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Determination of the pion-nucleon couphng constant
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A method for determining the pion-nucleon coupling constant f by the application of an interior dispersion

relation to the B'+' e N scattering amplitude is presented and its advantages over other dispersion relation

techniques are discussed. The method is used to calculate f' for two sets of phase shifts: CERN 71 of
Almehed and Lovelace and a modified version of the Carter, Bugg, and Carter solution, to obtain
f' = {81.5 ~ 1.5) )( 10 ' and f' = {79.5 ~ 1.0) X 10, respectively.

I. INTRODUCTION

The extraction of the pion-nucleon coupling con-
stant, f', from elastic sN scattering data has
long been a basic activity of medium-energy phe-
nomenology. ' ' Over a period of several years,
data and calculational techniques have been re-
fined to the point where some authors have claim-
ed precisions of the order of i/q to 2%%u& in their
estimates of the value off'. Nevertheless, as
seen in Table I, the variations between recently
published values still exceed individual precisions,
although most fall within the range of values rec-
ommended by Ebel et a/. ' It is clear from a study
of the various estimates of f', and the procedures
by which they are obtained, that an improvement
in accuracy awaits more precise data and more
reliable phase-shift analyses. Furthermore, the
calculational techniques still contain sources of
systematic errors, such as those involved in

applying electromagnetic corrections and in
smoothness assumptions relating to extrapolation
procedures, which will restrict their credibility
when applied to improved scattering information.

We present here a method for calculating the
pion-nucleon coupling constant which is fundamen-
tally different and which has distinct advantages
over previous methods. Our technique, which is
an application of interior dispersion relations
(fDR's), ~ is particularly well suited to the new

generation of accurate low-energy scattering data
now being measured at several laboratories. In
the present paper, however, we perform the cal-
culation using phase-shift analyses of current
vintage, since analysis of the new data is not yet
complete.

The specific advantages of the IDR method are
examined in detail later in the paper. We present
a summary of them here:

i. The s-channel dispersion integration is per-
formed entirely within the physical region, elimi-

II. METHOD

In our calculation we use the amplitude

B+ (t, a)=B+ (t, a)/v,

where B' is the usual isospin-even invariant am-

TABLE I. Recent determinations of f2 from pion-
nucleon data. For a review of earlier determinations,
see Table 5 of Ref. 5 and Sec. 3.1 of Ref. 6.

lof2 Reference Year

78.4 + 1.0
79.0 ~1.0
74.2 + 1.3
81.6 ~ 2.9

76.3 ~ 2.0

81 34

1974

1973

1973

1972

1972

1971

Recommended value.

nating any need to continue amplitudes away from
the region in which they were obtained by direct
comparison to experimental scattering data.

2. The dispersion integral converges rapidly
and may be truncated at a relatively low value of
the s-channel energy. Other effects, to be de-
scribed below, combine with the convergence
properties to desensitize our results to d, f, and

higher partial waves.
3. Variation of the path parameter g allows us

to test the consistency of our results and to uti-
lize the data over the entire range of interior
angles.

4. We avoid the forward scattering region, where
electromagnetic corrections are most significant.

We present our method in Sec. II, the results in
Sec. III, a discussion of the merits of the tech-
nique in Sec. IV, and some relevant kinematical
relationships in an appendix.
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FIG. 1. The complex t plane showing the singularities
which contribute to the IDH. The position of the nucleon
pole, t„, is dependent upon a.

plitude. The variables t, g, and p are defined in
the appendix. The interior dispersion relation
for B('~ is written by fixing the value of a and

applying Cauchy's integral formula in the complex
t plane. The resulting IDR is

ReB~"'(f, g) =B++„~(t,a) + —P 1mB~+~(t', g)
dt'

+ —P 1mB '~(t', a),1 " -, dt'
m &&2

' ti- t
(2.1)

