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Reggeon diagram technique for inclusive processes in the triple-Regge limit
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We derive rules for evaluating Regge branch-cut corrections to the triple-Regge regime of
inclusive reactions, Our approach is to study classes of hybrid field-theory graphs for the
six-point function and to set up a constructive procedure for evaluating the contributions with
discontinuities in the missing mass. We find that all contributions, cut and pole, can be
given in terms of a single partial-wave amplitude and our rules are for constructing that.
The rules are then cast into a form appropriate for a Reggeon field-theory evaluation of this
partial-wave amplitude, and a renormalization-group attack on the problem is outlined. This
latter work is especially relevant for the case when Pomeron exchange is permitted and a
nonperturbative evaluation of the partial-wave amplitude near J; ~ 1 and t; = 0 is required.

I. INTRODUCTION

Analyzing the effects of branch points in partial-
wave amplitudes E(J, f } and their contributions to
ela. stic scattering amplitudes T(s, t) has been an
on-going project for over a decade. The initial
arguments of Mandelstam, ' Gribov, Pomeranchuk,
and Ter-Martirosyan, ' and of Amati, Stanghellini,
and Fubini, ' emphasized the necessity of moving
branch points in J given the presence of moving
poles at 4= o.(t). In retrospect it can be seen that
the underlying reason for the branch points is uni-
tarity as expressed by rescattering in the s chan-
nel or by multiparticle states in the t channel. '

The study of branch points took on an imperative
nature, at least for the Pomeron (P) which has
a(0}= 1, when the generalizations of the Finkel-
stein-Kajantie problem' for P poles having o.'(&)
= 1 + n't near t = 0 were shown to lead to the con-
clusion that the P must decouple from total cross
sections. ' ' A key step in this argument' involved
the vanishing of the triple-P vertex, gp(f), which
is measured in inclusive processes in the triple-
Regge limit.

In this paper we return to the triple-P region of
inclusive reactions using the recent progress"'"
in the study of branch-point contributions to elas-
tic processes as a guide to our approach. Here
we will construct a diagram technique for eval-
uating multi-P contributions to the partial-wave
amplitude for the triple-Regge limit of the three-
to-three process whose discontinuity in missing
mass gives the inclusive reaction. This diagram
technique will then be employed in formulating a
field theory for the interacting &s, and the solu-
tion to this field theory will be studied in the

small-(4- 1), small-t limit using the renormal
ization group for the field theory. A subsequent
paper carries out the necessary additional argu-
ments needed to transcribe the Reggeon field-the-
ory result into its consequences for the inclusive
cross section as a function of s, t, and M", the
missing mass.

It is worth noting that the triple-P region of
single-particle inclusive reactions is only one of
many important places in which to investigate the
consequences of a Reggeon field theory. The issue
is basically this: Reggeon field theories are con-
structed to automatically satisfy the t-channel
Reggeon discontinuity formulas. "' There is no
a pro~i guarantee that they automatically meet the
requirements of unitarity in the s channel. To look
into that question one can analyze in detail specific
s-channel processes beyond elastic scattering.
Since the Reggeon field theory that describes elas-
tic processes is not directly applicable to inelas-
tic reactions, such an analysis typically has to be-
gin with the derivation of a Reggeon calculus for
the specific process to be considered. Some of
this has been done by Migdal et al. ,

' who use an
heuristic Reggeon diagram technique for multi-
particle production cross sections and single-par-
ticle inclusive processes. A more complete anal-
ysis of the 2 -N production amplitudes has been
given by Bartels" and further study of those pro-
cesses is being done by Bartels and Rabinovici. "
These studies show that the Reggeon calculus for
inelastic reactions, although each process re-
quires its own set of rules, has in all cases the
same structure and is a generalization of Gribov's
Reggeon calculus for the 2-2 process.

Our plan in this paper will be to begin in Sec. II
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with kinematic preliminaries for the triple-P re-
gion. Then we will use the method of hybrid Feyn-
man graphs to abstract Reggeon diagram rules
for the appropriate partial-wave amplitude. After
casting these rules into "covariant" form we dis-
cuss the renormalization program for the field
theory and give the renormalization-group equa-
tions for the theory. The detailed structure of the
inclusive cross section requires rather much more
analysis which we present in the accompanying
paper.

