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We postulate a concept of isospin in purely leptonic space. In particular, we consider a
group G =—[SUI (2) @U(1) j[SU,&(2)(3 SU~(2) U, (1)] for leptons, The first group is the group
introduced by Salam and Weinberg and generates ordinary weak and electromagnetic inter-
actions. The second group is in leptonic space only such that the leptonic multiplet
L = 2(1+F5)(&i'",) belongs to a representation T,L -"-,', T,R =0, Y, =1 of this group and a repre-
sentation TI =-,', Y=-1 for the group SU&(2)U(1). The multiplet R =2(1-y5)(p, &) has TI
=0, Y=-2 for the group SU&(2)(3'U(1j and has T,1, =0, T,+=2, Y, =1 for the other group.
T,I and T,z are left-handed and right-handed isospins, and Y, is the hypercharge for the
leptonic group. The leptonic charge Q, =T&&3+T»3+ & Y&. Thus for the muon Q, =1 and for
the electron Q, =0 so that muonic number acquires a group-theoretic meaning. We consider
the spontaneously broken gauge symmetry based on the group G such that in Eeroth order only
the muon acquires a mass and the electron remains massless. We calculate the electron self-
mass due to radiative corrections in second order of the gauge coupling constant f of the
leptonic group. Our conclusion is that for the electron mass to be calculable, the electron
remains massless even in second orcbr so that the electron mass may arise in fourth order
of f.

I. INTRODUCTION

It is well known that hadrons exist as isospin
multiplets. For example, the proton and the neu-
tron form an isospin multiplet with isospin I= 2.
The small mass difference between the proton and
the neutron is supposed to arise because of elec-
tromagnetic interaction, which violates isospin
conservation. In practice, when one attempts to
calculate this mass difference due to radiative
corrections in second order in electromagnetism,
the mass difference comes out to be infinite. This
infinity can be removed by renormalization but
then the mass difference becomes a free parame-
ter.

In recently formulated unified gauge theories of
weak and electromagnetic interactions, the weak
interaction basically is of the same order as elec-
tromagnetism, and in calculating the mass differ-
ence, the weak interaction has to be taken into
account. In these theories, the only counterterms
necessary for cancellation of all infinities are
those allowed by the gauge symmetry. Thus, if a
zeroth-order mass difference and the correspond-
ing counterterm are forbidden by the gauge struc-
ture, the higher-order contributions to the mass
difference must be finite. ' Such gauge models
have been formulated in the last few years. These
models' give a finite and calculable mass differ-
ence between members of a hadron multiplet, but
none of these models is experimentally tenable.

The lepton mass spectrum is one of the long-
standing mysteries of theoretical physics. We
wish to understand the electron-muon mass ratio,
which is of order Om „, on the same basis as the

mass difference between members of a hadron
isomultiplet. For this purpose a concept of iso-
spin in purely leptonic space is postulated. This
isospin is denoted as T, . Then in analogy with
the Gell-Mann-Nishijima relation Q= T, + 2Y we
postulate Q, = T»+-, Y, for leptons such that Q, =1
for muon-type leptons and Q, = 0 for electron-type
leptons. We associate a chiral group structure
with this isospin. In particular, we associate a
group SU, ~(2) ISI SU, s(2) Ig U, (l) with left-handed and
right-handed isospins in lepton space such that
Q, = T

r 1,3+ T» 3+—
Yt ~ Since this group is in the

lepton space, the weak interactions associated
with this group structure cannot be extended to
hadrons. We call these, interactions which are
peculiar to leptons, "anomalous" weak interac-
tions. We believe that ordinary weak interactions,
which are universal in the sense that they are ap-
plicable to both leptons and hadrons, are ade-
quately described by the group SU~(2) SU(l) in-
troduced by Salam and Weinberg. '

For leptons, we therefore consider a group

G —= [SUi(2) SU(1)][SUii(2) Is SU,s(2) IS|U, (l)] .

