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Deep-inelastic electroproduction of pious in a quark-parton model*
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Invariant cross sections for the processes ep ~ em + anything are calculated in a quark-parton model. We use
a wave-function formalism which we show to be equivalent to the Kuti-Weisskopf quark-parton model of
hadrons. Imposing simplifying assumptions valid for a high-momentum final state, we obtain good agreement
with existing experimental data.

I. INTRODUCTION

In the past few years refinements of the parton
model of hadrons, originally proposed by Feyn-
man, ' have been successful in predicting some
details of high-energy electroproduction. These
models" view hadrons as being composed of point
constituents, or partons, which can be taken to
have the quantum numbers of quarks. A choice of
the parton momentum distribution allows a cal-
culation of the known properties of deep-inelastic
lepton-nucleon scattering, and the results have
been satisfactory. Since the parton picture does
give good results for the deep-inelastic scattering,
we want to try the model on a reaction requiring
more detailed considerations of the constituents,
namely e+N- e+w'+ anything.

One model for the parton momentum distribution
inside a hadron was proposed by Kuti and Weiss-
kopf. ' They viewed a nucleon as being composed
of a core in which the quarks are distributed
statistically, and of a valence in which the mo-
mentum distribution of the quarks depends on the
special dynamics of the valence quarks. The
model was used to calculate the invariant struc-
ture function vW, (x) for the processes ep-e+ any-
thing and e-se + atnhying. Also, f~'vW2(X)dx and

vW, (neutron)/v W, (proton) were calculated. All
were found to be in substantial agreement with the
available experimental data. Later, McElhaney
and Tuan4 modified the model slightly to obtain
good agreement with newer experimental data.

Taking the Kuti-W'eisskopf model as a starting
point, we have been able to calculate the cross
sections for e+p- e +s' +anything, for pions go-
ing backward in the c.m. frame, and obtain tol-
erable agreement with the data. The calculation
is described in the next section (Sec. II), begin-
ning with an explanation of what we do and why we
are limited to the backward direction. Our results
are compared to the data in Sec. III. Regarding
the details of the Kuti-Weisskopf model, we make
some changes, mainly notational, so that one can
talk of the amplitude rather than the probability

for finding a given type of parton at a given mo-
mentum. This is discussed in the Appendix.

II. CALCULATION

We choose a frame of reference in which the
incoming parton is moving infinitely fast (take
P- m below) in a direction perpendicular to the
photon's 3-momentum. Explicitly,

P" = (P+m'/2P, 0, 0, P),

q" = ((ifv/P, q„o).
(2.1)

(2.2)

~ is the proton's mass and P q =B'av. The proton
is replaced by a beam of noninteracting partons
and the virtual photon is viewed as interacting with
a single free parton, the remaining partons being
spectators. The momentum of any given parton
will be

P," = (x,P+q'/2x, P, P, „x,P),

provided x» fvt/P and where p is the parton's mass.
We expect

~ pJ s 500 MeV, so that for x not very
small and for v»M we have q=P, ~ q/Nv.

When the photon interacts with any one of the
partons it disturbs the parton configuration, which
then no longer forms a proton. The proton "frag-
ments" and the partons, which cannot themselves
appear in the final state, recombine into observ-
able physical particles. The details of the recom-
bination are unknown because we do not know the
strong parton-parton interactions or the nature
of the possible parton fragmentation into hadrons.
One may despair of these problems and believe
that they limit the parton model to totally inclusive
lepton-induced reactions. But any model is likely
to be plagued with similar problems, so let us be
positive and ask where (i.e., in what special kine-
matic regions) a simple parton picture could give
correct quantitative results. We think that partons,
or their derivative hadrons, that have an apprecia-
ble fraction of the proton momentum (in the infinite-
momentum frame) are susceptible to relatively
simple calculations.

More specifically, let us hypothesize that after
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the proton is fragmented, partons mith relatively
large x escape from the parton blob without having
their momentum significantly changed by inter-
action mith the spectators. This means that the
large-x partons have the same momentum distrib-
ution after the proton fragments and the partons
have spread apart as they had before the proton
fragmented.

We can attempt to justify this hypothesis heuris-
tically on the grounds that large-x partons are
well separated, in rapidity space, from their
fellows. Let us first note that there are few
large-x partons: Obviously there is not more than
one parton with x & —,', not more than two partons
(if that many) with x& —'„etc., and most partons
will have very small x ("wee partons"). The mo-
mentum of one parton is

P," = (x,P+ y, /2x, P, V, ~, x,P),

so that (neglecting Iy~}

s„=(P, +P, )' = ir(x, /x, +x,/x, ).

