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The previous calculation used to explain the rise in multiplicity with increasing p, given to the leading proton
has been extended to include higher order quark-quark scattering terms. It is found that another abrupt rise
in the multiplicity can be expected at p, —1.5 GeV/c where third-order inelastic scattering terms begin to
dominate over second-order terms.

In a recent experiment, Ramanauskas et al. '
have determined that the multiplicity increases
with increasing perpendicular momentum, P~,
transferred to the leading proton. In a recent
paper, ' Klenk and I explained this effect as being
due to second-order inelastic scattering terms
dominating over first-order scattering terms at
higher values of pj. The abrupt rise in the
multiplicity, starting at P~-0.65 GeV/c could be
simply explained as due to the onset of the dom-
inance of quark double inelastic scattering over
single quark inelastic scattering, where for
P, & 0.65 GeV/c only single quark inelastic scat-
tering existed.

The rise was followed by a plateau which was due
only to the double inelastic terms dominating. No
higher-order diagrams were included in the
calculation. Also, no attempt was made to vary
the quark inelastic scattering parameters from
the elastic case, the results being consistent with
the data as it existed at the time.

Presented here are the results of including high-
er-order terms and allowing the inelastic scat-
tering amplitude parameters to vary, and we
make predictions on the behavior of multiplicity
with even higher P~. Also, predictions are made
for Fermilab energies (s =200 GeV and 400 GeV').
As before, the quark-quark inelastic scattering
amplitude is parameterized as

f(~)=fo e '

where f,' = f„'+ if~, b" = b „"+ ibI"2, and a is the
momentum transferred between the quarks. Here
fa and fz are the real and imaginary parts re-
spectively, of the inelastic quark-quark forward
scattering amplitude and 6~ and br"are the real
and imaginary exponent coefficients.

The quark-quark elastic amplitude has the same
functional form, but with independent unprimed
parameters. The elastic parameters are taken
the same as previously determined from elastic

P-P scattering. '
5„=0.01, &r =-47.4+13.1lns,

A(s)= 4.54+ 1.0 lns, fz= 0.05, fz = 1.1, (2}

where s is the c.m. energy squared and all units
are in (GeV/c) '. The proton wave-function
absolute value squared is

14(r„r, r, )i'=e " '~"2"3 5(r, + r, + r ).

Here w' = 8/(3a~'} and a~' = [A(s}—b„']/2. 0.
Figure 1 illustrates the inelastic scattering
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FIG. 1. Inelastic scattering diagrams up to and including
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inelastic quark-quark scattering processes, the lines
elastic processes.
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diagrams for higher orders. Ellipses (with lines)
represent inelastic scattering and lines alone
represent elastic scattering. The number of
distinct diagrams is given next to each diagram.
A dot represents a quark —the upper and lower
dots being the three quarks in each proton.

These diagrams can be evaluated analytically. '
Each diagram can be represented as an inte-

gration of exponential terms in r„r„r, and

r,', r,', r,' and the impact parameter, 5, which is
the projection along the plane normal to the in-
coming momentum of the vector connecting the
proton centers. For example, the amplitude for
the third-order inelastic diagram of Fig. 1 can
be evaluated by the integral

E(S}= Je' d }J(d'rd rrPr/'r'd'x'd'r'e +' " ',i' 5(, ~i ~,)

&&e '&"2"s~ 6(r', +r,'+r,')I'(b +r, -r', )I'(b+r, -r,')I'(5+r, —r,'), (3)

where the 1"s are related to the scattering ampli-
tudes by

r(r}= Jd'sf(a}e'~

The total inelastic cross section, F(n, m), for
production of m pions at momentum transfer 4
can then be calculated: (b, =P~)

E(b, , m) = E,(L)P(1;m) +F,(4) P(2;m)

+ F,(a)P(3;m)+ E,(b)P(4;tn) (4)

tering amplitude is given by taking each diagram,
multiplying by the number of distinct ways the
diagram ean occur, taking the absolute value
squared of this quantity, and then summing over
all diagrams. The sum of kth-order diagrams
then multiplies the Poisson-generated probabilities
for getting m particles from a kth-order collision.
This is shown schematically in Fig. 2.

It is then possible to calculate the average
multiplicity, m, from the E(h, m}'s:

m = g E(n, m)m QE(r, m).

where

E,(~) = g IF' I* E*(~)= g IE! I'

P(1;m) =
ml

P(3;m) = Q P(2;k)P(1;ng —4), (6)

P(4;s(, )= g P(3;&) P(I;m-i}).

