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%e apply current-algebra techniques to study the constraints imposed on neutral-current-
induced soft-pion production, using as input existing bounds on neutrino-proton elastic scat-
tering and existing data on neutral-curreat-induced deep-inelastic scattering. In the case of
a purely isoscalar weak neutral current, a simple soft-pion argument relates the cross sec-
tion for threshold (in pion-nucleon invariant mass) weak pion production directly to the cross
section for neutrino-proton elastic scattering. Hence, a bound on the latter cro88 8ection
implies a bound on the former. To apply the method away from threshold and to nonisoscalar
neutral currents, we extend a model which we had developed earlier for weak pion produc-
tion in the (3,3) resonance region so as to include the low-energy-theorem constraints.
Numerical work using the extended model shows that a threshold peak (now attributed to
background) in preliminary Argonne data on i +n &+p+ ~ mould have implied a threshold
cross section much larger than can be obtained with any neutral current formed solely from
members of the usual V, A. nonets. %e analyze recently reported Brookhaven National Lab-
oratory results for neutral-current-induced soft-pion production under the simplifying as-
sumption of a purely isoscalar V, A neutral current. Vfe find in this case that the magnitude
of the Brookhaven observations exceeds the theoretical maximum by more than a factor of 2
unless the assumed isoscalar current either contains a vector part with an anomalously large
gyromagnetio ratio (g[=~2M&Et/Et[ or involves the ninth (SU& singlet) axial-vector current.
A vector part with a large

~ g ~
value leads to characteristic modifications in the pion-nucleon

invariant-mass spectrum for M(~N) & 1.4 GeV, an effect which should be testable in high-
statistics experiments. Two other qualitative predictions of isoscalar V, A structures are
{i) except for a narrow range of values of g, constructive V, A interference in v + N ~ + N
+~ implies constructive interference in i +p i +P and vice versa, and (ii) if V, A interfer-
ence is observed in neutral weak processes then (as is well-known) the neutral interaction
may make a parity-violating contribution to the pp, ep, and pp interactions. These features
may help to distinguish V, A neutral-current couplings from alternative coupling types, which
will be discussed in detail in subsequent papers of this series.

I. INTRODUCTION

The initial experiments discovering weak neutral
currents in high-energy inclusive neutrino-nucleon
scattering' have now been supplemented with the
observation of neutral-current effects in the ex-
clusive channel containing a pion-nucleon final
state. Obtainable resolutions will permit the de-
tailed study of pion-nucleon invariant-mass dis-
tributions in the region at and below the (3, 3) reso-
nance. Some of the issues raised by recent
Argonne National Laboratory (ANL)' and Brook-
haven National Laboratory (BNL)' data on neutral-
current exclusive channels are: (i) What is the ex-
pected magnitude for threshold (in invariant mass)
neutral-current pion production'? (ii) What are
the implications if (3, 3) resonance excitation is
not observed in neutral-current pion productions
In the present paper we analyze these questions
under the conventional assumption that the weak
neutral current has a V, A spatial structure. A

preliminary account of the analysis has appeared
elsewhere. ' In subsequent publications, ' the same

methods will be applied to the more general cases
in which neutral-current couplings of 8, P, T type
appear, or in which V, A neutral. currents with
abnormal G parity are present.

The paper is organized as follows. In Sec. II we
give a simple (although somewhat naive) analytic
treatment of threshold pion production in the case
when the neutral current is of pure isoscalar form,
and use it to illustrate the methods employed in
the more detailed treatments which follow. In Sec.
III we develop the ingredients needed for a more
elaborate treatment of bounds on soft-pion produc-
tion. We first review the standard formulas de-
scribing neutrino -proton elastic scattering and
deep-inelastic inclusive neutrino-nucleon scatter-
ing, the latter both in a general framework and
within the context of quark-parton-model assump-
tions. We then describe the modifications needed
to make our old dispersion-theoretic model for
soft-pion production in the (3, 3) resonance region'
consistent with all soft-pion theorem constraints,
and discuss the inclusion of a well-defined set of
corrections to the soft-pion limit. In Sec. IV we
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give results of numerical studies of the pion pro-
duction model, which show its validity in the
charged current case. We then apply the formulas
developed in Sec. III to a detailed numerical anal-
ysis of threshold pion production for the ANL neu-
trino flux case, considering a succession of more
complex models for the structure of the neutral
current, leading up to the most general neutral
current which can be formed from members of
the usual V, A. nonets. We finally analyze low-in-
variant-mass [W =M(vN) «1.4 GeV] pion production
for the BNL neutrino-flux spectrum, under the
simplifying assumption of a pure isoscalar V, A
neutral current. In Appendix A, we give the
threshold low-energy theorem (analogous to that
developed in Sec. H) which applies in the case of
the SU(2) U(1) model neutral current. In Appen-
dix 8, we attempt a rough estimate of the leading
corrections to the soft-pion limit in the case of an
isoscalar (octet) axial-vector current, and esti-

mate the extent to which the corresponding cor-
rections in the isovector current case are already
included in the basic pion production model a,s a
result of unitarization of the (2, 2) multipoles. In

Appendix C, we discuss nuclear charge-exchange
corrections for low-invariant-mass weak pion
production and give a tabulation of the charge-ex-
change matrices for various nuclear targets of
current theoretical interest.

II. SIMPLE ANALYTIC TREATMENT

We begin by giving a simple analytic treatment
of threshold pion production, which, although
somewhat naive, nonetheless illustrates the basic
ideas exploited below in our more careful numer-
ical calculations. The starting point for our deri-
vation is the standard soft-pion formula' for pion
emission in the process J+N- m~+N, with g a gen-
eral external current and N a nucleon. This reads'

&Xp,) s(e) l&(O) IXP,)& = 2f~.-s(P2)
M

" ~j'(h -&)' -~Ng~

Sr P, +My P, +M„g„
2pN „+,q M„- pq M„

+possible additional pion-pole "seagull" contribution u(p, }Q& +0(q),

with

~N I ~N w +N(2 fo)
10 20

&&(P,) I&(O) IXP,)& =Of ps(p, ) ~(p, -P,) s(p, ), (2)

&~P.) I [Z,', y(O)] [X(P,)& =-2I „g(P ) Z,'(P, —P,) s(P,) .

In Eqs. (1) and (2}, 0 = p, + q —p, denotes the four-
momentum carried by the external current,
8„=13.5 is the pion-nucleon coupling constant,

g& ~1.24 is the nucleon axial-vector renormaliza-
tion constant, g(P,), u(P, ) are nucleon spinors (in-
cluding isospinors), and f& is the isospin wave
function of the emitted pion. The first term on the
right-hand side of Eq. (1) is the usual equal-time
commutator term which appears in soft-pion the-
orems, while the second and third terms are ex-
ternal-line-insertion terms in which the soft pion
is emitted, respectively, from the final and initial
nucleon lines. The additional pion-pole "seagull"
piece is necessary only when the pion-pole con-
tributions of the first three terms do not add up to
give the full pion-pole contribution expected for the
reaction g+N m~+¹

Let us now specialize to the case of an isoscalar
V, A external current J, for which the equal-time
commutator term vanishes" and for which there
is no additional pion-pole "seagull" contribution.
The entire soft-pion emission amplitude then
comes from the external-line-insertion terms,
which are most conveniently evaluated in the iso-
baric frame in which the final pion-nucleon sys-
tem is at rest. In this frame, the insertion on the
outgoing nucleon line vanishes at threshold in in-
variant mass, since when p, = q = 0 we have

g(p, ) dr, (II, +M, ) I-„=-,=, = e, s(p, ) r.r, (P', +M ) I-„=.

=0. (2)

So at threshold, for an isoscalar V, A current 4,
the matrix element of Eq. {1)reduces to the single
term

&Xp,) v(e) I &(o) I &(p, )&

10 N

(4)

On replacing the projection operator (P, +M„)/2M„
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= g g„,u(p, ) J(k) u(p, s)
pip

with

a =X2 7'~X,g~

x[u(pts) y, y, u(psst)] a, (5)

1 for P P+m

-1 for n-n+n

v 2 for n-P+ ~

v 2 for P- n+'s

by g, u(pts) u(p, s} and explicitly indicating the nuc-
leon isospinors X2 Xy and the helicity s, of the ini-
tial nucleon spinor u(P, ), we find

&N(p. ) s(&) I&(0) I N(p, )&

&threshold

=&les I*)( '
)

'*

g, ', t (1+t/4Ms')
M ' (1+t/2M ')' '

Inserting phase-space factors according to

(10)

~(v+p "+p) = 1 1 2(Isa I2&
dt 4m E'

If we now make the approximation of neglecting
the pion mass in all kinematics, the factor in
square brackets in Eq. (9) becomes just the
squa, red, spin-averaged matrix element (ISR I'& for
vN elastic scattering, and Eq. (9) tells us that

The factor in square brackets in Eq. (5} is readily
evaluated by using explicit expressions for the
spinors, giving

o k

N jp+

(0 1) t'

Xg,

M

g l&N(p, ) s(e) IJ(o) IN(p, )&l'
N spins

3t s ( I Sg
I &threshold

=st„.' —,
' g g lu(p, )&(»u(p, &l'

g spin s

„—2P„M„' (9)

where we have used the definition

—'~ Xe =s&Xs (9)

of the initial-state helicity. Since s, = +1, this fac-
tor disappears when we square and sum over ini-
tial and final nucleon spins, so we get

do'(v+N- v+N+s} 1 Iql, (lsil I, )dtdg 16@3 E2 v

with lql the pion isobaric frame three-momentum,
Wthe invariant mass of the final mN isobar, and
E the initial lab neutrino energy, we get finally
the relation

1 d(ov+-Nv+N+s)
/q J

dtdS' threshold

4m M„ 2M' Mg 4M~

x 1+ t ' do( v+ p —v+ p)
2M' dt

(12)
1 for I' production

2 for n' production .