(2 2)

(2 4)

The rapidity diff erence, ln(s»/M'), determining the
decoupling of partons 1 and 2 by well-knomn argu-
ments, ' with more than one or two units difference
meaning negligible interaction. For x, and x, very
unequal, s» can be a large factor times g. For
example, for x, =0.5 and x, =0.05, the rapidity
difference becomes In(10.1p'/M'}. If we take
ir"=M', this is sufficient to have large-x partons
decoupled from wee partons. Of course, one does
not know the parton mass. Instead of taking it to
be some typical hadron mass, one may take g= 0
for ease of calculation, ' argue that p,= 300 MeV,
or even that it is infinite. ' We can only apologize
for the uncertainty, adding that it seems to us
that a small effective mass is unlikely because
one must explain why partons are not seen. They
must either be heavy or else be trapped by a
dynamical mechanism, from which one can argue
that a bound parton is off its energy shell by an
amount of O(1 GeV). '

So we will take as a working hypothesis the idea
that large-x partons do not couple strongly to the
other partons and thus we know the parton spec-
trum for large x. The function of the incoming
photon is only to fragment the proton, freeing its
constituents (freeing them to become other things,
that is). The photon does not have to interact
directly with the large-x partons we have been
discussing; we do require that it carry enough
energy (y» M} to make the parton picture valid.

What happens to the escaping parton'P There

dN»
d, =g, (x ), (2.5)

then the measured hadron distribution should be

(2.6}

It has been suggested~" that for producing pions
g(y/x} ~ (1 -y/x) is reasonable. Comparison of
this model to the previous model and to experi-
mental data is reserved to Sec. III. The predic-
tion of the data is tolerable with the first model,
poor with the second.

We first calculate the matrix element of the
hadronic current when one of the partons inter-
acts with the virtual photon. The initial proton
state is

are tmo simple models me can think about, which
seem different physically and give quantitatively
different predictions. In the first model consider
the fragmented proton to be a reservoir of partons,
with some partons (perhaps only one) having large
x and not interacting strongly with the remainder.
However, a parton leaving the interaction zone
must pick up at least one other parton to make a
hadron. Since the interaction is weak, it is likely
that only one extra parton will be grabbed, ' and
since this extra parton probably will be "wee", the
momentum spectrum of the fast emerging mesons
will be that of the fast partons. If the meson has
a fraction y of the original proton's momentum in
the infinite momentum frame and the distribution
of partons is given by F(x), then d&x/dy ~F(y) for
large y. (Large y requires that the meson is going
backmards in the y„p c.m. system. Indeed, for
the numbers relevant to available experiments any

y ~ 0.06 is backward going in the c.m. system. )
The types of mesons that come out are predicted
by considering what types of valence and core
quark-partons mere in the proton to begin with.
(The details are given below. )

Alternately, the large-x parton itself may frag-
ment into hadrons. This has been discussed by
Berman, Bjorken, and Kogut' in connection with
reactions where partons emerge with large trans-
verse momenta. The idea is that the large trans-
verse momentum isolates the parton from its
fellows, and we can describe its fragmentation
independently of the rest of the partons. We have
argued that we have a degree of isolation here also
for large-x partons, and so can try to carry the
idea over. If the probability of finding a hadron
with longitudinal momentum fraction x' of its
parent parton is Scale invariant, as

(2 7)
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where Z~ 'p(X, ~ ~ x„}, the n-parton wave function, is defined in the Appendix, and the final state is
~z, ~ z„), where z, is the momentum fraction of the ith parton in the final state. Suppose that it is the
n'" parton that is struck; then

Qe n n-1

&z, ~ ~ z„~Z" iP) = . . ./, )v,5 -Qx~ Zp y(x, ~ x„)u(z„)y"u(x„)Q5(x -z ).
g=1 ~ +I +1 fn=1

(2 .8)

In the infinite momentum frame x„=z„, and therefore u(z„)y"u(X„= 2P"x„5„„where s, s' are spin indices.
Substituting this in Eq. (2.8) and doing the integrations gives

&z, ~ "z„lPIP) =2P"~„,Z,V'~, "z„„S„).
n-1

But s„=l —p z& ~z„. Therefore, the hadronic current is
j=1

&., ~ ~ ~.„ I
~" IP) =2P~ 3„,Z,~2y(„~ ~.„),

independent of which parton interacts with the virtual photon.
The spin-averaged cross section is

gl n 2 2
6kx E HAPP)

QI 0 gp'

(2.8)