The first group generates ordinary weak and elec-
tromagnetic interactions. The second group is a
new group which is introduced in such a way that
muonic number appears as muonic charge Q, . The
group SU~(2) SU(1) is local, and similarly we take
SU, z(2) SSU,s(2) as local, but U, (1) we take as
global. The extension to the case when U, (1) is
also local is briefly discussed at the end of Sec.
III. Thus we have four vector bosons W„W„, Z„,
and A, associated with SU~(2) SU(1). The bosons
W, W„are coupled to ordinary charged weak
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currents, and Z„ is a weak neutral vector boson
which is characteristic of the Salam-steinberg
model. A„ is a photon coupled to the electromag-
netic current. The six vector bosons associated
with SU,~(2) 8 SU,s(2) we denote by G~„and Gs„.
These vector bosons are electrically neutral.

In order to assign leptons to a particular repre-
sentation of this group, we form the following
left-handed and right-handed multiplets:

but not in the second order.
Before we give the plan of this paper, we briefly

mention the attempts made by other people to
understand the electron-muon mass ratio on gauge
models. The first attempt in this respect was
made by Weinberg. ' He considered a chiral gauge
group SU(3) 8 SU(3) for leptons which acts on a
triplet

1+y ~~ ~e t "u, z, "er, ~

&& )

R = '
(p. , e) = (g„, e„) .

Thus we see that for the multiplet L we have

TL, = 2, Y=-1, T,l, = ~, T,„=O, Y=1, whereas
for R we have TI, =0, Y=-2, T,1.=0, T»= &,

Y, = 1. With this assignment, we have correct
electric and muonic charges. Note that we take
the neutrino to be left-handed because we want
neutrinos to remain massless even after radiative
corrections.

To start with, all the particles are massless.
In order to break the gauge symmetry spontane-
ously so that all vector mesons except the photon
acquire mass, we introduce a set of scalar me-
sons. The symmetry is broken in such a way that
only the muon acquires a mass in zeroth order but
the electron remains massless. The hope is that
the electron acquires a mass due to radiative cor-
rections by the exchange of those vector bosons
G, which carry muonic charge, so that a muon in
the intermediate state is possible (see Fig. 1).
Our conclusions is that the electron mass may
arise in the fourth order of radiative corrections

This model cannot be extended directly to hadrons.
Moreover, this model does not give a satisfactory
result for the electron-muon mass ratio in second
order and has difficulties similar to those of our
model. In the model considered by Mohapatra' for
this purpose, the electron self-mass also arises
in fourth order and the model is not simple.
Georgi and Glashow' have discussed a number of
gauge models for calculating the electron-muon
mass ratio. They have succeeded in constructing
a model in which the electron-muon mass ratio
can be calculated in second order, but their model
for weak interactions cannot be extended to had-
rons. They have to introduce doubly charged vec-
tor bosons for this purpose and require 24 vector
bo sons.

The plan of this paper is as follows. In Sec. II,
we write down the gauge-invariant Lagrangian. In
this section we also discuss the spontaneous sym-
metry breaking by introducing three sets of sca-
lars
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FIG. 1. (a) and (b) Feynman graphs which contribute

to electron mass in second order. (a') and (1') Feynman
graphs which contribute to coupling constants gz and g~
in second order.

which belong to the representation (—', , —,'), (—,",—,'),
and (&, 0) of the group SU,~(2) 8 SU,s(2) 8U, (1) but
are singlets with respect to the group SU~(2)
8U(1). The vacuum expectation values of scalar
mesons are arranged in such a way that only the
muon and all the vector bosons G~„and G„„ac-
quire masses but the electron remains massless
in zeroth order. We also discuss the case in
which two sets of scalars g and a are replaced by
one set of scalars, so that we get a "natural"
zeroth-order gauge symmetry model.

In Sec. III, we investigate the electron self-
mass in second order due to exchange of gauge
vector bosons G'„". Our conclusion is that this
contribution vanishes and hence the electron does
not acquire mass in second order due to exchange
of gauge vector bosons. For the second case we
show that the electron remains massless even in
second order. Thus in either case the electron
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mass may arise in fourth order, as is the ease
for most of the models discussed in the literature.