The major result of the present article is a set
of Reggeon rules for single-particle inclusive pro-
cesses in the triple-Regge region. We study the
three-to-three amplitude T, of Fig. 1 in the limit

s~2 =(p~ +p2)

sg, =(Pg+Pg)'-

s, = (p, +p, -p,')-

Ps'

S)g

FIG. 1. Kinematics of the six-point amplitude in the
triple-Regge region.

held fixed. The inclusive process is reached whei
0 t2 t3 t, and s 2 s 1, =s and the inclusive

cross section is

s
S1

with

s
S1

1
dt d~2

=
2

. discg2 T6 ~

s2 =(P2+ pi —pi)

s, = (P, + P —P')', Q = t,

where the missing mass M' =s, (see Fig. 2).
We find that the Reggeon pole and cut contribu-

tions to T, which have a missing-mass discon-
tinuity can be written in the form

dg, dg, dZ,
8( 12% 13$ lt@')=

(2 I3 ~z tz t'7-J'-z z F(~lg~2y~gytf) y

where

e "~&+r e '"'~1 2 ~~'+7 7 T

sinn/~ '
& 2 & sine(J, -J, —J,}

where the rq are signatures intheZ~ channel (Fig. 8).
The function F(J,, t~) is real analytic and is to be
evaluated from the rules we now begin to formu-
late.

II. KINEMATIC PRELIMINARIES AND POLE GRAPH

cuts and the discontinuity across them can be
found on rather general grounds using multipar-
ticle t-channel unitarity. 4 A more pedestrian, yet
very powerful, approach was used by Gribov" in
deriving the Reggeon diagram technique for 2-2

It is now pretty well understood how cuts in J'

enter elastic amplitudes. The position of such Js,&sz's

FIG. 2. The inclusive reaction with variables s, t,
and M2. We are interested in this cross section when
s, ~ and s/~ ~, t fixed.

FIG. 3. The kinematic channels of the partial-wave
amplitude for the six-point function. Each channel has
angular momentum ~~, two-momentum Q& such that
JQqj = —t &, and signature T; =+ 1.
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processes. This technique, which we adopt here,
studies the high-energy, fixed-momentum-trans-
fer behavior of hybrid field-theory graphs in
which power behavior is attributed to internal two-
to-two amplitudes when they carxy large suben-
ergies. 4 The object of study is the signatured par-
tial-wave amplitude F(J, t} from which the elastic
amplitude T(s, t) is gotten via

C+f~ d J
T(s, t) = . s~(~F(J, t), '

(8)
c-f~

with

8 +T
sinmJ

and v = +1 is the signature. Gribov's Reggeon rules
give a constructive procedure for evaluating the

J-plane cut contributions to the real analytic func-
tion F(J, t)'. These rules can be formulated in a
field-theoretic fashion, and the solution of the
problem thus stated by means of the renormaliza-
tion group"" has provided substantial understand-
ing of the detailed behavior of F(J; t) near J= 1,
t = 0 for the even-signatured amplitude involving
the P.

The derivation of Reggeon-cut rules for inelas-
tic amplitudes is less well understood. In prin-
ciple we would like to have as powerful an ana-
lytic tool as for the elastic amplitudes. For the
multi-Regge regime of 2 -N production amplitudes
this instrument has been found. " For the 2-3
process, for example, one discovers that in the
double-Regge limit (Fig. 4} one can write pole and
cut contributions as

d Jj d J2 J g gT 3(s3)s„s„t„ t,) —
(2

.), [s s, (g $g g F,(J„J„t„ t3, rl)

(8)

where

&-l ~(z, - z&)

sin(((J, —J,) ' " s, s, '

and the signatured partial-wave amplitudes I'~ are
real analytic. Reggeon rules yield the E&.

Here we see one of the complicating features of
inelastic s-channel amplitudes. The presence of
two partial-wave amplitudes in (8) comes from the
additional variables one requires to discuss the
five-point function; in particular, the azimuthal
angle or helicity variable. Two terms are also
necessary to satisfy the so-called Steinmann rela-
tions which forbid simultaneous singularities in
overlapping invariants. In (8) one may not allow a
factor like s, s, 2, which seems so natural from
the double-Regge picture of Fig. 4, since it has a
simultaneous discontinuity in s, and s, . The com-
binations s &s, 2 j and s 2s, & 2 are permitted,
and the partial-wave decomposition of T, , con-
tains both possibilities. For more complicated
amplitudes, T, „etc., the number of allowed
terms grows rapidly.

