P/F &0 is in contradiction to the isobaric analog
analysis of mN-m4 of Cashmore et al." Our sign,
of course, agrees with the related quark-pair—
creation model. " Multipole analysis of photo-
couplings is not completely conclusive, but shows
P/F &0 slightly more likely. " Recent work of
Carlitz and%'eyers26 suggesting an expansion of
the "lightlike" charges in powers of I/m (quark
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TABLE III. Fits to 0 decay modes of 70, L =1 baryon resonances to determine ISI and
ID I parameters. Determinations give I sI = 7.6+ 0.5, I DI =4.5+0.2 with scale in 8' =S,
D' =D {q/qp) of qp =0,5 GeV.

State Mode
QBG)

~ experimental F theoreticai X

Sp i (1405)

Sp ( (1670)

S)g (1530)

Sg ) (1530)

Ssi (1650)

D„(1520)

D) g {1670)

Dgg(1670)

Dgs {1670)

D)5(1765)

Dgg(1765)

D)5(1765)

Dps(1827)

10
2
~8~2

4
~8i2

4
~8)2

~1

4
~8(2

4
~8g2

4
~8]2

4
Sgi2

4 Sn Yg r

—' IS I'
—„', Is I

'
' Is I'
—„', Is I'

—„', ID'I'

Igy I2

1080
ID'

I

fgy /2

39 +8

12+6

33 +12

61 +23

46+10

61 +13

63 +11

43+ 12

16 ~5

6~3

36+22

15 ~9

39

60

42

28

23

38

18

0.0

0.1

0.2

0.0

0.2

1.5

3.6

6.4

0.1

0.1

0.8

0.6

3.0

=23.3/12 D.F.

ABG refers to experimental determinations taken from A. Barbaro-Galtieri, in Proceedings
of the XVI International Conference on High Energy Physics, Chicago-Batavia, 1972, edited by
J. D. Jackson and A. Roberts (NAL, Batavia, Hl. , 1973), Vol. 1, p. 159.

S-weve mixing is the same as in Ref. 8, based on the approximations

(NX I A{unseen)) = (NE I A(1670)) = (ZrI A{1670))= 0

for the Sp& states, and

(NEIN*{1700)) =0

for the S&& states. The approximate mixing-matrix relations are

Sp ~(1405)

Spi(1670

Sp &
(unseen)

1 1
v2 W2

1 1
Te v6 -&2/2

1 1
7s 7s

2
~1)2

2
~8/2

Sgg(1530) ~ p t~8~t

1 1S(( (1700)
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TABLE IV. Fits to 0 decay modes of 56, L =2' baryon resonances to determine ~P~ and
(E( parameters. Determinations give )~=2.8+0.2, (F (

=2.0+0.1 with scale inP'=P(q/qo),
E' =E (q/qp)3 of qp =0.5 GeV.

F g5 (1968)

E„(1688)

Epg {1815)

Fpg(1815)

Fpg(1815)

P is (1866)

E35(1890)

P3 i (1910)

Eg p(1950)

F )7(2030)

2S+ ig

2
~8/2

2
~8/2

2
~8/2

2
~8/2

28/2

2
5/2

4
~10 /2

101/2

107/2

410
7/2

Mode

Nm

Nm

NK

1 ~EiI2

]Per 2

+, IP'
I

'

425'

isvs
~+'&'

(ABG) ~

I experiments)

79~14

14+4

46~13

9*2
9~2

69+43

14~ 9

40~19

66~20

104~ 17

28+4

39~6

9+5

I theoretical

14

25

10

92

19

65

117

25

X

3.6
0.0

2.8

0 4.

0.0

0.3

0.3

1,7

0.0

0.1

0.5

0.5

0.1

1.5

X,„,- = 12.3/12 D.F.

See note a of Table III.

effective mass) would have E/P &0 at least in 0$'
decays. It may be also that the 35 meson decays
are uncorrelated to the photodecays, making vec-
tor dominance at this level untenable.

It should be noted, however, considering the
simplicity of the present model that the agreement
of signs and magnitudes of the photocouplings is
quite satisfactory. Furthermore, if we consider
mass breaking as independent of the vertex sym-
metry, the variation in the reduced matrix ele-
ments as a function of ~p, ~

=q (i.e., resonance
mass) is substantial indeed. In the I0, L= 1
spectral band (1.530& bf & 1.f30) the ratio of the
reduced matrix elements Ass~, /Aso', varies between

0&&"'/A"'& 0.4, clearly not a constant. We sug-
gest that in order to study these reduced matrix
elements, including 4&'~, the mass breaking
must be considered. In a scheme like that of Car-
litz and Weyers, for example, where the orbital
properties of each term in the 1/ypg expansion are
obvious, projections like (2) could provide better
parametrizations even preserving the independence
of the W = 0 and 8' = 1 parts.
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