In Sec. IV, we briefly discuss the consequences
of "anomalous" weak interactions for lepton de-
cays and lepton scattering. We conclude in this
section that none of the known results for these
processes are affected by the "anomalous" weak
interactions.

II. GAUGE-INVARIANT LAGRANGIAN

For leptons, the Lagrangian invariant under the
gauge group

(2a)

R = (ps eR) (2b)

In order to break the gauge symmetry spontane-
ously we introduce four sets of scalars

ated with the group SU~(2) (3U(1) and G~, and G~
are those associated with the group SU, ~(2)
(g(SU,z(2). L and R are given by

G = [SU~(2) (g(U(1)][SU(~(2) (g(SU,e(2)]

is given by

Z(leptons) = Tr[L-y„V„L +By„V'R], (la)

1
TL 2y

T~ =0)

T~=0,

Y=1, T~ =0, T~ =0,

1 1Y=O, T,I, = p, Tfg
1 1

fI, & tR
where

= 8„igW-+ g'B„if—~Gz„, - (lb) T~-—0, Y=0, T)1 ——z, T)„=0, Y, = 1 .
go

V -8 -sgB -sf„G, . (1c)

Here 8' and B are gauge vector bosons associ-
Now the complete Lagrangian invariant under the
group G is given by

ZZ=-(-„(,8„., ,y„8,~„~uy„a„u ry„(„e&——T„y,-'((('„——(,"((,)(„,
r=e, v—

2
~ P&" 2

P, B„-g 'Y —~f~GJ. $1. — I.y„—if~GI. „)I.

4y, ( ifzGz„)4--2[8-,/+i 4(gW( zg'&„)][8-„4 i(gW„-af'~(.-)(t(]

2[8,7+if+K-G~, ][8,e -if,G~„e)

2[8~7/+ 2 JIG» +fsG») x (}+& (f~G~„-f„G»)7}o].[8„r}+2 (f~G»+KG») I}+2 (f~G» f»Ge(( }r}0]-
2[ (qo— z(fIG~( fsG-s(, ) q][ (—q0-2(flGr„fsGs(, ) q]-

—2[8 o+2(f~G~„+KG„„)xo—~Q~G~ fsGs„)oo] ~ [8-„5+2(f~G~ +KG„)xo' 2(f~G~ fed„)-oo]

-2[s„oo+~2(flGI(, fzGs()'o][8(oo+g(frGr(, feGs„) o]-
gf(ri, +is ~-,)1 g,Z(io,y, + r-o)L+ V(Q)+ V(r})+ V(o)+ V(e),

where

v2 8„I G„„MC...
W„=p

v 2 W W,„) -MG~ s„-G,~ s
(3c)

The potentials V((t&), V(q), V(o), and V(e} will be defined later. From Eq. (3a), we can write the interac-
tion Lagrangians as

ie(Fy, e+ g-y„g)A„+ ~ [iv,y„(1+y,)e+ (e- g}]R'„+H.c.

i[(4 sin'Hv -1)Fy„e—ey, y,e + v,y„(1+y, ) v, ~ (e —i()]Z, ,
(g'+ g")"'.

(4a)
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where

&.=(g'+g"} ~'(-g'IV, .+if.), 2'. =(g'+g") ~'(gg. .+g'ff. ),
-e =gg'/(g '+g") ', g'/g = tanev.

(4b)

(4c)

Equation (4a) gives us the usual Salam-Weinberg interaction Lagrangian for weak and electromagnetic in-
teractions. The interaction Lagrangian for the "anomalous" weak interactions can be written from Eq.
(Sa} as

i:e„= ~~ [ip y„(1 +y,)equi„+H. c.]+~[ipy„(1+y,) p, iV-y„(1 +y,)e]G,i„

+ ~~ [i'„(l—y,)eCe, + H.c.]+~ [ipy, (1 —y, ) p —iey„(1 —y, )e]G»„

+ ~ [iv„y, (1+y,)vCi„+ H.c.]+ [iv,y„(1+y,)v, —iv y„(1+y,)v,]G»„.