We see here, however, the clue how to begin.
We must first identify the partial-wave amplitudes
which are allowed by general principles and then
find rules for evaluating Reggeon-cut contributions
to them. We will proceed by considering the sim-
plest hybrid graph that can contribute to the tri-
ple-Regge region. This is the triple-Regge pole
graph in Fig. 5. In the study of 2-3 amplitudes

the structure that emerges from the simplest
graph has the full content of Eq. (8). This will also
be the case for us, so we give some detail of the
procedure in our analysis of Fig. 5(b}.

We are interested in studying the six-point am-
plitude T, for the scattering of spinless particles
Py +Pp +P3 P] +P2 +P3 in the tripl e-Regge Iimit.
The contribution to T, we will analyze in detail
is in Fig. 5. Each of the 2-2 subamplitudes will
be required to have power behavior in its suben-
ergy for fixed momentum transfers and finite off-
shell masses. We will use the following (overcom-
plete) set of variables for T, (Fig. 1).

(3 (P( P3 ( (3 (P( P3) l ( (P( ~3}

s» = (P, —P,')', s, = (P, + (I(,)', s, = (P, —Q3)',

t( = Q('=(P( —P(')', i =1, 2, 8 .

p

Q

FIG. 4. The double-Regge region of the 2 3 ampli--
tude.
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FIG. 5. The hybrid field-theory graph for the simplest contribution to T6 in the triple-Regge region. Each of the
2 2 subamplitudes becomes a Reggeon when its subenergy is large. This is the transition from (a) to (b).

Since T, depends only on eight variables, one of
these must be redundant. The requirement that
T, be independent of the relative orientation angle
of the planes between p, and p1 p2 and p2', and p,
and P,

' eliminates the extra variable via an unat-
tractive nonlinear constraint on the variables in

(10) 15e16

In the triple-Regge limit of T, we require

8 8
8 8 8

8 & S1 1

while

V =A p) + Bpt2 + Vg y

with

v, P, =v, .P2=0, v, ' O.

(15)

The kinematic vectors P~, P~, and Qq are then

P&2=0, which means that in the evaluation of our
hybrid graphs to order 1/s», we may systema-
tically drop Pq'. This order of error is quite ad-
equate for us.

Now we wish to decompose all vectors as

~s = A, s„s„s„,and the t;
S12

(12)

are held fixed. To analyze Fig. 5(b) we decompose
all vectors into their components along vectors
p, and P„which carry the "large" components of
momenta, and along a remaining spacelike two-
vector perpendicular to p~. These Sudakov" vari-
ables allow us to carry out the integrations over
the projections of loop momenta on the P&, leaving
the usual two-dimensional transverse dynamics
to be specified. We define the "large" vectors
P; by

2mP=P- —P1 8 2
12

and

and

m2

12

2

P2 +
12

m -s -m'8 s t
S12

8 -t -m2

12 12

2t - m +t, -s, -
@2=-~P, + ' 'P, +92&,

12 12

82 -m'+ t2 - t, - 8, -m'+ t, - t2-
812 81

(20)

(21)

(22}
PPl

P2 = P2 — P),.
1

where P] =P» -'=Nb '

('. , learl, P, lies "n~ !tly" al~ &g P„ the "Ream" di-
re~(.'on, and p., lies ~nostly along p, . These vec-
tors have the further virtue that to order 1/s»,

The apparent asymmetry between vectors labeled
'"2'" and those labeled "3"occurs because of our
choice of basis vectors P;. This asymmetry will
disappear.

What we wish to do now is label the internal vec-
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tors l; by

li =Ai ~1+BiP2 +liiq i = 1~ 2

and using

d lt =t (s»(dAt dB, d'1« (23)

and

D, =(Q, —l, )' —m'+ie

S

carry out as much of the dA; dB; integration as
possible. Restrictions are put on the Ai and B;
by requiring that the energies across the Reggeons
in Fig. 5(b) be large while insisting at the same
time that the masses of all particle legs or mo-
mentum transfers be small, that is &m'.

The Reggeon energies in our parametrization
are as follows.

+(Q, —l, ),' —m'+i&. (32)

m2 2

S1
(33)

We ask that each Reggeon energy be» m', and
each D; ~m'. This will give the most important
contribution to T, from Fig. 5(b). The A, and B,
are restricted then by

Reggeon with n, :
2

(p, —l,)'=(1-A,) ——B, s»+l, ~';
12

Reggeon with e, :
2

(p, +l,)' = —+A, (1+B,) s»+l, ~';
S12

Reggeon with n, :

(24)

(25)

[A, [~
S1

iB, i«1,
m2 «

I B, I
& 1.

S12

Also we require

l; '~ m'.