We see that in the special case which has been
under consideration, instead of obtaining a soft-
pion relation between matrix elements, we obtain
a relation directly in terms of reaction cross sec-
tions. The significance of Eq. (I2) is that it allows
one to translate an upper bound on the strength of
v+p- v+ pinto an upper bound on the strength of
threshold pion production by the zoeak neutral cur-
rent.

As an illustration, let us apply Eq. (12) to the
ANL data' by integrating over t and averaging
over the ANL neutrino energy flux" nAN, (E),
giving

da'{v+n- &+p+& )
ANL( }

I I
derq

t,„&s& t t t -' do(v+p- v+p) (ts)dEn (E)ANhM 2 4M ' 2M4m' M„' 2M& M~ g
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We have multiplied both sides of Eq. (12}by M»' so that they have the dimensions of a cross section; also
for convenience, we assume the flux n„N~(E) to be unit normalized,

(14)

so that we are considering flux-averaged cross sections. Using the ANL 95% confidence bound"

o" '(v+p- v+p) «0.32a "N~(v+n- p +p) =0.25X10 "cm', (15)

and assuming the t dependence of the charged-current quasielastic and neutral-current elastic cross sec-
tions to be similar, "'"we find that the right-hand side of Eq. (13) is bounded by 0.32 x0.46 x10 "cm'
=0.15x10 "cm'. Using 20-MeV invariant-mass bins, we can then estimate a bound on the flux-averaged
cross section in the two bins nearest threshold as shown in Table I, giving the result

o,",,„=o(v+n- v+P+w ANL flux averaged, 1.08 GeV & W&1.12 GeV} &0.6X10 "cm' . (16)

For comparison, the preliminary ANL data on
v+ n —v+P+ m, before final background subtrac-
tion, showed -5 events in the first two bins, which
would have corresponded to a cross section of

o2~Nb~ (before background subtraction)

-20x10 4' cm' (I'I)

in strong violation of the bound of Eq. (16). It is
now considered very probable that these events do
not represent a true neutral-current effect, but
arise from various neutron-induced backgrounds.

As we have already remarked, the above treat-
ment is too naive in a number of respects. First
of all, the restriction to cases, such as" that of
an isoscalar neutral current 8, for which the
equal-time commutator term vanishes excludes
from consideration such processes as m produc-
tion in the SU(2) U(1) gauge model. Secondly, the
external-line-insertion terms are rapidly varying
pole terms, and so the kinematic approximation
of neglecting M„ in calculating them can be dan-
gerous. Finally, it is important to estimate the
leading O(q) corrections to the soft-pion approxi-
mation, and to calculate the effects in the thresh-
old region of the tail of the (3, 3) resonance. As
discussed in detail in Sec. III, we deal with these
problems by using an extended version of a model
for the weak pion-production amplitude which we
have described elsewhere. ' The extension will
permit us to study the entire low-invariant-mass

region 8' +1.4 GeV, rather than just the first 40
MeV or so around threshold. For completeness,
however, we give in Appendix A the analog of the
threshold low-energy theorem of Eq. (12) for the
case of the SU(2) U(1)-model neutral current.
The formulas of Appendix A still neglect the pion
mass in the kinematics [as well as the leading
O(q) corrections and the (3, 3) resonance tail] and
are not used in the subsequent numerical work.

III. DETAILED TREATMENT

We proceed in this section to set out the basis
for a more detailed numerical treatment of bounds
on weak pion production by a V, A weak neutral
current. The basic idea, as developed above, is
to use soft-pion techniques to relate weak pion
production to elastic neutrino-proton scattering,
and to use experimental bounds on the latter. It
will also be useful, at some stages of the analysis,
to impose constraints obtained from experimental
data' "on deep-inelastic inclusive neutrino-nu-
cleon scattering induced by the weak neutral cur-
rent. In Sec. IIIA we give the necessary vertex
structure and cross-section formulas needed to
describe neutrino-nucleon elastic scatter ing. In

Sec. III B we give the necessary formulas for using
deep-inelastic information; first, in a rather gen-
eral form assuming only scaling and the fact that

o(P+N- p'+ I')/ (vo+N- p, + I') = —', ,

TABLE I. Application of Eq. (13) to bound the cross section for v+n —v+p +7) in the two

ANL 20-MeV bins nearest invariant-mass threshold.

W at bin
center ( q( /M„d W/I„

Bound on
right-hand side

of Eq. {13)
Bound on cross section in bin

[((qIdW/M~ Ix Q.15x10 ~ cm2]

1.09
1.11

6.4x]0 ~

1.1x10 ~

0.021
0.021

0.15x 10 38 cm2

0.15x 10-38 cm'
0.20 x 10 4' cm2

0.35x 10 4' cm~



STEPHEN L. ADLER 12

and then in a more restrictive form which makes
use of quark-parton model and quark-model as-
sumptions. Finally, in Sec. III C we develop the
extended weak-pion-production model which rem-
edies the defects in our naive treatment enumer-
ated at the end of Sec. II.

A. Elastic neutrino-nucleon scattering

We shall consider in what follows the most gen-
eral V, A weak neutral current which can be formed
from members of the usual vector and axial-vec-
tor nonets. We write for the neutral-current ef-
fective Lagrangian

&.((=
2 ~h(l-r8)»v,X

gVp +p +gVS 3 +gV8 8
A.

g&o +o g&s +s -gas &8

with F&, && nonet currents represented in the
quark model (with quark field g) by"

8 j =0+ 2~$4

=4w r, z&gg .

(18)

We express the nucleon matrix elements of the
neutral members of these current nonets in the
form'6

(N(p, )l0',"IN(p, )& =31 (sp)[F'"(k') y'+tF2'"(k')o 'k, ) 4~(P } ~

&N(p2) I
6'i'I N(P)& = 3fv34(P)b6" (k') r'r, + k(~" (k'}k 'r, ] t) s(P } (20)

The vector and axial-vector form factors defined in Eq. (20) are related to the standard nucleon form fac-
tors E,"', (k'), g~(k'), k~(k') by

F(3) (k2) F& (k2} g(3)(k2) g (k2)

F ' (k') =3F (k') k "(k') =k (k')

Defining total form factors F, ,(k'), g~(k') by

Fr (k2) = 1 (2)1 2g E40 (k2) + 1 eg P3 (k2) +
1

( l)1/2g F(8) (k2)

gr(k2) 1 (2)l/2g g(0)(k2) +1 eg g 3 (k2) + 1 (l)l/2g g (8)(k2)

(21)

G2
=

8 @2M 2 {[IF,'I'+ Ig~l'+tlF; I'][4M '&' —l(M '+2M, &)]

+-,' t[lg&I2(t+4M„2)+ IE, +2M„F, It2j +Re[ &g*( F+2M„E, )] t(4M„E —t)) .

(23)

with &=1 for v+p- v+p and e=-1 for v+n- v+n, the differential cross section for neutrino-nucleon scat-
tering takes the form

For incident antineutrinos, the sign of g& in Eq.
(23} is reversed. )iran(1 —y,}vl, h+adjoint, (25)

B. Deep-inelastic inclusive neutrino-nucleon scattering

We turn next to the constraints on the coeffi-
cients appearing in Eq. (18) which are imposed
by experimental measurements' "of the deep-
inelastic inclusive neutrino-nucleon scattering
ratios'

It =v(v+N-v+F}/c(v+N- ti +F},
c(v +N V+F}/c(u+N- p,-'+F) .