In order to give masses to all gauge vector bo-
sons except the photon, we break the gauge sym-
metry spontaneously by requiring that some of the
scalar mesons develop nonzero vacuum expecta-
tion values. We note that

V(y) = —V, '04 -h, (yy)',

V(n) = 'u, '-(-n.'+ n ) 'h„(r).—'+-7)',
V(o) = --,' p, ,'(o,'+ P) --,'h, (o,'+ o2)',

(6a)

(6b)

(6c}

and an expression for V(e) similar to that given in
(6a). If 0,', g,', and p, ,'(0, then the p, q, and o
must develop a vacuum expectation value so as to
make the physical masses of scalar bosons non-

negative. The symmetry is then spontaneously
broken.

As is well known, it is possible to select a gauge
so that

We now assume that g, and 03 have vacuum ex-
pectation values

( n.&
= v„ & o.&

= v, .
Thus we write g, = g,'+ v, and 0, = 0,'+ v, so that
(q,'& = 0 and (o ) = 0. In what follows, we will omit
the primes on g,' and 0,'. We now require that in
the tree approximation the terms linear in g, and

03 shou ld vani sh, so that we get

4+ 4A~V2 (8a)

V(o) = ——,'(2h, v,')c,' ,'h, [(e,'-+-P)'+4v, cr, (o,'+P)]

2—
p2 = -A„v2, p3 = -Q~V3

Thus we have

V(r)) = —g(2h„v, ')q, ' ——4h„[(q,'+~q)'+4v, r), (ri,'+P}]

0
is replaced by

i

I, 0+~ and

1+ 4Agv3 (8b)

where (P&=0 and V(@) is given by

V(4) = ~,'(~ 0+—)' h. [(~+4-}'1'.

We now require that in the tree approximation the
term linear in Q should vanish. Thus, to the low-
est order,

= —p, i /2h~ .

Hence,

V(@)=-~(BX'ho)P'-h~(P~+4XQ')+h~X'. (7)

As is the case for the scalar multiplet P, it is
possible to select a gauge such that

0
is replaced by(e' I t+ Vi

where (e& = 0 and V(e) is given by

V(e}= ——,'(8v, 'h, )e' -h, (e'+ 4v, e') + h, v, ' .
Now from the term

(10)

One can easily see from the Lagrangian (Sa) that
8'„and Z„acquire the following masses:

mv= 2' me= 2X(g +g )

Note that in writing the Lagrangian (Sa) we have
assumed that the scalar meson is not coupled to
leptons, so that leptons are still massless.

g„f(ri, +if-~ riy, )f gg(io, ,yf+(r-}g~
in the Lagrangian, we see that the muon and elec-
tron masses are given by

FPl =g~v2+g~v3 q

Pl =g~v2 -g~v3 .
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We require the electron mass to be zero in zeroth
order. This gives

Also we note that in this case we have

g„=m, /2v, , g, =m /2v, .
v, /v, =g,/g, ,

so that

(12)

Now we write down the mass terms for vector
bosons G~, and GR„which arise in the Lagrangian
(3a) owing to spontaneous symmetry breaking.
These terms are given by

2(M)+Z(tadpole) = --, (v, + e)'(Bf~'C~, G~, + 4f~'G, ~,') --,'(g, + v, )'(2f~'C'~, G~„+2fa'Ca, Ga, )

+8 fLfR(&3+ 3)'G3Lg 3a. (14)

We have written the left-hand side of Eq. (14) as
Z(M)+2(tadpole) because this equation contains
both the mass term for vector bosons G~ and

GR, and the terms which contribute to tadpole
graphs.