(34)

(35)

(36)

(37)

m'-s -m'8+s —t

12

Using these conditions we may rewrite the Regge-
on energies and the D; as the following.

x(B+B,—B,) s„
+(p, +l, —l, )~' . (26)

energy for n, : (p, —l, )' = —B,s»,
energy for n, : (p, + l, )'=A, s».,

(38)

(39)

The six denominators in this graph of Fig. 5(b} are

D, =l,' -m'+a&

and

energy for ot, : (p, + l, —l, )' = (A, -A, )Rs»

=A, B,s»+l, i' -m'+as,

D, =(Q, —l,)' —m'+ie

s, —t, -m'
S12 S12

+(Q, —l,)~' —rn'+ie,

D, = l, ' —m'+ ic

=A, B,s»+l, ' —m'+i&,

(27)

(28}

(29}

while

D, —A, B,s»+ l, i —m'+ ze,

D, =A, B,s»+(Q, —l, )~' —m'+ie,

D, =A, B,S»+ l,i' —m'+ se,

D=(A, -A, I
—' —,8, +B,)12

+ (Q, —l, + l, )~' —m'+ ic,

= (A, -A, )s„;
(40)

(41)

(42)

(43)

(44)

D, = (Q, —l, + l, )' —m'+ i c

'-A +A, —' —B +B, s»

D, = (A, -A, )(B, —B,)s„+(l,—l, )j' —m'+t'e,

(45)

= (A2) +B2 s12 + (Q2 l2)i m + ~~
S12

+(Q, —l, +l, )
' —m'+is,

D, = (l, —l, )' —m'+is

=(A, -A, )(B, B,)s„+(l,-—l, ),' —m'+le,

(3O) (4 6)

fn each of these expressions terms of order s, /s»
have been retained while O(m'/s») has been ne-
glected.

Each Reggeon exchange carries a signature fac-
tor and enters T, as, for Reggeon 1, say,
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t~ (-B,si2)"~,

using (38), where

e 1+11
sin@~,

(4 t)

(48)

If we call g the internal three-particle coupling
constant and P the two-particle-Reggeon coupling,
then with the high-energy approximations made so
far we find for T, (pole) [Fig. 5(b)]

T, (pole) = p(t, ) p(t, ) p(t, )
2 ), 4 t„4 $.,(s„)-"-(s„)-.

dA dB d't dA dB d't
1 1 1L 2 2 2L D ~ ~ ~ D

(49)

The P's under the integrals depend on the invariant masses of the particle legs in a complicated and unin-
teresting manner.

We wish to cast this integral into a form which explicitly exhibits the energy dePendence and phase struc-
ture From .the form of the D; we observe that the B, integration vanishes unless sgnA, s sgn(A, -A, }, so
either 0 & A, &A, or A, & A, & 0. This allows us to split (49) into two parts using

dA, dA2 = dA. , dA2 + dA, dA2 . (50}

Next noting that

(
(B, —i&) ~+a, (-B,—ie) '

1 sinma,

and

(51)

$,(A, ) 2t, (A, -A, )~3 = r, r, t' ] (-A, )~2(A, -A, )~&,

we may write T,(pole) as

(52)

T6(pole) = const x s '+~~+~2s
12 13 (X2 f13

O'l2~d'l, ~

t+
dB,dB,

)
B1 —g&) + 'T1 —B1 —S6

A -A)3A1 2 sinma 1 2 2
0 1

(Bi t } '+ ~( B~ }
( A)n, (A A)~, I+ 23 1 s in wc.

' ' '
] D D~ OO A1 1 1 6

(53)

We turn our attention next to the B, integration. The singularities in B, are contained in the zeros of the

D~ and in (B, —te) &. The poles from the D; are all in the lower half B, plane so we wrap the B, integration
around the branch point at B, = 0 (see Fig. 6). Noting

J dB, (B, —i e)"' = —2i sinvo. , dB,
00

(54)

and a similar result for use in the second term of (53), we may write

TB(pole) =8~2 s» $ $ [H(sg2, sg) +7gT2T3H(sg2, —sg)),

where

H(s», s, }= —2i x const

+ OO

~00 ~oo 0 0
dA, (A, )~2(A, -A, )'~(-B,)~& (56)
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To proceed we scale out the s» dependence of H(s», s, ) by the change of variables A, =yA„B, =s»B„
B~ —s~2Bj, so