(24}

with

c) ch COSeC (+14 i2 F +i c)12X

+stnec (6'4+(8- +4+)8) ~ (26a)

X
~ch +1+ &2 +1+ f 2 (26b)

In what follows we aim only at getting formulas
which hold to an accuracy of 10 or 20%, and so we
make at the outset the approximation of taking the
Cabibbo angle 9& to be zero, which simplifies Eq.
(26a) to read

The charged-current-induced reactions in the de-
nominators in Eq. (24) are described by the usual
charged-current effective Lagrangian

The virtue of using Eq. (26b) is that the vector
and axial-vector parts of the charged current are
then related by an isospin rotation to the corre-
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sponding isovector vector and axial-vector terms
in the neutral current of Eq. (18).

To proceed with the analysis, we assume the
validity of Bjorken scaling" in deep-inelastic
charged-current and neutral-current-induced
inclusive neutrino reactions. Considering for the
moment the charged-current cross sections
o(v+N- g +I') and o(v+N- p'+I'), we review a
standard analysis" starting from the formula

o(v+N- lA++ I')
o(v+N- y, +F)

1 p1 pl
Odxaz+ —,

' f, dxxaz+ J~dxxas
1'dxas+ J'dxxac +s J'dxxas '

0 0 0

where

ag- I', -xE, -0,1

ai -—Jl, —gE~ «0,1

contributions

F, ,(x) = E,"„(x)+ E„",(x), (28)

we may rewrite the relations of Eq. (28) as

—.
'

I F,(x) I
=-.' [F",(x) + F",(x)],

E2 (x) + E, (x) = 2» [E,(x) +E, (x)] .
(3o)

E",(x}~ 2x Ev(x),

E,"(x) ~ 2»E", (x),
we learn that

1 ~ 1F, (x) =E",(x) =—E, (x) =
2

E,"(x)

(32)

Comparing Eq. (30) with the Schwarz inequality"

-'IF.(x) I -[F', (x) F",(x)]"--.' [E",(x)+E",(x)] (31)

and the positivity inequalities

a~ =E, +-,E, -0,1

x = 1/&u = scaling variable,
=- —,E,(x) =—,E,(x) = —F,(x) . (33)

o'(v+N p'+I')/a'(v+N- g +I') = —,
'

which implies that a~ =a~ =0, that is,

E,(x) =- 2E,(x), F,(x}=2xF,(x) .

Splitting E, and E, into vector and axial-vector

(28)

with E. . . the deep-inelastic structure functions
in the scaling limit, and where an average nu-
cleon target N= ,'(n P+) has-been assumed. Em-
pirically, it is found that

Now let us turn our attention to the deep-inelas-
tic ratios of Eq. (24). If we again take N to be an
average nucleon target, the isovector and iso-
scalar terms in the neutral current of Eq. (18) do
not interfere, and so we get a lower bound on R,
and R„- by neglecting the isoscalar contributions
to the cross section. Using the fact, already men-
tioned, that the isovector pieces of Eq. (18) are
related to the corresponding isovector pieces of
Eq. (26) by an isospin rotation, we find that

(
I"1

& dx{& '[-'»E, (x)+-'E,"(x)]+gA,'[ ,'»E", (x)+-,'-E,"(x)]+g„,g„, —,'»E (x)}
J''dx[ ,' »E,(x)+-,' F,(-x) + ,' xF,(x)]— (34)

Substituting now the relations of Eq. (33}, we get
the simple inequalities'

&v -g(8'Vg +8'AS +8'VggAg),

«1
lu 2 (gvp +gAs gv3 gAg) .

(35)

When added in the linear combination 3R„+R„-
which eliminates the vector-axial-vector inter-
ference term, and combined with 95% confidence
limits inferred from current measurements of
B„and B„, the inequalities of Eq.-(35) yield the
constraint

1.5 «3R„+R„-«gp +gq 2, (36)

which will be used in our subsequent analysis. As
we have already emphasized, in getting Eq. (36}
we have only used the assumption of scaling to-
gether with the empirical observation of a

charged-current antineutrino-to-neutrino inclu-
sive cross-section ratio of = 3.

In order to strengthen Eq. (36) so as to include
the isoscalar current terms in Eq. (18), it is nec-
essary to go beyond the assumptions just stated
by using information from the quark-parton model.
Specifically, we will make use of the standard
spin-2 quark-parton model for deep-inelastic
scattering, "with the additional assumptions that
the strange parton and the antiparton content of the
nucleon may be neglected" [the latter of these as-
sumptions is suggested by the approximate rela-
tions of Eq. (33}]. The quark-parton model in this
form is expected 2 to be good to an accuracy of
order 20%, and has the great virtue that all x
dependence (for an average nucleon target) ap-
pears in a single universal over-all factor which
drops out in the ratios R, „—. A straightforward
calculation then gives
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8„
l

—3 [[gFO 2 (3) +gvs 2 (3) ] +(2 gF3) +[gAO 2 (3) +gAS 2 (3) ] +(2 gA3) }

+ 3([gFO2 (3) +gVB 2 (S) ] [gA02 (3) +gA8 2 (3) ]+2gvg 2gAg)

1.5-&v +34 =[gvo(s) +gvs(s) ] +gvs +[geo(3) +g~s(3) ] +gas

(3V)

g&~'&(0) =(3 —4 x0.66) 1.24 =0.45,

while the measured value of F2~'~(0) is

2M E ' (0)/E ' (0) = —0.12 .

(38a)

(38b)

For the constants g&"(0) and E2~"(0) recourse
must be made to a quark-model analysis of cur-
rent-renormalization constants, "which gives"

One additional piece of information which will be
needed, in order to use the constraint of Eq. (3'l)
in an analysis of low-energy pion production, is
knowledge of the renormalization constants
g~""(0) and F~o'Sl(0) which describe the one-nu-
cleon matrix elements of the isoscalar currents
appearing in Eq. (18). The constant g„' (0) is
fairly reliably fixed by SU(3) to have the value"

ggo (0) = 5 1.24 =0.'i4,

2M„E,' (0)/F, (0) = —0.1
(39)

for the unitary-singlet renormalization constants.

C. Extended model for weak pion production

%e turn finally to a description of the extended
model for weak pion production which we will use
in the numerical calculations of Sec. IV. As an
aid to the discussion which follows, let us first
rewrite the pion-production matrix element of Eq.
(1) in an alternative form, obtained by rearrang-
ing the pseudovector-coupling external-nucleon-
line-insertion terms which appear there into
pseudoscalar-coupling Born terms of the usual
form. This gives

&XP.) v(&)I&(0)l&(P,)&=-&~.u(P. ) M" &,'(&-q)+2M b, ~„~(I)1,
NIA g

g P +g +M»
J(y) &(y)

P f +M~ g
2Afg ' v- vg v+ vp 2M~

+possible additional pion-pole "seagull" contribution u(p, ) g, +O(q),

with

v=(p, +p2) h/(2MN),

vs=-q h/(2Mg),

(41)

and with all other quantities as defined above.
The anticommutator term which has appeared in
Eq. (40) is the PCAC (partial conservation of
axial-vector current) "consistency-condition"
term" arising from the pseudovector-to-pseudo-
scalar rearrangement.

With the aid of Eq. (4), we can now proceed to
discuss the pion-production model, which is an
extension of a calculation of weak pion production
in the (3, 3) resonance region which we have de-

scribed in detail elsewhere. In its original form,
the model included the pseudoscalar-coupling Born
terms and the pion-pole terms of Eq. (40), with no
kinematic approximations. In addition, the dom-
inant (3, 3) multipoles were unitarized by the
method used in the CGLN treatment of pion photo-
production, " so as to correctly describe (3, 3)
resonance excitation. Our basic extended pion-
production model is obtained by adding the com-
mutator term in Eq. (40) (evaluated at q =0, ex-
cept where a pion pole appears) and the "consis-
tency-condition" term to the Born approximation
and resonant terms of the original model, yield-
ing a pion-production amplitude which has the cor-
rect soft-pion limit. In terms of the amplitudes
V&'0, j=1, . . . , 6 and A&', j=1, . . . , 8 used in
Ref. 6 the additions are~
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V 0) Fs(k')
N

k2
A y(-) gr 8'A(k )

MN

AA( ) = " F"(k2)
MN gg

[E,(k ) —g~gw(k )4 MN'g~

+2MN F2(k )] .

(42) tA( ) -A( ) ~ ~
»icmo ~ -0.21j lp

r
A(+) A(+)B) ) basic model 0

(43b)

Hence to bring the basic model into agreement
with E(I. (43a} we add the O(q) corrections

which M, =1. In order to apply E(I. (43a}, we must
first estimate the extent to which the amplitudes

A,' in our basic pion-production model differ
from their Born approximations as a result of
unitarisation of the (3, 3) multipoles. This is done
at the end of Appendix B, with the result

Note that the terms referred to in Ref. 6 as "dis-
persion-relation corrections to the small partial
waves" are omitted from the amplitude, since
including them along with the additions of E(I. (42)
would involve double counting (and also for the
practical reason that the numerical evaluation of
the dispersion-relation terms is very costly in
terms of computer time).