Here p, is the average number of pions produced
in a collision, and P(k;m) is the probability that
a 4th-order scatter will produce m particles.

Thus, to summarize, the total inelastic scat-

F.(~)= P IF.'I', . . . . (5)

and E', is the amplitude for the ith diagram of the
I th-order inelastic scattering (as shown in Fig. 1),
evaluated at momentum transfer 4. The I"s are
generated from a Poisson distribution according
to the following formulas:

The results are shown in Fig. 3 for various
values of the average number, p, , of pions pro-
duced per collision for s = 60 (GeV)', the value
for the data of Ramanauskas et aL. The elastic
and inelastic scattering parameters are taken
the same with A(s}= 8.63 and bz' = 6.24. It is
seen from the figure that the multiplicity should
be expected to undergo a second rise at a value
of P -1.5 GeV/c, where triple scattering begins
to dominate over second-order scattering.

Figure 4 illustrates how the multiplicity varies
with the inelastic scattering parameters. A
distinct plateau in the third and fourth-order
scattering region is not indicated for any value
of the scattering parameters. But for all cases,
the first plateau exists to a greater or lesser
extent as well as the rise at P 1.5 GeV/&. In
the first plateau region the multiplicity is not
constant but increases at a rate dependent on
parameters. A rise in multiplicity in this region
is seen already in the more recent high-statistics,
high-p~, data of SchQbelin et aL' It is not neces-
sary to include the third and higher-order inelastic
scattering terms to get this increase. The cal-
culated multiplicity with only second-order terms
included is also shown in Fig. 3 (dash-dot-dash
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FIG. 2. Schematic representation of this calculation. See the text for details.

line), and the multiplicity for this case increases
gradually until a p~ value of 1.5, where the third-
and fourth-order diagrams for second-order in-
elastic scattering become large. Also, from
Fig. 4, it is seen that in order to obtain the most
distinct plateau, the inelastic and elastic scat-
tering parameters should be equal, in agreement
with our previous statements. '

It is possible also to plot up the actual multi-
plicity distributions in both the single scattering
region, double scattering region (first plateau),
and triple scattering region. These are shown
in Fig. 5 for the various regions and for various
values of p, , the multiplicity parameter. For the
first- and second-order scattering regions, the
distributions look very much like Poisson dis-
tributions with a shift of the mean and some
broadening in the second-order region.
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FIG. 3. Multiplicity distributions for various values
of p, where p is the average number of ~'s produced
per collision. Also, with third- and fourth-order inel-
astic terms not included. 'p =3, dash-dot-dot-dash line;
p =4 dashed line; p =5, solid line.
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Taking the elastic and inelastic parameters the
same, and knowing how the elastic parameters
vary with c.m. energy, it is possible to make
predictions for the behavior of the multiplicity
increase at Fermilab energies. Shown in Fig. 6
are plots of the multiplicity as a function of P~
for s = 400 GeV' and s = 200 GeV . The plateau is
even more pronounced than at lower energies.
Future experiments will hopefully confirm the
high-P ~ predictions.

In effect, what we have calculated is the dif-
ferential cross section dc/dt as a function of the

P~ given to "the excited system" of pions and

original proton. This is, of course, not the P,
distribution given to the proton which is finally
observed in the ARGO Brookhaven particle spec-
trometer experiments of Turkot et al.

To determine what the P~ distribution of the
proton is, we must determine the correlation of
the P~ of the excited system with the p~ of the
proton. To do this, we have generated Monte Carlo
events in a two-fireball model. Here, one or
both protons are considered to become fireballs
which emit pions and a single proton. The dis-
tribution in P~ ~ of the proton is then calculated
as a function of the P~ &

of the fireball and the
invariant mass, MM, of the particles other than
the proton. We show in Fig. 7 such a distribution
in p~ ~ for fixed MM and p, ~ (600 MeV/c) near
the Glauber-model break point, 0.65 GeV/c, and
for fixed fireball masses.

Now, the differential cross section for the fire-
balls, dc/dt's is a sharply dropping function
(orders of magnitude) of P, z, and the effect this
has on the P~ ~ distribution is that the main con-
tribution to the proton differential cross section
dc/&t~ comes from the lowest possible momentum
for the fireball which can still result in the ob-
served P~, ~ value. This is shown schematically
in Fig. 8. This has the effect of shifting the break-
point for multiplicity to higher momentum trans-
fer.