We take p, =~=0.13957 GeV and m =ppg =0.9383
GeV. The first integral in (2.1}is due to the
s-channel cut (wN- slV) in the t plane (see Fig. 1)
and, for g ~ 0, corresponds to a path of integration
that lies completely within the s -channel physical
region. The integral converges rapidly, as we

shall demonstrate in the next section, allowing us
to apply the dispersion relation in an unsubtracted
form. Convergence is also ensured for the second
integral, which is due to the t-ch: meln(sw-NN}
unitary cut. We do not attempt to calculate this
integral directly from t-channel data, but simply
assume that since its structure is due to singular-
ities located at t & 4p,

' it contributes a smooth func-
tion of t at values less than this. We denote the
first and second integrals by I(t, a) and D(t, a),
respectively. A change in integration variable
allows us to write

We note that as g ranges from zero to large nega-
tive values, the position of the nucleon pole in the
t plane leaves the vicinity of the t-channel cut and

approaches the s-channel cut as is shown in Fig. 2.
Since we are to perform an extrapolation to the
pole, it is reasonable to expect that it will become
more reliable as the pole position is further re-
moved from the t-channel cut. The motion of the
pole toward the s-channel cut also contributes to
the reliability of the extrapolation by decreasing
the distance over which it must be made. In prac-
tice, however, a point is reached at which the
value of g represents far forward center-of-mass
angles for the low-energy region of integration
and increasing —g further becomes unprofitable.
The range of g values involved in the present cal-
culation as well as the relative extrapolation dis-
tances are shown in Fig. 2.

We now write Eq. (2.1) in the form in which we
shall apply it:

4w (2 m/p) X (t, a) -=~ [ ReB ~'~(t, a) I(t, a)]-
=6'+

2 D (t, a). (2.5)

For t &0 and g ~ 0, the real part and I can be cal-
culated from gN phase shifts. The assumed
smoothness of D as discussed above allows us to
fit the calculated values of X(f, a) for fixed a to a
Taylor-series expansion in t about the point t„,

s CHANNEL

1 1 1x +s'- s s'-g s'-g

The Born term is given by

B++„~(t,a) =6'/[(m'-a)(t- f )],
where

6' = 4nf '(2m/p)',

t„= t(s =m, a)
= p,'(4m' g' )/(m'- a). -

(2.2)

(2.3}

(2.4a)

(2.4b}

FIG. 2. The t-a plane showing the positions of the
t-channel unitary cut and the nucleon pole as a function
of a. Also shown are the curve t&(a, s) for s =2.56 GeV2,
a typical range of t values (heavy vertical line) for which
X values were calculated, and the extrapolation range
(arrow). Note: The t scale below the a axis is 10& the
scale above the axis. The vertical dotted line denotes
the extent in a to which the calculation was done.
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FIG. 3. The values obtained for X(t,a) at a =-0.86 GeU~ (81.=90'), and the fit and extrapolation to the nucleon pole
for (a) the CERN 71 and (b) the modified CBC phase-shift solutions. The vertical dashed lines in (b) delineate the re-
gion in which CBC phase shifts are used.

at which only f remains in the right-hand side of
EQ. (2.5).

Fixing the value of g corresponds to fixing the
laboratory scattering angle in the 8-channel phys-
ical region:

g +PS2

cosa'
[a -za + (m'- p ) j

where Z =2(m + p', ). It also corresponds to per

forming the integration of I(f, a) over a range of
center -of-mass-system angles given by

a+so a+ S,0
& cos8a-s 0

cm. g C

where s, is the value of s at which the integral is
truncated. By varying , we may perform the
calculation over the entire region for which scat-
tering data are available.
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III. RESULTS

The analysis was performed for two sets of
phase shifts: those of Almehed and Lovelace'
(CERN V1}and a mixture consisting of the Carter,
Bugg, and Carter' (CBC) solution over the range
of energies for which it is given (1.328 GeV'
~ s (1.744 GeV') and the CERN V1 solution at
energy values above and below this range. The
two solutions join smoothly at the higher connect-
ing point, and a modification was made to the 8»
partial wave to ensure a smooth connection at the
lower point.

