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We construct an analog model of interacting Ising spins on a lattice which has the same critical behavior as

Reggeon field theory, in the physical number of dimensions. At the critical point the total and elastic cross
sections have asymptotic behaviors o „tcx (lns) ~ and «r„cx (lns) '~ '. By studying the properties of the fixed point
of an explicit nonlinear renormalization-group transformation on the lattice, we show that —y ( z( 2, so that

both the Froissart bound and the constraint «r„& «r„, are satisfied.

I. INTRODUCTION

The Reggeon calculus' provides us with a model
of diffraction scattering which explicitly satisfies
the constraints of crossed-channel unitarity. In
this model the behavior of the scattering amplitude
at high energies and small momentum transfer is
related to the infrared behavior of a field theory
of self -interacting quasiparticles moving in two
space dimensions. Recently"' there has been
considerable progress in determining this be-
havior using the techniques of the renormaliza-
tion group and the e expansion, the number of
space dimensions being generalized to D=4- e.

Before the interaction is taken into account, the
quasiparticles have a dispersion relation of the
form E = -b +n'k', where the "bare" trajectory
is taken to be a(t) =I+5, +n't. According to the e
expansion, there exists a critical value of & for
which the Green's functions of the interacting
theory scale in the infrared region. This leads
to the scaling behavior of the elastic-scattering
amplitude &(s, k') at large s, small k':

F(s, k') =is(lns) "f(k'(lns)'),

which implies that the total and elastic cross sec-
tions behave as

cr„,cc (lns) ", cr„cc (lns) '" ' . (1.2}

This behavior occurs when the renormalized & is
zero, and there is no energy gap in the spectrum.
On the other hand, if 4 is less than its critical
value b.„E(s,k') has an exponential falloff in
lns characteristic of a simple Regge pole with

intercept below one.
The scaling behavior (1.1) is a signal that the

theory undergoes a phase transition at 4 = &„and
it is profitable to look at the problem from this
viewpoint. In fact, & plays the role of inverse
temperature in the sense that the system has a
finite correlation length for 4& 4„which be-
comes infinite at the critical temperature.

The exponents y and z have been calculated to

O(e') (see Refs. 4 and 5), but these expressions
show no great sign of converging for e = 2. The
e-expansion approach therefore leaves several
questions unanswered:

(1) Is there a phase transition in D=2 dimen-
sions'? It is well known that dimensionality is
crucial in such considerations.

(2) What is the nature of the ordered state? How

do the correlation functions behave for && &, '?

It is important to decide whether short-range cor-
relations again appear (a renormalized pole below
one), or whether the Froissart bound becomes
saturated for 4» 4„as suggested by some ap-
proximate calculations. '

(2) Do the exponents y and z in D = 2 satisfy the
most elementary constraints of direct channel
unitarity, namely, the Froissart bound (-y ~ 2),
and the condition cr „&cr,„,(-y —z & 0)7

This last question is particularly interesting,
since, while the Reggeon calculus explicitly satis-
fies crossed-channel unitarity, there is no ex-
plicit direct-channel unitarity manifested, al-
though, with a suitable direct-channel interpreta-
tion of the bare Reggeon, it is clear that all possi-
ble absorptive effects are included in the model.
These conditions are therefore crucial "experi-
mental" tests of the strong-coupling solution of
the Reggeon calculus.

An overwhelming problem in discussing these
equations directly in D = 2 is the large number of
degrees of freedom of the system. Even if one
replaces the space-time continuum by a discrete
lattice (a process which does not change the infra-
red behavior) one is still faced with an infinite
number of degrees of freedom at each lattice site.
In this paper we show that this number can be re-
duced to two, namely that the critical behavior of
the field theory is identical with that of a system
of Ising spins interacting via certain well-defined
interactions. This forms the content of Sec. D of
this paper. The first step is to write down the
generating functional for the Green's functions of
the theory. Going onto the lattice, this functional

12 2514



12 RE GGEON FIE LD THEORY ON A LATTICE 2515

integral becomes a conventional multiple integral.
The crucial fact which allows us to evalute par-
tially this integral is that as the dimensionless
renormalized coupling g„ tends to the zero g, of
the Gell-Mann-Low function P(g), with 4 fixed at
its critical value, then the bare coupling r tends
to infinity.