H(s», s, ) = —2i x const

+ eo O oo 1

x d'L, d'I, , dB, da, dA, dX —B, A, ' +'y" 1 —
X

~40 ~ oo 0

This function H has a right-hand cut due to a pinch in the denominators D, and D, and a left-hand cut from
pinching of zeros in D, and D, . This observation makes it easy to evaluate disc, ,H(s», s, ) on the right-hand
cut,

disc„H(s», s, ) g ' p(t, )p(t, )p(t, )
2 },

dAi ~ dX(-Bi)"'(Ai) ""'X ' '(1-X)"'
0 0

(58)

where we have let A,' = s,A„B,' =B,/s„and the B, integral has been evaluated using 5(D,). Now we have

disc„H(s», s, )/2i for large s, as (s,)"""times a real, positive function. Thus we learn"

H(s„, s, ) + 7, v, 7,H(s„, —s, ) = —(s,)"' "' '$ r, „,p(f, )p(t, )p(t, ),
where r„„„is a real integral over the A„B;, l;~. Now we have for T,(pole)

(59)

T,(pole) = —P(t, )P(f, )P(t, )s„"'] s„"~(,s,"i 2 "3g, „, r, (60)

For application to the inclusive process we must replace E, by E* .
This is the form we have been reaching for. All phases of 7.; in the triple-Regge region are contained in

the signature factors. " The coefficient (beside the two-particle-Reggeon couplings P) is a real triple-
Reggeon coupling. If we write

T (pole)= —
2vf 3» qi » 4i i ' gzi q, z3E(Ji -J, -Z, ti t, it3)3 J2 Jp Jy-J2-J3 (61)

then (60) results from a triple pole in E with fac-
torized residue

P(~i)P(4)P(f3}rz„g„z,

(62}

Ne might conjecture, and will soon show, that
precisely (61}emerges from more complicated
Reggeon graphs involving branch points as well
as poles; only E(Z;, t;) will be altered

Two observations will close this section. First,
our triple-Reggeon coupling reduces to the one
found by Gribov'~ in his study of diagrams for the
elastic amplitude when 1 —n, (f, ) = 1 —a, (t,}
+1 —a, (t,). The quantity 1 —o, ; plays the role of

a conserved "energy" in Reggeon field theories""
and so our r may be interpreted as the "off-ener-
gy-shell" triple-Reggeon vertex. Such an off-
shell quantity plays a key role in the triple-Regge
region as we can see by the observation that, in

general, 1-4,11—J, +1 —J, for the triple-partial-
wave amplitude involved in T, . This energy "non-
conservation" goes away when we join p,' and p, to
determine the triple-Regge contribution to T,),„,„,
(Fig. 7}.

Second, in the limit s» = s» = s, t, = t3

this graph of Fig 5(b} has .been evaluated by
Mueller and Trueman. ' Our agreement with the
general partial-wave analysis of Ref. 15 and the

arguments of Ref. 19 gives us some confidence in

our answer.

FIG. 6. The complex B& plane needed in the evalua-
tion of the graph in Fig. 5.
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III. GENERAL ANALYTIC STRUCTURE OF T6 P2 pi
5

Before we launch into a discussion of more com-
plicated hybrid diagrams we pause to make further
comment on Eq. (60). This does not contain the
full structure allowed to T, in the triple-Regge
limit. In requiring the energy across each Reggeon
in our graph to be large (»m'), we have picked up
only those contributions which have a nonzero dis-
continuity in s, . This is sufficient for our present
task, but for a fuller understanding it is worth-
while to see what we have omitted.

For the allowed structure of T, we use some re-
sults from the literature. " Start with the genuine

p
I p

I

FIG. 7. The triple-Regge contribution to T„.)
When && is integrated over in Fig. 5, energy is con-
served and the vertex r in Fig. 5 becomes the usual
triple-Regge vertex of Ref. 4 or Ref. 14.

triple-Regge limit s,.-~; that is, the crossed
cosines of angles conjugate to J,. becoming large.
In Ref. 21 it is argued that when the s, —~, T,
(pole} has the form

& (p»e) = P(f )P(f2)P(f3)[k,k,h. . .s "" 's1 's
3 3~ 3

(o&o&o o o S' ' '2S'iS' i. &o&o&~ o o 2' ' 'i2'~S' iS

+ s - ir&al+a2+e33/2(] + r sirul + r s ire2+ r siro3)
1 2 s

(Oi+Oa Os) / ~ (Oi+Os O2 }/ ~ (O2+Os- Oi ) / V ]
12 ls 2s i2sl ~ (63)

S,™1S22S, 3W(3),.~, f,.) . (64)

Then the function W is expanded about g, z
' = 0,

and the V 's are expressed as power series in

q, ~
' regular at g„. '=0. For the physical ampli-

tude the g,.&
are not independent, therefore they

cannot be taken independently large but one must
observe the constraint

tf f ~fA~kj (65}

where the V's are real analytic functions of the
t, and 3),&

=s,&Is,s~. These four terms correspond
to the four allowed combinations of simultaneous
discontinuities of T, as illustrated in Fig. 8.