In Figs. 3(a) and 3(b}, X(t, a) as calculated from
the left-hand side of Eq. (2.5) is plotted for the
CERN 71 and modified CBC solutions, respective-
ly, for fixed a = —0.86 GeV' (ei =90'). In order to
avoid systematic errors arising from interpola-
tion techniques, the evaluation was done only at
values of t corresponding to energies at which
the phase-shift solutions are given. Since in each
case, the partial-wave analysis was made at ener-
gies at which the scattering data were available,
the scatter in the points in Figs. 3(a) and 3(b),
which is due primarily to scatter in the real parts,
accurately represents the relative smoothness of
the particular analysis. Interpolations for the
purpose of performing the integrals were made
with a spline technique. Here, the energy depen-
dence is smoothed out and the integrals were es-
sentially identical for the two phase-shift sets.

The smooth curves in Figs. 3(a) and 3(b) repre-
sent the polynomial fits to the calculated values
of X. Also shown are the extrapolations to the
nucleon pole where X(f„,a}=f'. Several criteria,
were applied to the selection of the proper order
of the polynomial for which to perform the fit, and
it was found that a quadratic was sufficient over

the ranges of a and t used. In the absence of any
reliable estimate of the actual errors, all points
were weighted equally.

In Fig. 3(b), the vertical dashed lines delineate
the region in which the CBC phase shifts were
used to calculate the real part of the amplitude.
(CBC phase shifts were also used in this region in
the calculation of the integrals for this solution. )
This region represents the range of energies over
which the 6 (1238) resonance contribution to the
P33 partial wave is significant. Although the
CERN 71 solution weights this region by twice as
many points as does the CBC solution, the rela-
tive lack of smoothness of the former in the vi-
cinity of the ~ is apparent. We determined that
the a was responsible for approximately 70)o of
our result in both instances. Therefore, this re-
gion, as well as lower energies where s waves
predominate, deserves careful attention in future
partial-wave analyses. At the moment, however,
we see no reason to favor either of the phase-
shift sets we have used over the other, and our
results are reported for both with no implication
that they should be averaged.

The values of g for which the calculation has
been performed are given, along with other rele-
vant quantities, in Table II. Also given in Table
II are the results of the extrapolations at these
values for both sets of phase shifts. The quoted
errors are determined by the X

' fitting procedure
under the ansatz of equal weighting of the Xvalues.
The consistency of the results over the range of
a values is shown graphically in Figs. 4(a) and
4(b). Weighted averages were taken in each case,
yielding the values

f'=(81.5+1,5)x10 ' (CERN Vl)

f' = (79.5+ 1.0)x10 ' (modified CBC).

TABLE II. Values of a and other parameters for which calculations were performed, and
results of the extrapolations. t& is the greatest negative value of t for which X(t, a) was cal-
culated in each fit. The values given correspond to a constant value of s equal to 2.56 GeV2.
All other quantities are defined in the text.

a 01
(GeV~) (deg)

tg
(GeV') (Gev~) 10f' (CERN 71) 10f' (modified CBC)

—12.2
-5.09
—2.61
—1.47
-0.860
-0.504
-0.284
-0.145
-0.061

30
45
60
75
90

105
120
135
150

34.2—64.4
51.1—88.6
67.4-107.4
83.3—122.2
98.6-134.3

113.2-144.2
127.4-152.8
141.1-160.4
159.2-167.2

0.005 2

0.0114
0.0195
0.0290
0.0392
0.0493
0.0586
0.0665
0.0725

1 -0.182
—0.352
-0.521
—0.669
—0.788
-0.880
-0.948
-0.996
—1.028

82.5 ~1.3
81.3 +1.3
80.8 +1.4
80.8 + 1.4
80.9+1.5
81.2 +1.5
81.6 +1.5
81.9 +1.6
82.2 +1.7