This result, which was proved for the case of
an infinite cutoff in Ref. 7, requires more careful
analysis in our case, since the discrete nature of
the lattice already implies a finite cutoff in the
theory. This analysis is carried out in Appendix
A, where we also show that the critical value of
~ is large when r is large. The significance of
this result is that, by taking r- and holding 4
at its critical value, we explore the scaling be-
havior of the theory. This maneuver has the ef-
fect of focusing our attention on values of the en-
ergy and momentum much less than the scale set
by r' and Q'.

For large values of b and r the multiple integral
over the fields at each lattice site can be per-
formed by the method of steepest descent. %'e

find that there are two saddle points in the inte-
gration at each site. We label these by a variable
s =+1, and integrate out the remaining variables.
The kinetic terms in the Lagrangian then link
values of s at neighboring lattice sites. %'e find
that we have simplified the generating function
of the field theory to the generating function for a
system of Ising spins on a lattice with certain
specific interactions. These interactions prove
to have the same symmetry properties as the
original Lagrangian, indeed, as a Lagrangian
with arbitrarily complicated interactions; so,
according to the folklore that it is the symmetry
properties of a system, rather than the number
of degrees of freedom, which determine its criti-
cal behavior, it is not surprising that our analog
model is a good representation of the Reggeon
field theory.

Having constructed this analog model, we may
hope that it will succumb to the well-developed
methods for dealing with lattice spin systems,
and provide answers to the questions listed above.
However, we have, so far, been unable to obtain
a general proof of the existence of a phase transi-
tion in D =2, and must rely on approximate meth-
ods. In Sec. III, we construct an explicit non-
linear renormalization-group transf ormation on
the lattice, which we shall assume has a fixed
point with the general features of that suggested
by the & expansion. We then discuss the scaling
laws implied by the existence of this fixed point,
and the consequences for the exponents y and z.

We find that the exponents calculated by this
method will automatically satisfy the constraints

of direct channel unitarity mentioned in (3) above.
This is the main result of this paper.

II. THE ANALOG MODEL

We begin with the Reggeon field theory defined
by the Lagrangian density

+ = a 4 sg 4+a I ~Pl +V(4

where the potential V(g, g) is given by

+ i') .

(2.l)

(2.2)

which is proportional to the Fourier transform of
the elastic amplitude, evaluated at rapidity t and
impact parameter x.'

It is more convenient to write (I) and (2) in
terms of the real and imaginary parts of P=y+i X.
Then, dropping a total time derivative,

i'=2izps, X+o."(vy)'+o. '(VX)'+V,

where

(2.3)

(2.4)

The generating functional for the Green's func-
tions is

We shall initially take J = 0, %'ith the y and X,

contours ronning along the real axis, the integral
in (2.5) is defined only for b & 0. However, with
only a bare triple-Reggeon interaction, it can be
shown that b,,&0.' To continue into b&0 we first
distort the zp contour, as shown in Fig. I (solid
curve). The new contour intersects the imaginary
axis at y =i c (c& 0) and is asymptotic to lines
making angles c.& v/6 with the real axis. We can
now continue in 4 up to any value less than cr,
for then Re(b +ir y)& 0 everywhere on the contour,
and Re(iry')- — as ~zp ~- . The X integral is

As usual, me have included only a constant triple-
Pomeron coupling in V, assuming all other cou-
plings to be irrelevant in the scaling region. It
mill become apparent later that such an assump-
tion is unnecessary, although we retain it initially
to simplify the algebra. In (2.2) the bare Pomeron
intercept is equal to 1+4; we shall work through-
out with bare quantities, rendering the theory
finite by a suitable cutoff in momentum. We are
interested in the infrared behavior of the two-point
function
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kept along the real axis.
We now replace the continuum (t, x) space by a

cubic lattice with spacing a„and a, in the space
and time directions, respectively. Equation (2.5)
is then replaced by

Z = dy, dX] exp -a)a„ g), X]

Keeping only the leading terms as r, &/r- ~, and
dropping an irrelevant constant, we obtain

4'a'
Z= g exp -a,a„g, (&s, )'t X y2

i

24@'+, (s, v's, )(s, s, )y'

(2.6)

where i labels the lattice points, and the deriva-
tives ~&, V are replaced by finite difference oper-
ators on the lattice (divided by a, and a„respec-
tively). We shall continue, however to use the
same notation for convenience.