A further elaboration on the pion-production
model consists of adding in the leading correc-
tions (of first order in the pion four-momentum q
and zeroth order in the lepton four-momentum
transfer k) to the soft-pion limit. These correc-
tions are calculated by the method of Low" and
Adler and Dothan"; for the vector amplitude they
vanish (as a result of vector current conservation),
while for the isovector axial-vector amplitude
they are related by PCAC to momentum deriva-
tives of the pion-nucleon scattering amplitude at
the crossing symmetric point. For an isoscalar
axial-vector current the O(q) corrections cannot
be precisely calculated, but an heuristic reso-
nance dominance argument given in Appendix B
suggests that they may be relatively considerably
smaller than in the isovector axial-vector case,
and so we neglect them. For the isovector axial-
vector amplitudes, the calculations of Ref. 28
tell us that~

gA(-) -0 16(1+k2/M~) 2

hA~(') =1.96 (1+k'/M') '
(43c)

AA( ' =(M„/W) 0.15 (1+k'/M') '

b,A(') =(M„/W) 1.96(1+k'/M') ' (43d)

Only the k' =0 values of the correction terms are
actually determined by low-energy theorem argu-
ments; however, to avoid a spurious dominance
of these correction terms at large k', we have in-
cluded an ad hoc dipole form factor (1+k'/M') ',
characterized by a dipole mass M. In the numer-
ical work of Sec. IV, Mwas taken equal to the nu-
cleon mass M„=0.94 GeV, which is rather typical
of the dipole mass values" found in both the vec-
tor and the axial-vector form factors. As we will
see in Sec. IVA, substantial variations of M about
this value have a relatively small effect on the
magnitude of the O(q) corrections to the threshold
pion-production cross sections. %'hile the inclu-
sion of the order-& corrections may be an im-
provement in the amplitude near threshold (or at
a minimum, should give an idea of the likely im-
portance of corrections to the basic soft-pion ma-
trix element), their undamped growth as q in-
creases makes their inclusion of doubtful value
away from the threshold region. To illustrate
this, we also evaluate the O(q) corrections ac-
cording to the modified recipe

~g +-
2MN gw

=0.36,

egfrN (+)
[A(+) A(+)B]

~

8A

B V=V =pB

(43a)

=2.8;
p v-vB- Jp-p s

with the superscript B indicating the Born approx-
imation and with the numerical values in units in

which agrees with E(I. (43c}at v = vt) =0, but which
grows less rapidly with increasing K To sum up,
the fully extended pion-production model which we
have just described contains both nucleon and pion
Born diagrams with no kinematic approximations,
includes the dominant (3, 3) multipoles in unitar-
ized form, and agrees with all low-energy-the-
orem constraints through terms of first order in

q and k, with an error of order qk at most. It
should thus give a reasonably accurate descrip-
tion of low-invariant-mass pion production, par-
ticularly in the region close to invariant-mass
threshold.
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IV. NUMERICAL RESULTS

We turn now to numerical calculations using the
pion-production model developed above. In Sec.
IVA we give the results of numerical studies of
the model, in which we examine the effect of the
O(q) corrections of Eqs. (43c), (43d) and explore
their sensitivity to the mass parameter M, and in
which we compare the predictions of the model for
charged-current-induced neutrino pion production
with experiment. In Sec. IVB we use the model
to give bounds on the ANL neutral-current-in-
duced threshold pion-production cross section,
for a variety of different models for the structure
of the weak neutral current. Finally, in Sec. IVC
we study low-invariant-mass pion production in
the BNL neutrino flux, in the special case of a
pure isoscalar weak neutral current.

A. Numerical studies of the model

We begin our numerical examination of the pion-
production model of Sec. IIIC with a study of the
O(q} correction terms added to the weak pion pro-
duction amplitude in Eq. (43). In Table II we give
theoretical ANL 2-bin cross sections, defined as
in Eq. (16), for the seven allowed charged- and
neutral-current-induced pion-production reactions.
In column 2 we give the cross section obtained
without the O(q) correction [that is, from the basic
pion-production model including the soft-pion ad-
ditions of Eq. (42), but without the additions of
Egs. (43c}or (43d}]. In columns 3, 4, and 5 we

give the corresponding cross sections with the
O(q) corrections included as in Eq. (43c), taking
the ad hoc dipole mass M as M„, M~/v 2, and

M„&2, respectively. In column 6 we give the
cross sections calculated with the O(q) correc-
tions included as in Eq. (43d}, with M =M„. We
see that the O(q) corrections have a substantial
effect on threshold cross sections for v+P- v

+P+m and v+n- v+n+m, a moderate effect on

the cross section for v+P- p, +P+n', and a rela-
tively small effect on the remaining reactions. As
expected in the threshold region, the recipes of
Eq. (43c) and Eq. (43d) for the O(q) corrections
give similar results; we also see that the varia-
tion in the threshold cross section as M' is
changed by a factor of 2 in either direction from
M' =M&' is smaller than the effect of including the
O(q) corrections, indicating that the sensitivity
to the value of the mass parameter M is not ex-
cessive. In Table III we show the effect of the
O(q) additions on the ANL and BNL cross sections
integrated over the low-invariant-mass region
5'(1.4 GeV. Again, the reactions v+N- v+N+m'
are sensitive to the O(q) additions, with the
effects on the other cross sections ranging from
moderate to small. Here, however, we see a sub-
stantial dependence on whether the recipe of Eq.
(43c}or of Eq. (43d) is used, indicating that the
O(q} additions do not constitute a well-defined
correction to the basic pion production model
outside the threshold region. A satisfactory treat-
ment of the O(q) terms away from threshold would
require their interpretation as the low-energy
limits of appropriate particle exchange terms. In
the numerical work on the ANL threshold cross
sections for v+n- v+P+ n described in Sec. IV B,
we will include the O(q) correction terms with
M=M„. In the numerical work of Sec. IVC ana-
lyzing the isoscalar case for the BNL spectrum,
we will neglect the O(q) corrections —they vanish
for an isoscalar vector current and, as argued in
Appendix B, may be relatively small (although
hard to estimate precisely) for an isoscalar axial-
vector current.

Obviously, the best way to assess the reliability
of the pion-production model developed in Sec.
III C is to compare its predictions for charged-
current-induced pion production reactions with
experiment. In Fig. 1 the ANL data" for v+ p- p. +P+m' are plotted together with predictions

TABLE II. Effect of 0 (q) additions of Eqs. (43c), (43d) and sensitivity to the ad hoc dipole
parameter M in the ANL threshold region. Neutral-current cross sections are calculated in
the Weinberg-Salam model, with sin 8 =0.35 and D8~ =0 [see Eq. (52)].

Reaction

Values of 02bin m 10 ' cm
With 0@) from Eq. (43c) With O(q)

Without O(q) M =M& M =M&/W2 M =MNW2 from Eq. (43d)

v+n-p +p+z'
v+p ~p +p +71

v+n p +n+x'

v+p v+p+7}
v+n- v+n+n'
v+n v+p+n'
v+p —v+n +@+

3.8
4.5
2.3

0.42
0.47
0.91
0.97

3.5
5.9
2.1

0.73
0.77
0.80
0 ~ 87

3.6
5.6
2.0
0.61
0.65
0.82
0.89

3.5
6.4
2.2

0.88
0.92
0.77
0.84

3.6
5.7
2.0

0.64
0.69
0.81
0.88
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TABLE III. Effect of O(q) additions of Eqs. (43c), (43d) in the ANL and BNL (3, 3) reso-
nance regions, defined by W ~ 1.4 GeV. Neutral-current cross sections are calculated in the
Weinberg-Salam model, with sin20+, —-0.35 and b$~ =0 [see Eq. (52)]. As is evident from the
differences between the two recipes for adding in the O(q) terms away from the threshold re-
gion, the O(q) additions do not constitute a well-defined correction to the basic pion produc-
tion model when the entire (3, 3) resonance region is considered. However, they do usefully
indicate which channels may prove to be particularly sensitive to corrections to the basic
model.