From Eq. (14}, we see that the mass matrix for
G~„and GR„ is given by

fL'(4v, '+ v, '+ v, ') Afa(v, —v,')-
fifa(v, ' —v, ') f„'(v,'+ v, ')

The mass matrix for G» and G»„ is given by

f'(4v~'+ v.'+ v.'} -fifa(v. '+ v3'}

-f,fa(v, '+ v, ') f„'(v,'+ v, ')

In order to diagonalize the mass matrices i&I and
M„we define

G'„= sinn GR„—cosa G~„)
G'„= cosa GR„+sinn G~, ,

G,'„=sinPG, „—cosPG, „,
G', „=cosP G,» + sinPG, ~„.

We also define an angle 8 such that

fi =fcos8 )

f =f sin8.

(17a)

(17b)

The masses of the vector bosons O'„, G'„G',„, and

G,' are then given by

M, '= —,'f'[cos'8(4v, '+ v, '+ v, ') cos'a+ sin'8(v 2+ v, ') sin'n+ 2 cos8sin8(v, ' —v3') cosa sino. ],
M, ' = —,

'f '[cos'8(4v, '+ v, '+ v, ') sin'o. + sin'8(v, '+ v, ') cos'n -2 cos8 sin8(v, ' —v, ') coso. sino. ],
(M,')' = —'f '[cos'8(4v, '+ v, '+ v, ') cos'P+ sin'8(v, '+ v, ') sin'P+ 2 cos8 sin8(v, ~+ v, ') cosP sinP],

(M', )' = —,'f'[cos'8(4v, '+ v, '+ v, ') sin'P+ sin'8(v, '+ v, ') cos'P —2 cos8 sin8(v, '+ v, '}cosP sinP] .

We also note that

cot2o. sin28(v, ' —v, ') = [cos'8(4v, '+ v, '+ v, ') -sin'8(v, '+ v, ')],
cot2P sin28(v, '+ v, '}= [cos'8(4v, '+ v2'+ v, ') —sin'8(v, '+ v, '}],
v, ' - v,

' cot2P
v, '+ v,

' cot2n

(19a)

(19b)

(19c)

(19d)

(20a)

(20b)

(20c)

In terms of the vector bosons G', G'„, G,'„, and G', , of definite mass, the interaction Lagrangian (5) is
given by

Zo„, = E,[i',(1 r+,y, )eC"„+H.c.] + E,[ipy„(1 +r,y, ) C",e+ H.c.] + E',[i',(1 r+,'y, ) g -(g —e)]G,',

+ F',[i',(1+r',y, ) p -(p, -e)]G,'„+ ~(-casu[i v,y„(1+y, ) v, ]C'„+sinn[i v„y, (1+y, )v, ]02 + H.c.]

+~{-cosp[iv y„(1+y,)v, —(p-e)]G,' +sinp[iv y (1+y,)v -(p-e)]G 23), (21)

where
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f cosa cos8+ sina sin8F,= (-cosa cos8+ sinn sin8), r, =
2vz cosa cos8 —sina sln8

= f sina cos8-cosa sin8
E,= (sine cos8+cosa sin8), r, =

244 sina cos8+ cosa sin8

f cosP cos8+ sin|3 sin8
E,' = —(—cosP cos8+ sinP sin8), r,' =

cosP cos8-sinP sin8 '

=f sinP cos8-cos|3 sin8E', = —(sinP cos8+ cosP sin8), r', =
sinP cos8+ cosP sin8

'

(22)

Now we discuss a particular simple case. This corresponds to using a single scalar multiplet instead of
two multiplets q amd o. This multiplet we write as

q, + o;+ i(o, + q, )

Z7t + (T

2' +CT

q, -o,+i(o, -g,}

Note that this multiplet is electrically neutral. Then interaction of this multiplet with leptons can be
written as

gpss-Zfi+ H.c.= ~g[2P-g(q, + o,}+2iPy, p(oo+ ri, }+2i7eo + 2i py, eq + 2epo'

+ 2iey, pq'+ 2Pe(r), —o', }+2ilfy, e(o, —r4)] .