The fourth term deserves further comment. The
derivation of (63) proceeds via a triple-partial-
wave expansion and Sommerfeld-Watson transform
of T„ leading to

For example, take g»-g»g», then the fourth term
in (63}becomes

s2 2 1 3s12 1s23 3(phase factor)V»3, (66)

which has an identical energy dependence to the
third term of (63). The phase structure is quite
diff erent.

Until now we have been talking about the triple-
Regge limit s,. —~. In the mixed limit we take on

T, to get the inclusive cross section"'"; we still
expect a sum of four possible terms having the
same structure as (63). This is because the sing-
ularities in complex helicity needed for the mixed
limit are tied to the J,. singularities. "" However,
since s, and ", remain finite the corresponding
angular momentum integrals cannot be opened up
except in the first term. We, then, have

p/
PI

pi

P, P,

(a)

FIG. 8. The allowed simultaneous energy discontinuities of &6. The dashed lines denote the subenergies in which
the amplitude has nonvanishing discontinuities. Intersecting lines correspond to cuts in overlapping channels. Only
(a) has a discontinuity in- && and contributes to the inclusive process of Fig. 2.
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+ ~~d~~t~ $q hq ~ q s» ~s» 2s', » 2E»(a»Z„J„t,)+two other terms
1 2 3 1 2

(67)

and no dependence on g» appears in the first term.
The fourth term contributes no discontinuity in s, .

What we wish to emphasize in all this is that T,
has four independent partial-wave amplitudes, but
only one yields a discontinuity in s„ the missing
mass. It is this term that our hybrid graph analy-
sis has yielded. The remaing terms differ from
this in that they do not expose the leading J-plane
singularity in the t, or t, channels. This makes
it quite plausible that in our analysis of the hybrid
diagrams, they will be absent. This is consistent
with the observations in Ref, 20.

We close this section with another salient obser-
vation about (67}. The signature factors of the
first term show that it has particle poles in t, and

t3 It may be viewed as a contribution to the amp-
litude for particle 1+Reggeon n2- particle 1
+ Reggeon a, (Fig. 9). Such an amplitude will have

many features in common with 2-2 particle am-
plitudes. One of these is the Gribov-Pomeranchuk
fixed pole at nonsense values of J„ the angular
momentum in the t, channel. In our amplitude this
is in the signature factor $ and occurs at

Ccy CK2 O3

Q
y

Q 2 + a 3
—1. The residue of this pole is exact-

ly what appears as the triple-Reggeon vertex in
Gribov's diagram technique for the elastic ampli-
tudes. This explains why our r must agree
with Gribov's at this nonsense point. It also ex-
plains why we took the nonPlanax hybrid graph in
Fig. 5 rather than its simpler planar brother. The
latter will be missing the needed fixed pole."

IV. DIAGRAMS WITH BRANCH POINTS IN J

We turn our attention now to more elaborate hy-
brid graphs which will give J-plane cuts in the
triple -Regge partial-wave amplitude. Our task
will be to examine several configurations of graphs
and find the phase and energy variation exhibited
in Eq. (61}.

Our first hybrid graph is shown in Fig. 10. Our
aim is to identify various blocks of this graph as
known parts from previous analyses; for example,r, from Sec. II and the two Reggeon-two par-
ticle function N2 from elastic amplitude studies. ' "
The expression for the present graph is

k, "dk, P'
2 "dk2 P

(2v)' . (2v)' D, - D, . (2v)' a, D,

x~. [(P, +f, f,)'] 3~„[(k,+k, ) ] ~, (68)

where

a, = a[(Q, +k)'],

a, = a[(Q, +k)'],

a.- = a[&."],

and

'i' )
= a[k ].

V.'.-. ;;=-e the same set of parameters as before:

k =a/, +QP +k„,

&; =«Pl+&i~2+k, .„ i = ~, 2

(69)

(70)

(71)

(72)

(73)

(74)

k, =a, t},S~2+k, ~ &m,2= 2 2

(p, -k,)'=(1 -a, )b, s»+k;, 'am ', etc.