Reaction

Values of
0."' " (W 1.4 GeV)

in 10 cm
Without With O(q)

O(q) Eq. (43c) Eq. (43d)

Values of
fT

BNL (~( 1 4 GeV)
in 10 cm

Without With O(q)
O(q) Eq. (43c) Eq. (43d)

v+n p, +P +sr

V+P ~P +P +7I'

v+n p +n+m+

v+P ~ v+P + 7t'

v+ n v+ n + 7('

v+n v+P+a
v+P v+n +r

0.0733
0.219
0.0571

0.0283
0.0288
0.0192
0.0204

0.0694
0.237
0.0534

0.0348
0.0350
0.0181
0.0191

0.0698
0.228
0.0491

0.0308
0.0311
0.0181
0.0192

0.147
0.427
0.129

0.0532
0.0539
0.0366
0.0383

0.143
0.499
0.134

0.0765
0.0768
0.0352
0.0367

0.143
0.466
0.116

0.0629
0.0634
0.0351
0.0367

of the pion production model, both with O(q) ad-
ditions (curves b and c) and without these additions
(curve a). The theoretical curves are evidently
low by 30-40% in the case of curve a and by
smaller amounts in the cases of curves b and c.
Part of this discrepancy may arise from uncer-
tainties in the absolute level of the ANL neutrino
flux (these uncertainties are included in the ex-
perimental error bars) and in the value of the
axial-vector mass parameter" M&, but part is
probably due to the known' tendency of the pion-
production model to underestimate pion-produc-

(.0

0.9-
0.8-

04

F 0.7-
0.6-

I

O 0.5-
c 0.4-

b 0.&-

0.2-
o. &-

I(
I I I I

0 ) 2 3 4 5 6

E (GeV)
FIG. 1. Comparison of the extended pion-production

model of Sec. IIIC with the ANL data for v+p-p
+P + ~'. Curve a, basic model containing Born, reso-
nant, and soft-pion terms; curve b, basic model with
0 {q) additions from Eq. {43c);curve c, basic model
with O(q) additions from Eq. {43d).

tion cross sections for (&'~ ~ 0.6 (Gep/c)'. To
minimize this problem, in discussing the BNL
isoscalar-current case in Sec. IV C we will always
compare ~atios of cross sections computed within
the pion production model with the corresponding
ratios obtained experimentally, rather than mak-
ing direct comparisons of cross sections between
theory and experiment. In Table IV we compare
preliminary ANL values" of the ratios o(v+ n- g
+p+ gr')/a(v+p- du +p+ w') and o(v+ n g+n-+w')/
o(v+ p- g +p+ v') with the corresponding theoret-
ical predictions for the invariant-mass interval
W &1.4 GeV. The agreement is seen to be gen-
erally satisfactory. In Fig. 2 we compare the
area normalized theoretical invariant-mass dis-
tribution for v+p- p +p+ w' [including O(q) cor-
rections from Eg. (43c)] with the corresponding
ANL experimental histogram"; the agreement in
this case is excellent. In Fig. 3 we give the same
comparison for the reactions" v+n- p. +p+w
and v+n- p. +n+m'. The agreement is again sat-
isfactory. In general, the comparisons given above
suggest that the pion-production model developed
in Sec. IIIC should be reliable to better than a
factor of 2 in the region at and below resonance.
The reliability should be substantially better than
this for relative cross-section ratios or reactions
without large O(q) corrections.

8. Threshold neutral-current-induced pion production

in the ANL flux

We consider now the application of the formulas
develop. - J in Sec. III to the study of neutral-cur-
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TABLE IV. Comparison of theoretical predictions for charged-current pion final-state
ratios with preliminary ANL experimental results (Ref. 32).

Ratio Experiment Without 0 (q)

Theory
With O(q)

Eq. (43c) Eq. (43d)

(T(v+n )LI +P +9)
0'(v+P p +P +x )

0.27+ 0.06 0.34 0.29 0.31

a(v+n p +n +7r+)

(T{v+P P +P +sr+)
0.31+ 0.07 0.26 0.23 0.22

rent-induced threshold pion production in the ANL

neutrino flux. ' We start with the general six-pa-
rameter neutral-current structure in Eq. (18),
but we note that since the isoscalar axial currents
contribute only" through the g&" y y, term in

their nucleon vertices, the effective number of
parameters entering the pion production calcula-
tion can be reduced to 5. These are conveniently
introduced by writing the one-nucleon matrix ele-
ment of the neutral current as

(iV(P )~g„'~lV(P1)) =X„33(P ) {[-),gA(k')r"r8+4+', (k') r +i)'2+2(k')o ""Pj ~ r3

~[ )I D(k2)y"y +)18D(k ) y +i)1 (2MN) 'D(k )& kp] 3 )33(p1), (44)

with D(k') a dipole structure characterizing the
isoscalar current vertices, which for definiteness
we take as

D(k') =(1 —k2/M„2) ' . (45)

To a first approximation, we expect" that small
changes in the isoscalar dipole mass parameter
from the assigned value of M~ can be compensated
by making appropriate rescalings of the isoscalar
parameters )I, ~, 3 In terms of the parameters
X„.. . , A,„ the couplings @&0 3 ~ 8 ggp ~ 3 ~ 8 intro-
duced in Eq. (18) are given by

Equations (15)and (47), or (15)and (48), are the basic
constraints which will be imposed in maximizing
o,"b;„over the space of parameters X„.. . , A,

Obviously, to recompute the pion-production and

neutrino -proton-elastic -scattering cross sections
for each distinct set of parameter values being
studied would be a very inefficient procedure from

50

Area Normalized Curve

gVP(3) +gV8(3) 3 ~8& gV3 2 y

1/2 & 1/2

gA.(3)' '+gA. (3)' '= 3 )I

(46a)
X20—
O
OJ

(46b)

ln terms of these definitions, the deep-inelastic
constraint of Eq. (36) becomes

1 5» 3R +R» A, +X (47)

while the stronger constraint of Eq. (37), which

follows when quark-parton-model information is
used, takes the form

(48)

with g& an effective isoscalar axial-vector renor-
malization constant defined by

g' (2)1 /2 g (0)(p) ~g (
1
)1 /2 g {8)(p)

gA
g (2)1/2 +g (l)1/2

(f)
I—
+)0—
LLI0
UJ

&.0
I I I

12 &3 )4 )5
7r+ p Invariant Mass (GeV )

&.6

FIG. 2. Comparison of the area-normalized theoreti-
cal invariant-mass distribution for v +p -p +p + 7r'

[calculated with O(q) additions from Eq. (43c)) with the
ANL histogram for this reaction.
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7r n

Q p~+& 500 MeV/

Area Normalized Curve

TABLE V. Coefficients determining o.2b;„and
a. ANL (v+ p v+ p) via the quadratic forms of Eq. (49).
Note the comment in Ref. 4.

Pion-production
coefficients

Elastic-scattering
coefficients

V)

LaJ 5-
LLI

I I
l

I I I

).2 &.5 f.4 ).5 ).6 &.7

Mass (77+ n ) (G e V)

p;7ro p

Q Pro& 500 MeV/c

Area Normalized Curve

P«0.621x10 3

P22 0.807 x 10
P~3 0.163x 10
P44 0.244 x 10
P55 0.121x10 4

P(2 0.534x 10
P13 0.772 x 10
P 14 0.166x 10
P15 —0.211x 10
P -0.393x10 4

P24 0.143x 10 3

P25 -0.312x 10 4

P34 0 .328 x 10
P35 0.532x 10 4

P45 0.996x 10

E&& 0.692 x 10
E22 0.767 x 10
E~3 0.478x10 '

E44 0.364 x 10
E55 0.300 x10 2

E(2 0.656 x 10
E13 0.115
E&4 0.158x10 ~

E15 0.159x 10
E23 0.554x10 ~

E24 0.858 x 10
E» 0.201x10 '
E34 0.134x 10
E35 0.134x 10
E4~ 0.229x10 2

Mass ( p 7f'o) (Ge V)

F/

I I

&.6 ) 7

FIG. 3. Comparison of the area-normalized theoretical
invariant-mass distributions for ~+n-p, +n+x and
v+ n p +p + 7r [calculated with 0(q) additions from
Eq. (43c)] with the corresponding ANL histograms. The
theoretical predictions have been folded with the experi-
mental invariant-mass resolutions of 25 MeV for n + ~+

ami 40 MeV for p + &0.

a numerical point of view. Rather, we exploit the
fact that the cross sections are quadratic forms
in the parameters Aj, taking the form

5

&r,","„/10 "cm.'=g P P; X;X,,
i= 1 1+j&i

g"""(v+p- v+p)/10 "cm'=P g E;,X;X,,
i=1 l~j~i

(49)

so it is only necessary to perform the cross-sec-
tion calculation for the 15 parameter sets

Ai =0, i wI, J'

A, g
= 1, A.g = 1

(50)

to extract the coefficients' Pij, F.;;, which are
tabulated in Table V. The quadratic forms of Eq.
(49} are then used to compute the cross sections
when searching over parameter values, permitting
a complete survey of the five-parameter space
using a very reasonable amount of computer time.