As explained in the Introduction, we explore the
scaling region by taking the mathematical limit
&, r- ~. The integrals in (2.6) can then be evalu-
ated by the method of steepest descent. To do
this, we temporarily ignore the kinetic terms in
Z, and search for saddle points in the y, X, inte-
grations at each lattice point.

Solving the equations SV/sy =0, SV/ax=0 we
find four candidates:

(a) y=o, X=o;

(b) &p
= 2i b /Sr, X = 0;

(c) @=in./r, x=+a/r;

(d) q =in. /r, x = ix/r-
The point (a) is obviously dominant in the limit

However, when s, & 0 the points (a) and

(b) are outside the domain of convergence in y
of the X integral, and consequently the hypercon-
tour cannot be distorted through them. The points
(c) and (d) are, however, accessible, and it is a
matter of straightforward algebra to show that
the y contour can be distorted in such a way
(dashed line in Fig. 1) that, keeping X on the real
axis, the contribution from any portion of the con-
tour is exponentially smaller than that from the
region of the saddle points.

We then write, at each point ~ of the lattice,

(2.10)

(sV s)(S( s) = gs is~ s g(sip „"+i—2si,„"+siz i)

t+iI X t-i, X ) (2.11)

X (Sfy „—iSf ig), (2.12)

where in (2.12) we have dropped a term which

(2.9)

lt is fairly easy to see where the terms in (2.9)
come from. The first term is just the leading
contribution to the term (VX)' in (2.3). However,
the leading contribution to the term 2i y~, X is
proportional to 8& s, which vanishes when summed
over the lattice (with periodic boundary condi-
tions). The first nonvanishing term involving 8, s
comes from diagonalizing the y,' and X& integra-
tions, which mixes up space and time. There is
no term like (S, s)', which is why the model is not
like a conventional Ising model. This difference
is traceable to the linear time derivative in (2.1),
i.e., the linear dependence of the bare propagator
on energy E.

We now want to interpret s, as a spin at each
site of the lattice, and Z as the partition function
of the system. Denoting each lattice point i by
coordinates (t, x) (which take integer values) we
have (taking D = 1 for clarity)

(&s)' =a, '(st „" —s,","„)'=const —2a„'s," „-si,"„

i4
+0'& (2 7)

Sf +X) (2.8) IC

where we have introduced the dichotomic variable
s, =+1. Since the second derivatives of V at the
saddle points are 0(&), we can restrict rp,', Xt

aO(E ' '). Substituting (2.7) and (2.8) in both the
kinetic and potential terms of 2 and retaining only
second-order terms in y,' and X,', we obtain a
multiple Gaussian integral which can be explicitly
evaluated. This is carried out in Appendix B.

RefIt

=']G. 1. Distortions of the p contour. The heavy solid
line is the contour for continuing into D&0. The dashed
line is the contour through the saddle point.
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sums to zero over the lattice. In writing (2.10)
and (2.11) we have been careful to respect the
symmetry properties of the terms, under spin
flip (S), time reversal (T), and space reversal
(P). Ignoring again a multiplicative constant, the
partition function now takes the standard form

are coupled to the theory. Calculating this direct-
ly is complicated since our Lagrangian in (5) is
not normal-ordered and there are tadpole-cancel-
lation terms in y to be added. In addition y takes
on a nonzero vacuum expectation value when we
perform the saddle-point calculation. This can
be avoided by observing that, for t ~ 0,

with

X= EQ s-)sg+LQ s(sgsg,

(2.13)

(2.14)

&o I x(f, x)x(o, o) I o) = --,'&o II. y'(f, «) —y(t, «)]

xl q'(0, o) —y(0, o)] I o)