(76)

(77)

Next we examine each D; and ask that it be finite;
i.e. , D; s m'. For the lower vertex in Fig. 10(b}
this means

li =A iP]. + @it 2 + li X ~ (75) FIG. 9. The two-Reggeon-two-particle amplitude.
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pg'
pp

kg
pg'

k,a

(b)

FIG. 10. A hybrid field-theory graph (a) and its Reggeon limit (b) which contains &-plane branch points.

from which we learn
2 2

Ib, l
~

S» S»

la, l
& 1, lal & 1,

k,~'& m

The same restriction on the upper-left vertex
shows us

2

S» s»

('78)

Reggeon with n, ;

(Pi -k, —l,)' = (1 —ai)(-fbi)si2;

Reggeon with n, :

(&2+12 -k2) =A2(1 —b2)si2'

Reggeon with cr, :

(P +1, —i,) = (A, -A, )s„;
and

Reggeon with n4..

(k, +k ) = a,b, s,2.

(81)

(82)

(88)

(84)

2 ( 2—m,
and together these require

lal & m'/s», Ibl & m'/s„. (80)

All these conditions have an elementary interpre-
tation. Any vector with a & 1, b & m'/s» lies pri-
marily along P, and its inner product with any vec-
tor with b & 1, a & m'/s» will be large of order
abs». The subenergies in the lower blob are finite
so the vectors there must have very small b& since
P, enters there and has a = 1. The same goes for
the vectors in the upper left of Fig. 10(b): They
must have very small a; since p, with b= 1 enters.
Since k connects the two blobs, both g and b for it
must be small. It can carry transverse momen-
tum only.

We also require that each Reggeon carry ener-
gy» m ', this means the following.

In writing this we have incorporated the require-
ments that the denominators Dg Qy, in the cen-
tral vertex be (m'. These Reggeon energies are
large only if

D, = (b, -k,)' -m'+is
2=(1-,) ™—5)s„k„'— ' ~ i,

S»
(87)

D, = (k, +k)' -m'+is
= ai(bi +b)s» + (ki +k )i -m +fe, (88)

«la, l, Ib, l, la, l, IA, I, and IA, —A, I. (88)
S»

Now we use these statements about the sizes of
the a and 5 parameters to examine the components
of Fig. 10(b). First look at the lower cross; its
denominators are

D, =k, ' -ng'+ je

=s,2g, b, +k,i -m +sf,2 2
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and

D, =(i3, -k, -k -Q, ) 2-m 2+ie

m' t,=(1 a, ) -b, —b-—' s»
SI2 S1.2

+(b, +k +Q,)1' -m'+is. (89)

The parameter a does not appear here since it is

much smaller [O(m2/s»)] than a, . So the lower
vertex has no dependence on a. Similarly the up-
per-cross denominators 0, ~ ~ ~ D, have no depen-
dence on b. Furthermore, the central triple-Reg-
geon vertex depends on neither g nor b and has
precisely the form we derived above for r

Thus we may collect together the integrations
of the central vertex as

2 13 4(2~)3 9 &4

3s12 s13 sl r
2 a, (90}

using the analysis of Sec. II. We move the b integration in Eq. (68) down to the lower vertex and note

g'~s»~ da, db, d'}2»(1-a,) "1a, »P' J222
(91)

where N is the standard two Reggeon-two particle amplitude one encounters in the elastic-amplitude
diagram analysis; it is real and independent of s». Doing the same on the upper vertex we find an N. ..
then we write

2

(92)

In this combine $ and $ via
CX2 4

~ (X2 ~ CX4 CX2(X4 ~ IX2+Of4 1&

where
cos2'v(n2+n, +1 --,' (r2+r, ))

sin' v(a2+-'2 2(1 - r2)) sin'2v(a»+ ';(1 r)) '»-
and

-ifI{n2+(X4-1) +7 T2 4

sinv(a2+a, —1)

Noting that the signatured partial-wave amplitude
F(J;, f;} is

-Z2-1 -J&-c
F J;, It; (1»,s, ' J»

Sg SI Sg S~ I 12 13

we have

(98)

(94)

(95)

(96)

d k~ dl, dl4F(Fig. 10(b)) = 2,' '2 .),
' &, ,, N, ,1,r1, 1 y1, G1 (a, )G1 (n, )G1 (n, )G1 (a,}

[J, —(I, + I» —I)][@2 (I2+ I» —I) l(d3 -—13)

in which we have introduced a Mellin transform for each Reggeon,

s ( = . $1s G1(n),
l s

27rz

(97)