(2.10)

where 0' is the final electron momentum, P', is the final momentum of the ith parton, and e' is the charge
squared in units of e of the struck parton. Using the above form for the hadronic current, the differential
cross section for observing one parton is

dA'dE'dy „~, 5~,
'

q P y gP,') z y'-(y, *-, ~ ~ ~ z„),
n-P a ]-2 '44) +P I I Q2

(2.11)

where y is the momentum fraction carried by the parton.
There are three cases to be distinguished, as it makes some small difference which of the three types

of quarks (5" valence, X valence, core) is the fast parton after the interaction.
Case 1: A core quark is the fast parton The initia. l proton state is

y Z 1 o(0) & Ix(Q)(I )
1 -o(0) (3 g) (3g) 2 (3g)

P 1 x2 x3 x3 0 l A i 0 t

x (k, )k, ik, !I()-v'I», - x„„y), (2.12)

where y is the momentum fraction of the fast quark. For this form of the proton state, the normalization
condition, Eq. (A4), implies that

k] =$2,4e, «l =g ls2I ~ ~ ~
J dxg dy

L~L (x
2 ~ 2/P2)+2 (

2 ~ g/P2)v2

I-o(0) 1 0(0)(1 ) I o(0) (3 g) (3g) (Bg) g (2.13}

This integration can be performed using the techniques described in Appendix 8 of Ref. 3 to obtain

I'(y+ 3[1 —u (0)]) 1 —& (0)

I"(I—o, (0)) y+ 3[1-a (0)]
(2.14)

where a' -=p'/P' and y =g+ g'. —

The exact form of the two-dimensional 5 function in the differential cross section, Eq. (2.11), depends
on which parton interacts with the virtual photon. Ne shall exclude the case where the virtual photon
interacts with the fast quark.

If the struck parton is a {P valence quark, say x„ then
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n n-1
q+p- pj -2k 5,—x 5 1-y — z,Mp j=1

(2.15)

where the factor of 2 indicates that there are two 6' valence quarks in the proton, and the k indicates there
are k choices for the core quark which becomes the fast parton. If the struck parton is an 9t valence quark,

n Z
n-1

5%3 q+ p- Pj =k 5 3x 5 1 y- z jMv j=1
(2.16)

and if the struck parton is a core quark, but not the fast parton, then

n Z 4
n-1

O„,
' q+P- P,

' =k(k-1) ' O,-x O 1-y-
j=1 Mv

(2.17)

Substituting these 5 functions into Eq. (2.11), the differential cross section for case 1 is

daj 4+ E 1 4 1 2
4

— 2 9gI + 9 gI~~+ 9g I~
v

(2.18}

where

I~=x B (l-a(0), y+2[1 —a(0}]}(1-y-x) '& ' 1- (1-y-x) 1—1 C(0) 1 -|+ a(i- c([03 1 —a (0)

y+2 1 —a(0} y+3 1- a(0)

= (( —y[y' ('i& '(1 — (0[ y y[1 —y (0}])(( —y-y[ '+I'"(' 4 y(( —
)

1- o. (0)

y+ 3[1—a (0}j
(2.19)

y. = ((-y-y[ "&'* ' " (- ((-y-*[ (- [)
1-&(0) 1-~(0)

y+3 1 tr(0) y+3 1-n(0

The B( ) is a beta function, and x—= Q'/2Mv.
Case II: The Ot valence quark becomes the fast parton For this .case the 5 function in Eq. (2.11}is

n n-1
Z

n 1

q+P- P, =2 ' 5 -x5 1-y- z, +k n6 „-x5 1-y- z,Mv Mv j=l
(2.20)

The differential cross section is

ckTjj 4Q E
2 —I +T gI~ (2.21)

Case III: 2 6y valence quark becomes the fast Parton. The 5 function in Eq. (2.11}is

n n-1

5~3 q+P-~Pj = ' 5 z, -x + 5 3-x +k -- 5 „-x) 5 -y- zj
j=I.

(2.22)

The cross section is

d&jjj 4n E' 1 4

dg d d
2 I + I + gI

(2.23)

To be able to compare our cross sections with
the experiments, we must write them in terms of
the invariant cross section E (d'o/dp') for the
process y„p- z + anything. In the infinite-momen-
tum frame the invariant cross section is

where y„ is the virtual photon, and, as before, y
is the momentum fraction of the outgoing parton.
In terms of the cross section we calculated above

do dg=F—
dQ'dE'dy dy

' (2.25)

where I is the flux of virtual photons. Combining
Eqs. (2.24) and (2.25), integrating over Py. , and

normalizing to the total cross section yields the
function

+0' y do

dp 77 dye»
(2.24)

] y' eo
CRT

o„w1' ., dQ'dE'dydPi
(2.26)
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where g„, is the total electroproduction cross sec-
tion. It is the function E(y) that will be compared
with experiments in the next section. The total
cross section in this model can be written in terms
of W, (x),

the probability is —, that the core will contribute
to the w, 3 that the $' valence will contribute to
the g+, and —,

' that the Ot valence will contribute to
the p . Therefore, for y„p- z +anything,

W, g)=. . .a
E

4m'0. Q'+ V' (2.2V)
)

1 " 1 do, 1 do„
o, , sF 9 dQ'dE'dy 3 dQ'dE'dy

where &&Ae ~&dP' (3 .1)

IC = v- Q /2M.