=-.'&oI q(f, x)y'(0, o) Io&, (2.is)

where the first term represents a sum over near-
est-neighbor pairs in the space directions, and
the second over groups of three neighboring spins
in any of the configurations shown in Fig. 2, those
of the first two taking the plus sign, and the sec-
ond two the minus sign. The couplings K and L
are given (when D = 2) in terms of the original
parameters

since g annihilates the vacuum. Now the left-hand
side is equal to

5y 5XX t, x X 0, 0 exp — dtd xk y, X)

(2.i't)

and so we can perform the same saddle-point cal-
culation, keeping only the leading terms in X(t, x)
and X(0, 0) to give

(2.is) &oI Try(f, x)g'(0, 0)]I0)~&s, „s,~,)z. (2.i8)

The form (2.14) for the Hamiltonian may seem
somewhat arbitrarily dependent on our initial
Lagrangian (2.1) and the mechanics of the saddle-
point integration. However, this is not so, for it
is easily seen that 2 is invariant under the trans-
formation (t- t, X --X), which is equivalent to
the transformation TS on our spin model. Also
the only time-dependent term in Z changes sign
under T alone. Of course 2 is also invariant under
P(x- -x). A little thought then shows that (2.14)
is the simplest nearest-neighbor interaction be-
tween simple Ising spins which has the same sym-
metry properties as Z. In fact, any Reggeon field
theory with a linear bare trajectory has these
symmetry properties; no matter how complicated
the couplings. To the extent that the symmetry
properties, rather than the number of degrees of
freedom, characterize the critical behavior of a
system, we may then believe that our spin sys-
tem has the same critical behavior as an arbi-
trary Reggeon field theory. It addition, our sad-
dle-point method gives a proof of this connection
when only a constant triple-Pomeron coupling is
present, and other couplings can be shown to be
irrelevant in the E expansion.

Having established this connection for Z we turn
to the Green's functions. In this paper we shall
just consider the two-point function

(oIT(y(f, x)y'(0, o)]Io)

which (at least in the e expansion) gives the leading
contribution to the elastic amplitude when particles

We have therefore reduced the system with a
doubly infinite number of degrees of freedom at
each lattice site to a system with just two; this
considerably simplifies the construction and ap-
proximate evaluation of an explicit renormaliza-
tion-group transformation.
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I

I

. I

J 0————0
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0———-0
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I
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I0

+LS(S SI

FIG. 2. Couplings on the lattice, shown in D =1 for
simplicity. Space runs across, and time up, the page.

III. THE RENORMALIZATION GROUP ON THE LATTICE

In this section we discuss the construction of an
explicit renormalization-group transformation on
the lattice, and its relation to the critical expon-
ents of the Reggeon field theory. Our discussion
follows that of Niemeyer and van Leeuwen' for
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the conventional Ising model, which is an explicit
realization of the ideas of Kadanoff" and Wilson. "

We group the sites into cells, which consist of
a finite number of sites, and have the same peri-
odic structure as the original lattice. For the
moment we shall take these cells to be cubes (in
D = 2), each containing eight sites. With each cell
we associate a spin s' which takes the values H,
according to whether the sum of all the site spins
in the cell is positive or negative. The configura-
tions when the sum is zero are assigned either to
s'=+1 or s' =-1 in such a way that changing all
site spins transforms a configuration with s'=+1
into one with s' =-1." The site spins can now be
relabeled by the cell spin s' plus an internal cell
variable o (which in our case will take 2' values)
in such a way that changing s' while keeping 0'

fixed corresponds to flipping all site spins in the
cell. We now define a new Hamiltonian X' for the
lattice of cells by summing over the internal vari-
ables v. This is determined by requiring that the
partition function be unchanged. Labeling cells
by i', we have explicitly

then be stable in K. There are three possibilities:
K~=0, K* finite, K*=~. The last ease would not
be a sensible result since there is then no fixed
point at finite L*, and the model would have in-
finitely long-range correlations in x at fixed t.
This would correspond to the scattering amplitude
being nonanalytic at k' = 0 at finite energy. Such
a behavior is inconsistent with the input ideas of
the Reggeon calculus, and, moreover, does not
arise in the c expansion, Vfe therefore dismiss
this possibility, bearing in mind that it should be
checked by direct computation.