78.8 ~1.3
79.2+ 0.9
79.6 ~ 0.9
79.8 + 1.0
79.6+ 1.0
79.5~ 0.9
79.4~ 1.0
79.3 ~ 1.1
79.4 + 1.3
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IV. DISCUSSION $5
(a)

In this section we examine the advantages of the
IDR method for calculating f' and recommendways
in which the uncertainty in this quantity can be
further reduced.

a. Most prior determinations of f' from pion-
nucleon data have involved the use of fixed-t dis-
persion relations or of some variation of them.
The validity of these techniques is limited to the
region of t in or very near to the forward scat-
tering direction. In any other than a t =0 (for-
ward) dispersion-relation calculation, where the
integrals lie entirely within the physical region
and total cross sections can be used to calculate
them, it is necessary to extrapolate partial-wave
expansions into the unphysical region. This ex-
trapolation is in principle valid within the confines
of the Lehmann ellipse, but in practice, where a
finite number of terms are involved, uncertainties
are introduced by the extrapolations of a truncated
sum. While it is necessary to perform at least
one extrapolation in any attempt to obtain f', since
the pole is at an unphysical point, it is desirable
to limit the number of extrapolations to one. Since
the IDR integral lies entirely within the physical
region for any a ~ 0, only one extrapolation, that
of X(t, a) to t = t» is required.

b. For a given value of g, cose approaches
-1 as s becomes large. This occurs rapidly for
the values of g in our calculation, and one can
therefore appeal to backward-scattering Regge
pole models'0 for information regarding the con-
vergence of s-channel integrals. The g+ invariant
amplitudes have the behavior t ~ for large —t,
where e=z~ or e~ depending upon the isospin of
the amplitude. Since ~~= -0.03 and ~~= -0.37,
the integrals for all amplitudes are expected to
converge. Particularly rapid convergence is ex-
pected for 8' =B'/v, which has the asymptotic
behavior t '&, with the additional power of t
provided by the factor of v. This convergence has
been verified numerically by us as we have deter-
rnined, by incorporating a Regge parameterization, "
that truncating the integral at the end of the par-
tial-wave-solution energy range introduces an un-
certainty in the value of the integral of less than
0.5%%.

Indeed, because of both the rapid convergence of
the integral and the fact that the integral residual
is a smoothly and slowly varying function of t for
( t

~ «( t, (, where t, is the value of t at the point
of truncation, terminating the integral at even
lower values of the integration variable results
in negligible variations in our results. Thus, for
example, truncating the integral at a point below
where d, f, and higher partial waves become sig-
nificant introduces a variation of less than 1% in

10'f'

CERN 71

$0-
}(

h '( i(
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FIG. 4. Results of the extrapolations (see Table IQ.

tc dt'
n,I (t, a) =- — ImB+ (t', a )

OP

being a smooth function of t, is effectively ab-
sorbed into the right-hand side of Eq. (2.5) with
an appropriate redefinition of X:

4v(2m/p) X'(t, a)—= 2
" [Ref)+~(t, a) I, (t, a)]-

where

= G + [D(t, a)+ aI (t, a)],
7S —Q

In our calculations, we integrated through the
entire range of energies involved in the CERN 71
phase-shift solution, with the cutoff value of s
being s, =4.84 GeV'. As we have seen above, X
and X' differ by less than 0.5 jp, and we therefore
estimate the resulting uncertainty in the value of
f2 to be less than O. l%%u~.

c. The variable a allows us an extra degree of
freedom in which both to check the consistency of

the value of f', even though the actual values of the
integrals vary by a considerably larger fraction.
This is because the residual
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our calculations and to sample the phase-shift
solutions over the entire range of angles for which
they were determined. This works to eliminate
systematical errors due to overemphasis of the
phase shifts in regions where they were not ade-
quately constrained by data, particularly in the
far forward and backward directions. Of special
advantage here is the minimization of effects
due to significant Coulombic corrections at for-
ward angles.