The results, for various assumptions about the
structure of the weak neutral current, are as fol-
lows:

(1) Pure isoscalar weak neutral current. Taking
&, =~, =0 and maximizing o',"b",.„over the &3 ~4 X5
subspace subject to the constraint of Eq. (15}gives
the upper bound

gANL ( j 0 x 10-41 cm22 bin (51)

(2) 8'einberg-Salam SU(Z) -U(1) model. In the
simplest, one-parameter version of this model, "
the neutral current has the form

cysts 2 (cp) 3-i/25k)

x = sin26}~,
(52)

with 48 an isoscalar V-A strangeness and
"charm" current contribution which is convention-
ally assumed to couple only weakly to nonstrange
low-mass hadrons (such as the low-energy pion-
nucleon system). Neglecting h8" for the moment
we can make an absolute calculation of the cross
section for v+n- v+tj+m, giving

O, b,.„=0.75@10 "cm'. (53)

In certain extensions of the original Weinberg-
Salam model, the neutral current has the general
form of Eq. (52), but with an adjustable strength
parameter x in front,

J„"=x[5', —5'," —2x(5, +3 ' 'P,")]+6,g". (54)

Still neglecting h8, and comparing with Eq. (44),
we now see that the parameters Aj have the values
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X, =K,

X, =«(1 —2x), i, = —2xx, (55)

x, =0. X, = 0.24gx.

a" ' «1 5x10 ~' cm' (56)

Finally, we can include the isoscalar addition b8
by regarding A.„X„~,as free parameters, rather
than relating them to x and x as in Eq. (55).
Searching now over the five-parameter ~, x, A.„A.„
X, space (again allowing all real values of x) sub-
ject to the constraints of Eqs. (15) and (4V) gives
the upper bound

g"N. ~4.6x10 "cm' (57)

We emphasize that Eq. (57) is the uPPer bound on

o2b,„ for the most general hadronic neutral current
foxed from the usual vector and axial-vector
nonets. ff Eq. (47) is replaced by the stronger
constraint of Eq. (48), and if the parameters g
—= X,/X, and g„are restricted [as suggested by the
quark-model" "values of Eq. (39}]by

Maximizing 0',"b,.„over the v, x parameter space
(allowing all real values of x, rather than restrict-
ing x to lie between 0 and 1) subject to the con-
straints of Eqs. (15) and (4V) gives the upper bound

= 2R' x1.4 =0.48+ Q. 17. (62)

Let us now compare the experimental result of
Eq. (62) with theoretical predictions obtained from
the extended pion production model developed in

mass spectra' for m' production in the charged-
and neutral-current cases show a clear (3, 3) peak
in the charged-current case, but indicate no com-
parable peaking in the neutral-current reaction,
suggesting that perhaps the (3, 3} resonance is not
excited by the neutral current. In what follows we
analyze the implications for neutral-current struc-
ture if this indication is confirmed both by more
detailed analysis of the BNL data and by other ex-
periments.

Since the isovector V and A. neutral currents
both" strongly excite the (3, 3} resonance, the ab-
sence of a (3, 3} peak in the V, A case would sug-
gest an isoscalar neutral-current structure, and
we assume this in what follows. Applying nuclear
charge-exchange corrections as described in Ap-
pendix C, we find that the nuclear target ratio
quoted in Eq. (61) implies the free-nucleon target
ratio

2Ro=-
v'"'(v+s- v+n +v'} +o'" L( v+p- v+p+v')

oB (v+s Jl +p+v )

Igl-1.5, lg„'I 0.74, (58}

then the bound in the general V, A, case is substan-
tially reduced, to

C. Analysis of low-invariant-mass ( W ~& 1.4 GeV) pion production

at ~NL: Isoscalar current case

We turn finally to an analysis of low-invariant-
mass (W ~ 1.4 GeV) pion production in the BNL
neutrino flux." Recently, the Columbia-Illinois-
Rockefeller collaboration at BNL has reported a
measurement of the ratio

o(v +7' -v +v'+ ~ ~ ~ )R,'= 2o(v+T-u, +v'+ )'
T =-,'(,C")+-,'(„Al")

with the preliminary result"'

CO

C:

o
5X

bo

R o
= 0.17+ 0.06. (61)

w (Gev) ~ ~

This measured value of R,' is in accord with the
value expected" in the Weinberg-Salam model
when sin'6)~ is in the currently favored range of
0.3-0.4. Hence if (3, 3) resonance excitation,
which is expected in the Weinberg-Salam model
(see Fig. 4), is observed in the BNL experiment,
the presumption would be strongly in favor of the
standard gauge-theory interpretation of neutral
currents. However, preliminary BNL invariant-

FIG. 4. Area-normalized, BNL- flux-averaged
theoretical invariant-mass distribution in the Weinberg-
Salam model (with sin~8~ = 0,35) for the reaction v +p

v +p + n . Curve a, basic model containing Born,
resonant, and soft-pion terms; curve b, basic model
with 0 (q) additions from Eq. (43c); curve c, basic model
with O(q) additions from Eq. (43d).
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Sec. IIIC, in the case of a pure isoscalar neutral
current. Again we parameterize the neutral cur-
rent as in Eq. (44), with X, =X, =0. The BNL flux-

I

averaged pion production and elastic cross sec-
tions are then quadratic forms in X„X4,A.„ taking
the form

[g "(v+s- v+n+v, W - W„) +& (v+p- v+p+v, W- W„)]/10 38 cm = p P;, (W„)X~&,,
=3 Wf«

o "(v+p- v+p, Cundy cuts)/10 "cm'=p p E, a,

5

o (v+p- v+p no cuts)/10 "cm'= g g E"'X X .

Cundy cuts: I GeV ~ E ~ 4 GeV, 0.3 (GeV/c)' ~ ~k'~ ~ 1 (GeV/c)'.

The pion-production coefficients P„(for W„= 1.2, 1.3, and 1.4 GeV} and the cut and uncut~2 elastic-scat-
tering coefficients E;; required in Eq. (63}are tabulated in Table VI. In maximizing the pion-production
cross section over the space of parameters X„A.4, A.„we impose the constraints

o'~N~(v+p- v+p, Cundy cuts) ~ 0.24o (v+n- y. +p, Cundy cuts}=0.085x10 " cm',
(64)

the first of which is the Cundy et al."95% confi-
dence-level limit from the CERN neutrino experi-
ment, which has a neutrino flux similar" to that
of the BNL experiment, while the second is the
deep -inelastic quark-parton-model constraint of
Eqs. (37) and (48) above. The results of the maxi-
mization are expressed as theoretical upper
bounds on the ratio 2R, defined in Eq. (62), with

both the numerator and the denominator calculated
from the pion production model. As stressed in
Sec. IV A, the procedure of comparing theoretical
cross -section ~atios with experimental ratios
should minimize the effects of discrepancies be-
tween the experimental and theoretical cross-sec-
tion magnitudes. For the denominator cross sec-
tion o' "(v+n- p +p+w, W ~ 1.4 GeV) we use the
value 0.143&& IO "cm' listed in columns 6 and 7 of

Table III, corresponding to inclusion of 0(q) cor-
rections; however, as is apparent from the table,
the effect of the 0(q) corrections on this cross sec-
tion is very small.

Results of the maximization calculation44 are
given in Figs. 5 and 6. Curve a of Fj,g. 5 gives
the maximum for an isoscalar pure vector current,
while curve b gives the maximum when an octet
isoscalar axial-vector current is also present
(corresponding to g„=0.45), both plotted versus
the isoscalar current gyromagnetic ratio g=X,/X, .
Evidently, both curves lie below the BNL data,
with a discrepancy exceeding a factor of 2 unless
~g~a 4 6, that is, unless the isoscalar vector cur-
rent has a ~g~ value which is anomalously large
based on quark -model expectations. " Interesting-
ly, a vector current with a large ~gI value pro-

Coefficients determining 0 (v+n v+n +7t. ) +0 (v+p v+p +7t ) for
various S' ranges and a (v+P v+P), both cut and uncut, via the quadratic forms of Eq.
(63).