We shall initially consider the case K*=0, and
proceed to discuss the consequences for the Reg-
geon field theory and its exponents. To do this, it
is convenient to introduce a magnetic field term
H Q& s, into 3C. The fixed-point value of H is H*
=0, by symmetry Ne.ar the fixed point (K*, I *,H~)
we assume, as is customary, that the renormaliza-
tion-group transformation is linear. Since this
transformation commutes with S and T, and the
three couplings (K, L, H) have distinct symmetry
properties under S and T,

(3 1) SK =K, TK =K,

SL =-L, TL= -L, (3.2)
The factor Ng, which is proportional to the total
number of cells and is independent of the s', al-
ways appears and can be identified with the self-
energy of each cell. The transformed Hamiltonian
X' will depend on new couplings K', L' and inevita-
bly long-range couplings (next-nearest neighbor,
etc.) will be induced. If we are careful to respect
the symmetry properties of X in defining the trans-
formation then these new couplings will have the
same symmetry properties as K and L. In the
analysis below we shall ignore them, although
they may be included, following the general analy-
sis given in Ref. 8, without changing our results.
In numerical work, they must be included.

The infrared behavior of the theory is deter-
mined by the fixed points X~ of the transformation
(3.1), and the approach to these points. What type
of fixed points do we expect to find in our model'P

Evidently there is one at L*=0, K~ 4 0, which is
simply the two-dimensional Ising fixed point. This
is not of interest here. Recalling that the renor-
malized Pomeron intercept is equal to one when 4
takes on a critical value (proportional to r'/a'),
we expect that the fixed point of interest will have
some value L*+0. This we expect to be unstable
in L, so that 4 has to be chosen exactly equal to
its critical value for scaling to occur. However,
we do not want to be forced to set K equal to a
critical value, since it depends on the arbitrary
parameter a, . The fixed point of interest must

SH=-H) TH=H,

we see that the three couplings are mapped sepa-
rately near the fixed point. So we can write

K' =2'~K

L' L*=2 ~(-L —L~),
H' =2"H

(3.3)

where the numbers 2'~ are the derivatives of the
transformation at the fixed point. If the fixed
point is stable in K then z, & 0. We expect the
fixed point to be unstable in L and H, so that
z„z,&0.

To obtain the scaling behavior of the correla-
tion function we take (3.1) and expand to second
order in H on either side, identifying terms pro-
portional to s,', s&, where i' and j' are two cells
which are far apart relative to the lattice spacing,

(3.4)

where Q, s denotes the sum over all the spins in
the cell i'. The right-hand side of (3.4) is a sum
of 2' terms, which are asymptotically equal for
cell separations much greater than the site spac-
ing. So
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t x
G(F x X) =2"3 'G — —X'

2 P 2 P (3.6)

where (t, x) are integers labeling points on the
lattice ~ Repeating the transformation an arbitrary
number of times and taking L = L*, 0 =0, (3.6)
generalizes to"

(3.7)

for arbitrary &&. Equation (3.7) is still not the
scaling law we require as it involves different
values of K on either side. We ean circumvent
this difficulty by referring back to the field theory.
The two-point function G of the field theory de-
pends on t=a, t,, x=a„x, the parameters a', r,
and a momentum cutoff which we choose to be
a„'. The important point is that no cutoff is
necessary in the energy integrations, and the
theory is finite in the limit a,- 0. However,
changing at cannot affect the infrared behavior
of G, so we can write the following relations:

22g3 6 / / K (s ) Ng ~ (1) (1) -X(s)s) sg 8
a&

(3.5)

where s, denotes a typical site spin in the cell
i '. If we now sum both sides over all values of the
s', and divide by 2, we obtain the scaling law for
the two-point function

where

6 —2z, 1 —z, 2
Q = y

Z2 Z2 Z3
(3.14)

We now consider the case when K*&0, but is
finite. The behavior of K under the renormaliza-
tion group is then determined by an exponent z,'

gpss

implies that -y ~2, i.e., the Froissart bound is
satisfied. The condition that G should be bounded
at t- ~ at fixed x can be interpreted as the state-
ment that the elastic amplitude should be bounded
as the energy becomes large, at fixed impact pa-
rameter. This implies that the ratio of the elastic
to the total cross section is bounded, and will in
fact tend to zero if z, & 3. If z, = 3 we can always
choose the couplings to the external particles
small enough so that the elastic cross section is
less than the total cross section. These results
can be extended without difficulty to D dimensions,
provided that the fixed point has the same char-
acter.