Also, we notice for fixed masses of the fire-
balls that as the MM value increases, the
maximum P~, ~ value for the proton decreases,
which corresponds to a shift in P„~ to smaller
values (for fixed P~, &) as the MM increases.
This is also seen in the data of Turkot et al.

Similar results can be obtained for the pion
distributions and explain why the multiplicity
increases with increasing perpendicular momentum
to the pion. ' To give an idea of the magnitude
of the momentum shifts, we plot in Fig. 9 the
maximum P~, ~ values for which the P~, ~ distri-
bution drops to zero —P& & versus P~ & for various
MM and fireball values for the p2m fireball decays.

Also, we plot in Fig. 10 the value of p~ & as a
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FIG. 4. Multiplicity versus p~ for various values of
the inelastic scattering parameters. Elastic parameters:
b g =0.01, bg (60) =6.24, A(60) =8.63, f~ =0.05, fr =1.1.
(a) Variation of bz'2, all other inelastic parameters
same as elastic. p = 5, bz'2 =0.01, dash-dot-dash line.
p, =4, bz' =1.0, solid line. @=4, bz' =2.0, dash-dash
line; bz' =4.0, dash-dot-dot line. (b) Variation of br',
aQ other inelastic parameters same as elastic p =4,
bl' =-1036 solid line; b&' =-0.26 dash-dot-dot line;
bI' =-5.26 dash-dot line. (c) Variation of fz, all other
inelastic parameters same as elastic. p =4, fr=0.5,
dash-dash line. p =4, fI =0.3, solid line.



2636 A. S. KANOFSKY 12

(a)

C 'w

m
P

W

1 I I

Ma
%ammmmm~m

F

I 2 3 4 5 6 7 8 9 IO I I I 2 lb l4 15

(b)

E .2-

~ V

IX0 I W%

4.

w M
W

W W

WWMM

'W W '~
~ w

I I

I 2 5 4 5 6 7 8 9 I 0 I I I2 I 3 l4 l5

=2
(c)

F'w '~

C~ ~ ~+mw w a 1
I 2 3 4 5 6 7 8 9 IO I I I 2 I 3 l4 I5

NUM8ER OF PlQNS, m

FIG. 5. Particle-number distributions for the various scattering regions. (a) p =6, p~ =0.0 GeV/c, solid line;
p, =1.2 GeV/c, wavy line;p~=1. 7 GeV/c, dashed line. (b) p, =4, p, =0.0 GeV/c, solid line; p, =12 GeV/c, wavy line;
p j 1.7 GeV/c, dashed line . (c)p =2, p ~=0 .0 GeV/c, solid line; p~ =1.2 GeV/c, wavy line; p ~= 1.7 GeV /c, dashed l ine .

function of the parent fireball mass and indicate
how it depends on the other fireball mass. If we
are to obtain agreement with the Turkot data, we
require the correct shift of P' ~ away from the
break-point value for P~ & as calculated from our
model. %'e can locate the break-point P~ ~ value
correctly by choosing the correct masses for the
fireballs, since P~ ~ is a function of the fireball

masses. Looking at Fig. 10 and comparing the
break-point values for the experimental data
(-0.8 GeV/c) and the theoretical Giauber model
(0.65 GeV/c) for the 5200-MeV missing-mass
curve, we get fireball masses of -1800 MeV
as being reasonable. Now, for the case of the P4m

decay, as shown in Fig. 11, the P~ ~ points are
all shifted toward lower momentum values. There
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FIG. 6. Multiplicity versus pj for Fermilab energies.
Parameter values given by equations in text. s =200
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would certainly be more P4r than P2s breakup at
the higher MM since the charged multiplicity in
the Turkot et al. data increases up to an average
of 6 with increasing MM. To get agreement here
the fireball masses are -2200 MeV. Thus, we
would expect higher fireball masses for P4& decays.

In conclusion, the inclusion of higher-order
quark scattering diagrams predicts additional
structure and an increase in the multiplicity with
increasing P~. Also, we see that it is possible
to obtain the correct shifts of the break point with
MM and the observed proton perpendicular momen-
tum values seen in the Turkot data if the Glauber
model of Kanofsky and Klenk is folded into a
Monte Carlo decay model.
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