Any calculation which requires an extrapolation
has its pitfalls, and the present one is no excep-
tion. Except for certain model implications (loca-
tions of t -channel singularities, analyticity as-
sumptions, etc. ) the functional dependence of
X(t, a) for f) 0 is not known. Our smoothness
assumption is at least as valid as any used in
other techniques, but an improvement could be
made by evaluating the t -channel integral using
pv phase shifts andior meson singularity models.
The extrapolation to the nucleon pole then becomes
an interpolation. Efforts in this direction are being
undertaken by the authors, but we believe that the
extrapolations performed herein are valid within
the accuracy of the phase-shift solutions at hand.

We also believe that the current level of accu-
racy obviates the necessity of explicitly taking
into account the subthreshold +pal- yN contribu-
tion' ' to the s-channel unitary cut, particularly
for the range of a and I; values involved. This
contribution is, in principle, included in our
method since the discrepancy function D can be
assumed to include the cut from t=o to t =t~ due
to this process as we11 as the normal t -channel
cut beginning at t = 4ir'. A proper treatment would

involve expanding D, or equivalently X, in an
appropriate manner, i.e., in a series of functions
having the cut structure. The principal effect
here would be the introduction of a small imag-
inary part to X in the region between t =0 and

t=t„along with a small cusp in the real part of
X at these points. This cusp would be much
smaller than the strong cusp" which appears in
the real part of the invariant amplitude at thresh-
old, and would not significantly affect the extrap-
olation of ReX to the nucleon pole. On the other
hand, if improved data make possible a reduction
of the error in f ' by a factor of 10 or more, the
effects of the electromagnetic cuts, as well as
those of isomultiplet mass differences, should be
examined carefully.

An attempt was also made to extract f' in a
similar manner from the amplitude B ~. An IDR
can be written for B ~(f,u) similar to that for B+;
the Born term is now

.4 - ~

.2 .4
-t (G@V')

1.0
I

- 8--

XI-
-12-

-2.0

-2.4-
x

X
X

FIG. 5. Values of X(t, a) at a =-0284 GeV2 (8J
=120 ) for B~, the fit, and the extrapolation to the
nucleon pole.
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APPENDIX

We present here some kinematical relation-
ships pertinent to interior dispersion relations.
For a more detailed account, the reader is refer-
red to Ref. 7.

We use the conventional notation for the Mandel-
stam variables s, t, and g, m and p. for the
nucleon and pion masses, and the definition
v -=s -zc. IDR's are written for amplitudes which
are even functions of v by fixing the value of the
path parameter a, defined as

As can be seen in Fig. 5, however, the variation
of Xs (f, g) near the pole is too great for an ac-
curate determination of f' to be made. A typical
result is at g~ = 120' (a =-0.284 GeV ), where a
value of f' = (157+V8) x 10 ' was obtained. Although
this value is within a standard deviation of the re-
sults obtained from 8 ', it is clear that the choice
of 8 is not propitious for determining the coupling
constant.
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where p is the Kibble boundary function, and dis-
persing in t . As functions of t and a, s, u, and p

are given by

s(t, a) =-,'[Z —t+v(t, a)],

u(t, a) = —,'[Z —t —v(t, a)],

v(t, a) =[(t —4g )(t -4m')+4at]&',

where g =2' +2/. The change of integration
variable is effected by the relationship

t(s, n) = —4sP, '/(s —a),

where

P,' = [s- (m+ p, )'] [s —(m-p, )']/4s

is the square of the s -channel center-of -mass
momentum. Of particular value is the expression,
for fixed g,

(t' —t )(s' -a) = —(s' —s)(s' —u).

The s-channel center-of-mass scattering angle
is given by

cos8 = (a +s)/(a —s) .
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