Now if ((q, +o,)) =2v, but ((q, -o,)) =0, then we see
that

3 sin2a sin28 M, '
16~2 (24a)

m~= 2@v,

m, =0.
This case we call case II to distinguish it from the
case I discussed above. In this case we get the
results which one gets in case I by taking

This contribution is of the right order. But, these
graphs also give a quadratically divergent contri-
bution of order f '/M' to the electron self-mass
which is given by

AE; = ", sin2a sin28
2 1

V2 = V3 = V .
A2

x A' —m„' ln
m

(24b)

In particular, the mass matrix M in Eg. (15) is
diagonal, so tha, t a=0,

G~ = GRQ

M, ' =Mi' = —,f 'cos'8(4v, '+ 2v'),

M,' = Me' = —,'f 'sin28(2v') .

(23)

(25)

In Eq. (24b), A' is the cutoff. In addition, as is
clear from Eq. (11), the electron self-mass may
also arise from the radiative corrections to
Yukawa coupling constants g, and g, due to ex-
change of vector bosons G„. Let us write the
radiative corrections to g„and -g, as g„R„and
g, R, . Then from Eq. (11},the electron self-mass
due to these corrections to g„and -g, is given by

6m, = —,'m, (R„+R,) .
III. ELECTRON SELF-MASS

First we discuss the radiative corrections to
electron mass in a single-loop approximation due
to exchange of vector bosons G„. The two graphs
which give nonzero contribution to the electron
self-energy are shown in Figs. 1(a) and 1(b). The
self energy to or-der f' is finite and is given by

Those graphs for which R„=—R, will not contri-
bute to Qn, . It is then easy to see that as far as
radiative corrections due to exchange of vector
bosons are concerned, only the graphs shown in
Fig. 1(a)' and 1(b)' can contribute to 6m, . The
contribution of these graphs can easily be calcu-
lated and is given by

m, ( sin2a sin28 M, ' 6 1 1, , A'

16 ' ~ 8 ln~'2+3 ~ 2
—~, A' —m„'ln

F 2 2 1 m fi

(26)
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This exactly cancels the contribution (AZ', + AE', ) given in Eqs. (24a) and (24b). Thus the electron remains
massless in the single-loop approximation owing to exchange of gauge vector bosons.

For case I, the electron self-mass can also arise owing to a shift in the vacuum expectation values v2

and v3. This shift is due to radiative corrections arising from the one-loop tadpo. e graphs shown in Figs.
2(a)-2(d). Their contribution can be easily calculated and is given by

2') m ~

1 1
5v, =

(2
.. .(E'+F;+F;),

where

(27a)

(27b)

2 2

v'3v f'-2A'-~M, '(cosa cos8+ sinn sin8)' ln, ——,M, '(sina cos8-cosa sin8)' ln
1 M2

A2 A——,'(M', )'(cosP cos8+ sinP sin8)'ln»- —,'(M,')'(sinP cos8 —cosP sin8)' ln»
3 3

A2
F~~ = —v'3vP„A' —m„' ln

(28a, )

(28b)

2

E,"=-m24m„g, 2 A2 —m 2ln
g

2 2
F'= -w'3vg' p'A'- —,'M, '(cosa eos8-sina sin8)' ln, ——,M, '(sina cos8+ cosa sin8) ln

1 2

A2 A'
-4 (M', )'(cosP cos8+ sinP sin8}'ln» --,'(M23}'(sinP cos8-cosP sin8)' ln»

3 3

A'I"=-7t'Sv h A' —m 'ln

(28d)

(28e)

E'=-m 4m g A —m ln
m

(28f)

From Eq. (11), the contribution to the electron self-mass due to tadpole graphs is given by

F.r =gq~ "2 A&t'3

1
(2v)'Im2 n c ~2 a c(E"+ E"+ E")— ' (F'+ F'+ E')

7) fy

(29)

It is clear from Eqs. (28) that tadpole graphs give both logarithmically and quadratically divergent contri-
butions to the electron self-mass.