In deriving the scaling relation (3.10) we chose
to keep L at its critical value L*. By allowing it
to differ from L*, we can derive a generalized
scaling relation which governs the behavior of G
as 4 tends to its critical value 4, :

r—,G(a, &t, a, 'x, K) =G(t, x, &z', r, a„,a, )

-G(t, x, n', r, a„0), (3.8)

the second relation being valid in the large (f, x)
region. Recalling that K&X:a„we see that (3.8)
implies that C(t, x, K) is a function of just tK and
x. We can then rewrite (3.7) as"

(3.9)

which is equivalent to the relation for G (dropping
parameter dependence)

K' —K*=2'&(K —K*) .

The scaling equation (3.9) becomes

t (K*+&& (K —K
K

which reduces asymptotically to

A A

G(t, x, K) - &&
'& G —,—,K

so in this case we have

(3.16)

(3.i6)

(3.i7)

2

G(f x) =f&"3 '&~&' '&& f P(1-8,) ' (3.10)
-y =2z, —4,
Z=2

(3.18)

(3.i9)
Comparing with (1.1) we find

z=
1 —z 1

(3.i i)

(3.12)

where, once again, 2z, —6 ~0 so that-y ~2. Qlhich
of the possibilities (z& 2 or z =2) is correct de-
pends on a detailed investigation. Evidently the
e-expansion results correspond to the former case.

IV. DISCUSSION

Since z, &0, we see that z & 2. Also, since G,
being a spin-spin correlation function, is bounded
by unity, we must have 2z, -6 ~0, which by (3.11)

In this paper we have restricted ourselves to de-
scribing the derivation of the analog model, and
showing that, if it has the type of phase transition
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suggested by the e expansion, the exponents will
satisfy the simplest constraints of direct-channel
unitarity. This result comes about as a conse-
quence of the appearance of the three-spin cou-
pling I- which links space and time in a commen-
surate way and naturally leads to the result z =2.
This is only modified by the coupling K, to z «2.
Otherwise K would be driven to infinity and no
phase transition would occur. In addition, the
result that the scaled Reggeon field rP/A is bound-
ed leads to the bound -y -z «0 on the two-point
function. This in turn implies that the opacity at
fixed impact parameter does not increase with
energy, and so the elastic is less than the total
cross section. Finally, these two results together
imply the Froissart bound -y «2.

We conclude by remarking that, since our analog
model is an abstraction of the already abstract
Reggeon field theory, it would be desirable to ob-
tain a more direct interpretation in terms of high-
energy scattering.

8
&E =~N

8EN

81nZ 8lnZ
4 ER+gRl E 8

+gR+ (A3)

8
PA=A

8A gR
f'IC, y EN

81nZ 8 lnZ- gRPA gR &
8g 8g

(A4)

P(gs, «) = (is (gs, «}

+PA�

(gs, x) (As)

An infrared-stable fixed point corresponds to a
zero of P of the form

Using the fact that Z(g„= 0, x) = 1, we can integrate
(A3) and (A4) and obtain

~R
Z(g, x) =exp

)
dg„'[1/g„'+e/4P(g„', x)] ~,

0

(A5)

where

ACKNOWLEDGMENTS
P(gs~ x) ~ P'(x)[gs —g, (x}], (AV)

It is a pleasure to thank D. J. Scalapino for an
introduction into the world of critical phenomena,
and also M. Nauenberg and many of our Reggeon-
calculus colleagues for their comments.