Pion-production coeff icients
S"~1.2 GeV %'~1.3 GeV TV~1.4 GeV

Elastic-scatter ing coefficients
Cundy cuts No cuts

P33 0.210x10 2

P44 0.286 x10 3

P55 0.193x10 3

P34 0.247x10 3

P35 0.467x10 3

P45 0.169x 10

0.607 x 10-2

0.638 x 10~

0.566 x 10

0.925 x 10 3

0.138x10 2

0.519x10 3

0.109x 10

0.994x10 3

0.106x10 2

0.165 x 10

0.258x10 2

0.941 x10 3

E3(3 0.176x 10

Egn 0.15Sx 10

E") 0.265x10 '

E34 0.558 x 10

E35 0.558 x 10

E4(5 0.635x 10

g (2)
33

EfP

g (2)
55

E(2)

~ (2)
35

g (2)

0.555x 10 i

0.515x10 i

0.480 x 10-'

0.105x 10 i

0.105x 10 i

0.142x10 2
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FIG. 5. Results of a maximization calculation for BNL
cross-section ratios in the invariant-mass interval
S' ~ 1.4 GeV, plotted versus the g value of the isoscalar
vector current. Curve a is the maximum for an iso-
scalar pure vector current; curve b is the maximum
when an isoscalar axial current is also present, with the
axial-vector renormalization constant fixed at g z ——0.45
(the octet axial-vector current value) . The dashed line
is the central experimental value from Eq. (62).

duces a characteristic change in the do/dW plot
predicted for the BNL flux, as shown in the dashed
curve in Fig. 'l. [The dashed curve is calculated
for the case of an isoscalar vector current con-
taining only an E, form factor; for the Pg I'2 ad-
mixture corresponding to ~g~ =4, the curve is sub-
stantially the same. Similarly, changing the ad
hoc dipole mass in Eq. (45) from M„ to M„v 2 or

0,7

0.6-

0.5-

0.4-

0.5-

0.2-

0.4-

0 I I

-2S -2.0 -L5 -LO -0.5 0 0.5 i.O i.5 2.0 2.5

gA

FIG. 6. Results of a maximization calculation for
BNL cross-section ratios in the invariant-mass interval

~ ~ 1.4 GeV, plotted versus the effective renormaliza-
tion constant g„of the isoscslar axial-vector current.
Curve a is the maximum for an isoscalar pure axial-
vector current; curve b is the maximum when an iso-
scalar vector current is also present, with g value

fixed at —0 .12 (the quark model and octet vector current
value). The dashed line is the central experimental
value from Eq. (62).

FIG. 7. Shapes of dc/dW for an isoscalar vector
current containirg an E& term only or an I"

2 term only.
The two curves are normalized to equal area for W' ~ 1.4
GeV.

M„//2 produces only a + change in the dashed
curve. ] As seen in the figure, an isosealar vector
current with large ~g~ produces, relative to the
pure F, case,"a depression in the do/dWdistri-
bution for small 5', characterized by an almost
linear rise from threshold, and a corresponding
enhancement at the large W' end of the range. An

experiment with good statistics should be able to
search for this effect. Continuing with the results
of the maximization calculation, curve a of Fig. 6
gives the maximum for an isoscalar pure axial-
vector current, while curve b gives the maximum
when an isoscalar vector current is also present
(with gyromagnetic ratio fixed at the quark model
value of -0.12), both plotted versus the effective
axial-vector renormalization constant I„. Devia-
tion of g„ from the octet value of 0.45 of course
requires the presence of a contribution from the
SU(3) -singlet axial-vector current. The curves
again lie below the BNL data, with a discrepancy
exceeding a factor of 2 unless ~g„~z 1.5, which
would imply a sizable ninth axial-vector current
contribution and a relatively large ninth current
renormalization constant as compared with quark-
model expectations. '4

To summarize, if the observed BNL neutral-
current pion production rate is to be interpreted
in terms of isoscalar V, A currents, then existing
elastic and deep-inelastic constraints require that
the neutral current contain either a vector current
with anomalously large ~g~ value, or an apprecia-
ble coupling to the ninth [SU(3) singlet] axial-vec-
tor current.

%'e conclude by briefly mentioning two other
qualitative features of an isoscalar V, A neutral
current which may help to distinguish it from al-
ternative phenomenological neutral-current struc-
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tures. First, referring to Table VI we note that
the V, A interference terms in vP elastic scatter-
ing and in weak pion production (for W ~ 1.4 GeV)
are given by

elastic scattering:

V, A interference ~ (positive)

x x,x,{1+g),

weak pion production:

V, A interference ~ (positive)

x z,z, (0.64+g),

g= X,/X, .

Hence, except for the small range of isoscalar
gyromagnetic ratios

1» g» 0.64, (66)

the interference terms in neutral-current elastic
vP scattering and weak pion production have the
same sign. That is, except for g values in the
range of Eq. (66), constructive V, A interference
in v +N- v +N +n implies constructive interference
in v+p- v+p and vice versa. A second useful re-
mark (which has been made by many authors) is
that if v and P neutral-current cross sections dif-
fer (implying the presence of V, A interference ef-
fects in a V, A current picture), then the neutral
interaction may induce parity-violating terms in

the pp, ep, and p, p interactions. The significance
of this statement is that the same connection be-
tween v, P cross-section differences and parity-

violating effects does not hold in other neutral-
current phenomenologies, such as the S,P, T cur-
rent picture to be discussed in the second paper'
of this series.
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APPENDIX A

We give here the analog of the low-energy
theorem of Eq. (12) for the case of the SU(2)
S U(1)-model neutral current of Eq. (52), with
~8"=0. (The following formulas still neglect the

pion mass in the kinematics and so were not
used in the numerical work described in the text. )

The threshold pion production cross section is
given by

1 da(u+N- v+N+v)
dt dtV

-1
&= (2M„') ' 1+ 2 (H,'+ tH2') + (H~'+ tH3') [4M''E2 —t(Mv' + 2MuE)]

+ t H, '+ t 1+, H3' + )H,H3 (4M„E —t),

with (=1 (-1) for v (v)-induced reactions, and with

k'
H, =as ~(1 —2x)2M„1+, — + [F,(k')+2M„F, (k )],2M„gg 2M~

1 t2M'

( ) 2M„(1+t/2M„') v, t

g„(1+ t/4M„') ' 2M„

F, ,(k') = Fv, (k')[ax~'~ —a~s ~](1 —2x)+ F, ,(k')as' (-2x),

g~(k') =g~(k')[as' —as '].

(A2)
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(-)az

+p ~ +p +7l

+n " +n+n' 1
2

TABLE VII. Isospin coefficients appearing in Eq. (A2). Since the over-all magnitudes of the leading terms
in the axial-vector soft-pion amplitude in the
isovector and the octet isoscalar cases are gov-
erned respectively by g„and g„", a convenient
measure of the importance of the O(q} correction
in the isoscalar octet axial-vector case, relative
to its importance in the isovector axial-vector
case, is given by

+pg~ +p+g

gA (7)) g (7])
3 /gA 0 16 AFoN TJg

6 A +
/gA 8 vs

(B3)

To estimate the derivative appearing in Eq. (83),
we assume an unsubtracted dispersion relation4'

A7f 8 ~ 7)Pf
0

0

1 1dx', +
x —x x + x+2vg

0xImA" ~

As in the text, we have used the abbreviations
t = -k, x= sin'@. The isospin coefficients a~'
are given in Table VII. As the diligent reader may
verify, in the case of ((' production (for which the
low-energy-theorem equal-time commutator van-
ishes} Eqs. (Al) and (A2) reduce to Eq. (12) of
the text, with ckr(v+N- v +N)/dt appropriate to the
Weinberg-Salam-model case of Eqs. (21)-(23).
Since Eqs. (Al} and (A2) were obtained by alge-
braic reduction from the Born-approximation ex-
pressions of Ref. 6, this agreement provides a
cross check on the extensive algebra involved in
the extended pion-production model of Sec. III C.

(B4)
x =M, +M, '/(2M„) .

We approximate the integral by supposing A' "
to be dominated by those partial waves containing
resonances which couple m'N strongly to qN. Re-
ferring to the Particle Data Group summary, ' we
see that the only such resonances are the N0(1535)
(J = 0 ) and the N0(1470) (J = z'). Writing the
partial-wave expansion for A' " "" and keeping
only the f„and f, partial waves to which the
N*(1535) and N0(1470) respectively contribute, we
find"

,0„„„4v(W+M„)Im f~"
[(P„+M„)(P„+M„)] '"

APPENDIX 8

We give first a rough estimate of the O(q) cor-
rections in the case of an isoscalar octet axial-
vector current. We start from the analogy
v —SU(3)-3 index, )I—SU(3)-8 index and the fact
that A'" ' =A' " " ", which allows us to write~
(in units with M„= 1)

Isovector:

(B5)

which is independent of v~. So in the approxima-
tion of dominance by the N0(1535) and N*(1470),
we have

hA(+) = E~ A~ )( 00" = 2.8,
8'r eva 0

P~ 7)g 0
8 vg

(B5)

Octet isoscalar: (Bl)

( 7))

g A( g) gX A7foe~ 7)yr

g(7)) ev

Here g„and g„" are, respectively, the m NN and
the gNN coupling constants, which according to
octet PCAC and SU(3} are related by

(0) (0) 3 (4 x0 M)
(B2}

Hence, only the derivative of the explicit v~ in
Eq. (84) contributes, and we find

(B7)

Substituting Eq. (85) into Eq. (B7}, we find the
bound
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8 2 d 4 (W M )

»N o & ., (&'}' [(plo+MN}(p30+MN}]"'

v „, (x')' [(p,', -M„)(p,', -M„)]'" (B8)