Note that in writing Eqs. (28} we have taken into consideration the contribution of "ghost loops" in the
tadpole graphs given in Fig. 2(d). The effective interaction of the spin-zero fermion "ghost" field up is
given by

f '$ '{-—,'2v, rlo[2(sina cos8-cosa sin8)'PsP+ 2(cosa cos8+ sinn sin8)'w'u']

——,'2v, o,[2(sina cos8+ cosa sin8)'a'~'+ 2(cosa cos8-sina sin8)'~'~']

--,' (2 v,q, + 2 v,o,)[(sinP cos8-cosP sin8)'(u', )'+ (cosP cos8+ sinP sin 8)'(~',)']}. (30)

The propagator of the "ghost" is of the form
$/($k' —M ). $ is a gauge-dependent parameter.
For the unitary gauge, which we are using, $-0.

We note that both logarithmic and quadratic di-
vergences in Eq. (29) vanish when M, =M, ' and
m„'=m, '. But in this case the finite contribution
also vanishes. In any case, since the contribution

of tadpole graphs is equivalent to shifting the vacu-
um expectation values v2 and u, to v2+ 5v2 and

p3 + 5v„ this contribution can be absorbed by re-
defining the polynomials V(rf} and V(o).

For the case II, since G'„and G'„reduce to G~„
and G~ „which have V v A coupling s, it is clear
that graphs in Fig. 1(a) and 1(b) give zero eontri-
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and replace it by

+ v~

0

so that instead of the first term in Eq. (14), we

get the term

——', (v,'+ e')3[8f~3C~„G~ +4(f~G3~ +f'H )'],
and the rest of the terms remain unchanged in Eq.
(14). The mass matrix as given in Eq. (16) now

becomes

f '(4v,"+v, '+ v, ') ff (-v, '+ v, ') 4f f'v",

FIG. 2. Tadpole graphs which contribute to electron
mass. Here solid lines denote electrons; jagged lines
denote vector bosons; dashed lines denote scalar parti-
cles; and looped lines denote "ghost loops".

4f+ v&4f fIV /3

(33)

M»= 4 fIfs(v3-'+ v, ') fs (v,'+ v,') 0

I2f (Py g+Fy e +v ~y v r+v ry vg).

The current corresponding to muonic charge Q,
is then given by

~» = (it"y»~+'v»ry»v»1)

The gauge vector bosons X„coupled to this cur-
rent are given by

G3z.
f f f'

where e, is the coupling strength of this boson
with the current J' and e, is given by

2= 1 1 1
2 f 2

(31)

(32)

We want the vector boson X to be massive. For
this purpose, instead of introducing a scalar mul-
tiplet E we introduce a multiplet

bution to the electron self-mass. Also for this
case, there is no tadpole graph which contributes
to the electron self-energy in second order. Thus
for this case also, the electron remains massless
in second order. Our conclusion is that the elec-
tron may acquire mass in fourth order, which
is not attractive. In this respect our model does
not differ from the other models considered in
the literature. "'

We now briefly discuss the case when the group
U, (1) is also local. We associate a gauge vector
boson H„with U, (1). Then we have the additional
current which is coupled to H„,

Since the contribution to the electron seU-energy
comes either from the graphs in which the vector
bosons G'„and G'„are exchanged or from the tad-
pole graphs arising from g, and c, exchange,
therefore none of the results discussed previous-
ly are affected by considering U, (1) as a gauge
group.

v, (P,) + e - v, (v, ) + e,
v„(P„)+e-v„(v„)+e,

(34a)

(34b)

in addition to that given by the Salam-Weinberg
theory. The effective Hamiltonian for the process
(34a) from Eq. (21) is given by