W'e use the modified Kuti-Weisskopf form for
vW, Q) to calculate a;.,

III. COMPARISON VflTH EXPERIMENT

We have calculated the cross sections for finding
high-momentum partons. As mentioned in Sec. II,
these cross sections must be multiplied by the
probability that a given quark will become a speci-
fied final-state particle. By taking the extreme
position that the high-momentum parton goes into
the valence of the final-state particle and that only
one additional parton is picked up, the first model
discussed in Sec. II, we are able to make an esti-
mate of these probabilities. For example, there
are nine ways of selecting a quark and an anti-
quark from the proton core, but only one of these,
tom), can become a s'. Thus, the probability is

—, that the core will contribute to the g+. Likewise,

1 "" 1 do, 1

o„,si' o 9 dQ'dE'dy 3 dQ'dE'dy

XA, e ~&dI"~. (3 .2)

There are, of course, other possibilities, such
as the fast parton picking up more than one addi-
tional parton or the fast parton not going into the
valence, that can affect the pion cross section.
However, we shall assume that the probability of
these occurrences is small, and compare the data
to the simplest assumption described above.
As discussed in Ref. 3, the choices c.(0) = -,' and

T p &+ ANYTH)NG

where we have assumed an exponential form for
the transverse-momentum dependence of the cross
section. For yp - s+ + anything

f„p~Sf+ ANYTHING

1,8» WK 2.2 GIV

.Ol-

.Ol

.00I
0 .2

.ool
0

2 R+ (Q l~ 1.05 G e v

2 .6

FIG. 1. The invariant function E(y) for inclusive
electroproduction of x . The top curve is for N'=2. 2 GeV,

2 = 0.3 GeV2, and the bottom curve is for 5' = 2.2, Q2
= 1.5 GeV2. Both curves have g = 0.5.

FIG. 2. The invariant function I'(y) for inclusive
electroproduction of m+ as a function of g. For al. l

curves sbo~n W = 2.1 GeV, Q = 1.05 GeV The dashed
curve is the valence contribution, and the dash-dot
curve is the core contribution to the g = 0.5 fit.
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y =3 allow a range of possible values for g with
the constraint 0~g ~ 3. McElhaney and Tuan'
suggest that g = 0.5 gives the best agreement with
the electroproduction data. We have found that
g=0.5 also gives a nice fit for F(y} The experi-
mental data"" for y„p- p +anything and our cal-
culations are plotted vs y in Fig. 1. The plots
include only the data for backward-going pions in
the c.m." For the backward-going pions (y ~ 0.06)
we obtain a reasonable fit to the data, but as ex-
pected in the region of small y the model predic-
tions are too large [the data for forward-going
pions would squeeze in between y = 0 and y = 0.06
on our plot; experimentally F(0) =10 'j.

The function F (y) for the process y„p- w'+ any-
thing is compared to the data' in Fig. 2. Again

g =0.5 gives a good fit. For comparison, the cal-
culated curve for g = 3 is also shown, as are the
contributions of the valence quarks and core quarks.
The contribution of the core is rather small.

Another interesting quantity is the ratio
o (y„p- w++ ~ ~ )/o (y„p- v + ~ ~ }. Some quark-parton-
model considerations of ratios such as these have
been made by Dakin and Feldman. " Experimental
determinations of this ratio have been made for a
number of W'and Q' values, but only in the forward
direction in the y„p c.m. system, which corresponds
to y c 0.06. That is, the experimental points lie
in the region where our model cannot be used to
make accurate predictions. The experiments show
the ratio increasing as y„becomes more virtual,
and ranging between 1 and 2. We calculated the
ratio for the larger values of y, and found that
o (n+)/o (s }=1.3, with little variation as a function
of Q'.

The second model described in Sec. II, the parton
fragmentation model, does not work at all mell.
This model predicts relatively too little p produc-
tion at high y and too much at low y. The normal-
ization is also too low, if we put in the suggested'
factor, g(y} =-', (1-y}; even at small y the predic-
ted curve is about half the experimental cross
section.