To proceed further, we use resonance dominance to approximate the inelastic amplitude imaginary parts
appearing in Eq. {88)by

f 40N 0N( g) go+ Imf & N 3 N(&r) Imf 3 N 0N( N&} gl-1mf& N N( I} (BS}
go+ gK

0
with g" ' the q, n couplings to the resonance in question. Using the optical theorem to evaluate the right-
hand side of Eq. (B9),

f 30N 40N

4 &70N y
(B10)

(B11)

combining Eqs. (B8)-(B10)in the narrow-resonance approximation, and expressing the coupling ratios
g"/g in terms of resonance partial widths Fo,o and q values q„„yields the final formula

(W+M )lq. l F„
e~s lo N x [(p10+MN)(p30+MN)

1 (W-M„}[(p„+M„)(p„+M„)]"'F. Iq. l

"
N4(1470)'

Remembering that the branching ratio of an I= —,
'

state into m' relative to all pionic modes is 3,
and taking I q„l-182 MeV for the nominally for-
bidden decay N*(1470) -N3} (corresponding to res-
onance half maximum}, we find numerically that
the ratio R defined in Eq. (B3) is given by

We next estimate the extent to which the order-q
corrections of Eq. (43a) are already included in
the basic pion-production model as a result of
unitarization of the (3, 3) multipoles. Using the
fact that at k' =0 the electric and longitudinal (3, 3}
multipoles are approximately related by'

R & Rgg(1535) +RN3t4(1470) 0 014+0 074

= 0.09 . (B12)
~(3/2) 1 g(3/2)

1+ 2 1+ (B13}

Hence the O(q) corrections appear to be substan-
tially less important in the isoscalar octet axial-
vector case than they are in the isovector axial-
vector case, and so we neglect them. We simi-
larly neglect the O(q) corrections in the unitary
singlet axial-vector amplitude, although an anal-
ogous argument is not possible in this case since
the ninth axial current does not satisfy a PCAC

equation. " We caution 7 in closing that the above
argument is very crude at best, particularly
since the N*(1470) contribution to Eq. (Bll) de-
pends as I q „I

"' on the q„value assumed for the
N3(1470}-N1) mode.

a simple calculation shows that

&(3/2) ~(3/2) B
[~( -) ~( -)s]

I

'o 1+ —~1+

(B14)
4 g (3/2 ) g(3/2) B[„(,) „(,).)I3 3 0

where as in the text the superscript B indicates
the Born approximation. To evaluate the right-
hand side of Eq. (B14), we employ the partial-
wave dispersion relation satisfied by 8,',",which
[using Eq. (B13) and making a static nucleon ex-
pansion through terms of order M„'] takes the
simple approximate form

(W+MN)8, +" (W+M )8 ' 1 "d, (W'+M„) img ' 1 11 1 1

WO1. I41 WO1. 1 ql v N W'Ol, lq'I ~'- oo
' 38M„9 ~'+~

(0 =W —MN O1 = [(p10™N)(p30™N)]
Hence we get

{B15)

g (3/2 ) g (3/2 )B
1+ 1+ 1 ",M~ (W'+M„) Imh(1,"3 10 1 11

o (( N
W' Ol+ I

q'I — 8 (0' 38M„
(»6)
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integrating the right-hand side numerically, using
Eq. (40.22) of Ref. 6 for 8I3"', gives -0.63 in

units in which M„=1. Finally, as a point of con-
sistency, we note that a simple calculation shows
that Eq. (816) makes no contribution to the ampli-
tudes [A~ -A, i ]i 0 and [A~ -A~ ]i 0 which
are determined by the zeroth-order PCAC rela-
tions of Eq. (42).

APPENDIX C

We give here the nuclear charge-exchange cor-
rections calculation needed to extract the free-
nucleon target ratio of Eq. (62) from the measured
value of Eqs. (60)-(61). We use the averaged
recipe of Eq. (24) of Ref. 40, as extended~ to the
case of nuclei with a neutron excess. In order to
simultaneously treat all of the nuclei of current
experimental interest, "we have performed the
calculation outlined in Sec. II B of Ref. 50 using
a simple "uniform-well" parameterization of the

3

8= (0.82A1/'+0. 58) F .
(Cl)

For each nucleus of interest we have calculated
two W-averaged charge exchange matrices, one
(labeled resonant) appropoiate to the (3, 3) domi-
nated BNL cross section for v+p- ij, +p+m', the
other (labeled nonresonant) appropriate to the
do/dW curve labeled "lsoscalar pure E," in Fig. 7.
The results are summarized" in Table VIII. In
the case of the I=O nucleus, C", the resonant
matrix of Table VIII implies averaged charge-
exchange parameters 8=0.812, d=0. 137, c
=0.0392, in satisfactory agreement with the val-

nuclear density, characterized by a we1.1 radius
R, a nucleon density p, and an rms charge radius
a, given by~

A

3

TABLE VGI. Resonant and nonresonant averaged nuclear charge-exchange matrices for
low-invariant-mass (W'» l.4 GeV) weak pion production. The matrix elements are to be read
according to the scheme

I++ I+0 I+-

[I]= I0+ I00 IO-

I+ I~ I
See Appendix t for further details.

6
Ci2

10
Ne20

i3Al

0.0390

0.607

0.117 0.606

0.109 0.0348

0.120 0.534 0.113

0.0419 0.124 0.619

0.565 0.113 0.0398

0.121 0.494 0.116

[Iz' )

Q.669 0.111 0.0318

0.111 0.589 0.111

0.0318 0.111 0.669

0.606 0.117 0.0390

0.117 0.529 0.117

t
Inonres

t

0.685 0.0866 0.0208

0.0866 0.620 0.0866

0.0208 0.0866 0.685

0.626 Q.0914 0.0257

0.0914 0.560 0.0914

0.0257 0.0914 0.626

0.628 0.0854 0.0229

0.0940 0.566 0.0879

0.0276 0.0968 0.637

0.588 0.0888 Q.0263

0.0950 0.526 0.0908

35
Br80

0.0453

0.428

0.124 0.574

0.0958 0.0397

0.0300 0.0971 0.594

0.459 0.0777 0.0270

0.119 0.378 0.106

0.0613 0.132 0.458

0.0972 0.412 0.0846

0.0419 0.106 0.482
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ues Et=0.811, d=0.138, 5=0.0450 given in Table
VII of Ref. 40 and obtained by using a "harmonic-
well" parameterization of the nuclear density.
Given the matrices [Ir ] of Table VIII, observed
pion-production cross sections are related to
free-nucleon cross sections by the following
recipe: Let the experimental target contain the
mass fractions fr of the nuclear species with

Z = Z~, A = A~. Then the observed cross section
per nucleon is given by

o (n; w'v} =o (p; w'v) =
mg (n; w v)

(p; w' v), (C5)

= 2Rox 0.727(1+0.22y, +0.23w, )

with r, , the charged-current m' to m ratios

(C6)

Eq. (C4) reduces, after some simple algebra to"
rr(n+ p; w'v)

o(n;w'p }

o(obs; w') & o (Nr; w')
o(p;w'p ) o(n;w'p, )

o(n;w'p, )
' ' o(n;w'p, )

'

o(obs;w } = gfr[Ir) o(Nr;w )
T

o(obs;w ) o(Nr;w }

(C2)

with N~ an effective free-nucleon target given by

(C3)

As an illustration, we apply Eq. (C3) in the BNL
case of a mainly carbon and aluminum target.
Assuming charged-current pion production to be
purely resonant, and neutral-current pion produc-
tion to be purely nonresonant, we have

Direct measurements of r, , in the BNL flux are
unavailable, so we have either to use theoretical
values for these ratios, or to extrapolate them
from the ANL measurements, neglecting possible
variations with neutrino energy. The theoretical
cross sections tabulated in the fourth and fifth
columns of Table III give, respectively,

r, = 2.91, r, =0.88 without O(q} corrections,

(C8a)

r, = 4.01, r, = 1.34 with O(q) corrections,

(C8b)
o(obs;w'v)

2o(obs;w'g )
'

o(obs;w v) = P f g [I"'""'] . &r(N 'w v),
g=C, A1 y=+, p, -

(C4)

while preliminary ANL data give

r, = 3.74+0.86, r, =1.14 +0.3. (C8c)

Substituting into Eq. (C6), Eqs. (C8a)-(C8c) give,
respectively,

o(obs;w p )= Q fr Q [Ir"]or o(Nr;w p, ).
p=C, Ai y=+,p, -

Using the BNL target fractions fc =-,', f„,= ~ and
assuming an isoscalar neutral current, which
implies

2R0=2Rox1.59 from (C8a},

2RO = 2RO x 1.34 from (C8b),

2Rp 2Rpx 1 52 + 0 15 from (C8c)

(C9)

A charge-exchange correction factor of 1.4 has
been assumed in getting Eq. (62} of the text
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