E3» -[iFy„(1+r,'y, )e] [iP,y„(1+y,)v, ]
fcos8 cosP

3

+ F', ~ 3 [i'„(1+r', y, )e] [iv,y„(1+y, )v, ] .fcos&sinp

3

We get a similar expression for the process (34b)
by replacing e by p. . It is clear that this contri-
bution is negligible if vector bosons G', „and G3p
are superheavy, i.e. , (M,')', (M'3)'»Mz' and f' is
of order a. Iff 3/M33 is of order Gz, then this
effect is similar to that due to a neutral current
in the Salam-Weinberg theory. '

In the usual theory the effective matrix elements
for the decay p, -e+ v„+ v, can be written from
Eq. (4a) as

IV. SOME CONSEQUENCES OF "ANOMALOUS" WEAK

INTERACTION

It is clear from the Lagrangian Z~, given in Eq.
(21) that we get a contribution to processes like

, [iu,y, (1+y3)u„][iu„y,(l+ y, )u„] .
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The effective matrix elements arising for p, decay
from the "anomalous" weak-interaction Lagrangian
given in Eq. (21}are given by

f cos& coso. .F, -~, [iu,y, (1+r,y, )u, ] [iu„y,(1+y, )v„]

+ F, , [iu,y„(1+r,y, )u, ]fcose sinn
2 2M, '

x [iu„y„(1+y, )v„].

Again, if M, ', M, '&&M' and f ' is of order o. , this
contribution is negligible. Even if f'/M, ' or
f '/M, ' is of order g'/m~', we will have negligible
effect on the p.-decay parameters, since there
are enough parameters available to make the ef-
fect of "anomalous" weak interaction negligible.

V. CONCLUSiONS

We have constructed a gauge model for leptons
based on a chiral group such that the muon num-
ber appears as a muonic charge associated with
the group structure. In this model some of the
gauge vector bosons carry muonic charge, so that

e —p. transition is possible as in Fig. 1; the re-
sult is that the electron self-mass can arise in
second order, with the muon in the intermediate
state and the electron being massless in zeroth
order. But as we have seen for case I in this
model, the electron remains massless in second
order. For case II of this model, the electron
also remains massless in second order. The
electron mass may arise in fourth order. In this
respect our model gives results similar to the
other models "proposed in the literature to
calculate the electron-muon mass ratio. None of
these models"' give satisfactory results in sec-
ond order. Our model has the advantage that nor-
mal weak interactions which are universal in the
sense that they are generated in the same way
both for leptons and hadrons remain unaffected,
and muonic number has a group-theoretic basis.

ACKNOWLEDGMENT

A part of this work was done when one of us (F.}
was at CERN. He would like to thank the CERN
Theoretical Study Division for hospitality at CERN.

*This work was supported in part by the Pakistan Atom-
ic Energy Commission.

S. Weinberg, Phys. Rev. Lett. 29, 388 (1972); Phys.
Rev. D 7, 2887 (1973);H. Georgi and S. L. Glashow,
Phys. Rev. D 6, 2977 (1972).

S. Weinberg, Phys. Rev. Lett. 29, 388 (1972); A. Dun-

can and P. Schattner, Phys. Rev. D 7, 1861 (1973);
D, Freedman and W. Kummer, iMd. 7, 1829 (1973);
Fayyazuddin and Riazuddin, Ann. Phys. (N.Y.) 80, 189
(1973);Nucl. Phys. B74, 297 (1974); S. Weinberg, Phys.
Rev. D 8, 605 {1973);R. N. Mohapatra and P. Vinciar-

elli, ibid. 8, 481 (1973).
3A. Salam and J. C. Ward, Phys. Lett. 13, 168 (1964);

S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);
A. Salam, in Elementary Particle Theory: Relativistic
Groups and Analyticity (Nobel Symposium ¹.8),
edited by N. Svartholm (Almqvist and Wiksell, Stock-
holm 1968) p. 367.

4S. Weinberg, Phys. Rev. D 5, 1962 (1972).
'R. N. Mohapatra, Phys. Rev. D 9, 3461 (1974).
6H. Georgi and S. L. Glashow, Phys. Rev. D 7, 2457

(1973).