We can perhaps conclude that the high-y region
at present experimental energies represents
partons in an intermediate kinematic region where
"grabbing" a single additional parton is what they
are most likely to do. At lower y there will be
multiparton interactions, while at higher energies
the parton itself shows scaling behavior as it
fragments. If this is true, it will be interesting
to observe relatively fewer high-y pions produced
in higher -energy experiments.

We have thus used a quark-parton model to cal-
culate ep em++anything. The values of the para-
meters that we used were taken from the work
of Kuti and Weisskopf' and McElhaney and Tuan, ~

where they were determined by fitting to the
totally inclusive experiment y„/- anything. No
new parameters are needed for the extension to
the one-particle inclusive reaction y„N- p'+ any-
thing, and our calculation of the longitudinal mo-
mentum spectrum of the pions has given reason-
able agreement with the data in the kinematic
region where agreement was expected.

APPENDIX

(2w)'2 s (p-r p)

x y(P;-P„){n!)-'~IP,- P„), (Al )

where P is the proton momentum in the infinite-
momentum frame, and the normalization of the
n-particle state vector is (P ~ -P„IP ~ "P„)=n!.
To facilitate the calculation we will make the sub-
stitution p, II

=x& p, and assume that the wave func-
tion can be factored as

P(P," P„}=P(;"«„)f(P„-P„,), (A2)

where P~ is a transverse momentum. We will
normalize the transverse part of the wave function
by itself so that

x If (P, - P. )I'. (A3)

Then normalization of the proton state vector
requires that

We will be using a formalism somewhat different
from that used by Kuti and Weisskopf. ' It is easier
to extend their model if we take a bound-state
picture" and describe the partons by writing wave
functions rather than probabilities. In this section
we explain our formalism and derive G(«}, the
probability of finding a parton with momentum
fraction between x and x+dx in a proton with
momentum P. We compare our G(«) with the Kuti-
Weisskopf result to determine under what condi-
tions the two formulations are identical.

In its infinite-momentum frame, the proton's
momentum vector is

P"= (P+I'/2P, 0, 0, P),

where the limit P-~ will be taken. In this frame
we view the proton as a parallel stream of g non-
interacting partons. We define the momentum
space wave function of the g parton state to be
P(P," P„), where Pj is the momentum of the ith
parton. The proton state vector can be written
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5
cfog

8

The probability of finding a parton with momentum
fraction between x and x+Ch can be obtained from
the normalization by not doing the last integration
in Eq. (A4) and multiplying by a factor of n:

n~l

( 2 + g/PR)l/2 ~ Pa (
2 + g/P2)1/9

n-&

x6 1- xf-x n
fag

x (y(Ã, " x„)('. (A5)

In the Kuti-Weisskopf model the proton is com-
posed of three valence quarks, and a core of
qq pairs and neutral gluons. The quarks in the
core are distributed statistically,

(i) The wave function for a valence quark is

y2 ( ) ~~1-a(0)

(ii) The wave function for the k, qq pairs of type
i inthe core is

p'(r ~ ~ ~ x ) cc, 1 =1, 2, 3.(sg)'&

(iii) The wave function for the l neutral gluons is

(1-«)x'-"&'&
dP+ ( ) g2 + 2/P2)l/2 (A8)

Equivalently, the wave function for an X valence
quark is

graf
~ cog Q( ~

/I

The modification of McElhaney and Tuan, ' which
brings the Kuti-Weisskopf model into closer agree-
ment with experiments using neutron targets,
changes the 0t valence quark distribution to

dPc 0 ) g( 2+ 2/P2)1/21 (A6) y'g) ~ (1 —x)g'-+" .

and the distribution of the valence quarks is based
on Regge considerations,

Thus, the wave function of the n-parton state is

p'(x ".x ) = Z x' +'i» ' ~" (1 -x )x '-'+'

&t a(0}
~v 9 )

( 2 ~ 2/P2)1/2 (A V)
„(kg)'i (kg)" (kz)'v"

k, ~ k, ~ k, ~ ll ' (A9)

where o. (0) is the intercept of the nondiffractive
trajections. The Kuti-Weisskopf probability dis-
tributions of quarks in a proton are given by Eq.
(2.V) in Ref. 2. Comparing this with our Eq. (A5)
we can make the following identifications:

where Z~ is a normalization constant determined
by Eq. (A4), and k, +k, +&, +l+2=n This form. of
the wave function can be used to calculate the
ep- e+anything cross section, and the Kuti-Weiss-
kopf form of vW, (x) will be obtained.
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