While this paper was in preparation we heard
that R. C. Brower, J.Ellis, R. Savit, and W. J.
Zakrzewski have considered an analog model,
which is slightly different from ours in that the
real part of the Reggeon field is also represented
by an Ising spin.

APPENDIX A

with P'(x) & 0. Then,

inZ(ge, x) ~ [e/4P'(«)] ln[ g, (x) —gs], (A8)

and we see from (Al) that gs can be driven to g,
either by taking EN to zero or r to infinity. Sub-
stituting (A8) into (A3) we see that P'(x) must be
independent of x in order for pE to be free of
singularities at gR =g, . By applying a similar
argument to the other renormalization constants
in the theory one can show that the critical indices
are independent of the cutoff.

Let us now consider the behavior of 4, for large
From Ref. 7 we know that

We now demonstrate the relationship between
the limits gs-g, and r, 6/r-~ for a theory with
a finite cutoff, A. We take A to have dimension
f ' so, for example, it could be given by 1/a/ or
u'/a, '. Following Ref. 3 we normalize the propa-
gator and vertex function at points determined by
a parameter EN which also has dimension t '. gR
is given by

dE„[Z,(g, x) '-1]
0

(r2/~ t)2/E

x dtt ' Zs t, —1

(A 9)

gs =Zr/a'~ "E„'"=Zg, (A1)
where Z, is the wave-function renormalization
constant and

x =E///A,

or alternatively g and x.
Following the approach of Ref. 15 we write

(A2)

where Z is a dimensionless renormalization con-
stant which can be expressed as a function of the
dimensionless variables gR and

(r 2/o I )2/ E E (A10)

The integral in (A9) is easily estimated provided
(r'/a')'/'&A. For f& 1 we can use the perturbation
expansion for Z, . In two dimensions we find a
leading contribution of order (r'/u ') 1n(u'A/r').
For f & 1 we expand Z, (g, x} in a power (or asymp-
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totic) series in x. The resulting integrals con-
verge (provided the critical index y& 1) because
the large-t behavior of Z, is controlled by the
fixed point. This range of t integration therefore
yields a contribution to b, of order (r'/(r')'I'.
Thus,

d.,/r
f' ~so

The contributions to 4, from large and small
values of t are positive, and we expect that in
general 4, & 0. This can be verified explicitly in
the & expansion. ' In fact there cannot be a phase
transition for large negative values of 4, since
then the functional integrals are dominated by the
saddle point at y =X =0 and the first few terms in
the perturbation series give a good approximation
for the Green's functions.

(A11)

APPENDIX B

We show how to evaluate the integral (2.6) by
the saddle-point method outlined in the text. Since
the field has essentially two components it is con-
venient to use a matrix notation. We write

g=C =%+V,

where

(B2)

/-u'V~ f 8,~

~

-ia, -z'b, '

Writing, as in Eqs. (2.7) and (2.8),

4 =4, +4',

where

V=4' A%'
y

where A is just the matrix of second derivatives
of Vat4', :

A=I!( ).

the potential V can be written, to second order in
+I

The Lagrangian then has the form

(Bl) Note that A has positive eigenvalues, justifying
integrating 4 ' along the real axis. Equation (A2)
can now be written, completing the square, as

2 =I%"' +4, :(:+A) '] (:"+A)[4'+(:"+A) ':.@,]+@,:.@ -@r:-(:-+A) ':-q

Performing the Gaussian integration over 4"', we have, apart from a constant factor,

Z=g(fet(:. A}} "'exp(-a, a, g(k, k, —4, :"(:. A} ':.4,}).
S)

(B8)

(B9)

This can be simplified further in the limit n-~, since A =O(n) while "=O(1). The determinant is then
simply a constant, independent of the s„and the leading term in the exponent is

(Bio)

which is equivalent to the first term (Vs)' in (2.9). To this order the time dependence disappears, so we
must include the next term

(B11)

Multiplying out the matrices we obtain

——,s(-c('8, sv'+c('V'se, +2ct "V )s .r' (B12}

The first two terms are equivalent and give the second term in (2.9). The V' term represents a next-
nearest-neighbor coupling in the space direction, which we ignore compared with (B10).
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