(98)

and

(99)

for a Reggeon carrying momentum q, ~.
This shows that our amplitude can be represented in the form advertised, Eq. (4), and that the partial-



2470 ABARBANE L, BAR TE LS, BRONZAN, AND SIDHU 12

wave amplitude is real analytic. Noting that in (97) the l; integrations lie to the right of the poles in G, ,
and the J, contours in recovering T~ lie to the right of J singularities, we write (97) as

x(2vi)5(J, —(f, +l, —l))2vi5(J, —(l, + l, —1))

xN(, ( N(, ( y(, ( r(, ), ,J,G(,(a~(k,~'}}G(,(a,(k,~')}G),(a~(k '))G~,(a,(Q~')).

(100)

This formula has the following content:

(a) Each Reggeon line carries a two-momentum
and an angular momentum and has a propagator
G, (k, ') =ll -a(k~')] '. Each Reggeon line is di-
rected "upward" in the sense of increasing rapid-
ity.

(b) At each vertex two-momentum is conserved.
(c) 1 —/ is conserved everywhere except at the

triple -Reggeon vertex.
(d) Each loop l; andk« is integrated over.
(e) The upper-left vertex carries a y...,. At

physical J„y» is zero and decouples the cut
from physical partial waves.

To Fig. 10(b) then we can associate the Reggeon
graph of Fig. 11. Note the direction of the Beggeon
lines.

The vertex N is the same as encountered in
1 2

the Reggeon graphs for the elastic amplitudes.
This identity holds for generalizations of the sim-

pie cross used in Fig. 10. In particular for the
graph of Fig. 12 we note that the substitutions

Nl E2~( k2J. t Q2J. k2J. ) 8(Q2J. )GJ2(a (Q2J } J2, j 2, l4)

(101)

N. .. (k,~, Q, ~ -k,~)-3(Q,~ )Gz (a(Qii )b'z, , i, &~»,

(102)

yields the partial-wave amplitude. Since Reggeon
energy, 1 —l, is conserved in the r's of (101) and

(102), these are the familiar Reggeon vertices. ' "
The next observation we make is that Fig. 12

has the same structure as the triple-pole diagram
of Fig. 5(b), when the central part is considered
as a "radiative correction" to the triple-Reggeon
vertex. This structure is also found in the form
of the partial wave I' of Fig. 12:

with

xy g y G G G yt1 14 J2 12 14Ãl2l4 /1 L2 l3 l1 l2y 3' (103)

It is thus not difficult to find the partial-wave am-
plitude for Fig. 13(a) or Fig. 13(b): Taking for
the central loop the expression (103}, we can treat
these diagrams in the same way as Fig. 11, where

we had ~ instead of I".
Thus our rules allow us already to find the ex-

pressions for quite a large class of diagrams. As
to the question of the energy (1 —l} nonconserving
vertex, there is exactly one in each of these dia-
grams, and we can describe its location in the
following way:

If we enter the Reggeon diagram at the bottom
and move upwards toward the two upper ends,
then at some stage this diagram splits into two

branches which then lead to the two separated up-
per ends. ln all diagrams we have considered so
far we can locate a vertex which represents the
"last" interaction between the two branches; above
this vertex there is no further interaction between

FIG. 11. The Reggeon graph corresponding to Fig. 10.
Energy is not conserved at the vertex r.
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FIG. 12. A Reggeon graph with only single-Reggeon
connections to the external particles. It is otherwise
like Fig. 11~ Energy is not conserved only at the
vertex labeled with an x.

Reggeons of the different branches. It is this ver-
tex where Reggeon energy is not conserved. If we
now add to the rules above this general definition
of the energy-nonconserving vertex, then our set
of rules describes all our diagrams.

Finally, we want to note an important feature.
If the external Reggeon energies E; =1-J; are
chosen so that

E, = E2+E3, (104}

then total energy is conserved. Since all vertices
except for one do conserve energy, the over-all
conservation propagates through the diagram, and
the energies at the nonconserving vertex are
forced onto the energy-conservation shell. At this
point, as we have mentioned, the energies noncon-
serving vertex x equals the conserving ver-cxy, R2, exp

tex. Consequently, I" obeys the same rules as the
triple-Reggeon vertex function of the elastic Reg-
geon calculus.

V. THE DOUBLE CROSSED GRAPH

In the hybrid graphs we have considered until
now it has been straightforward to identify at
which vertex Reggeon energy is not conserved.
The rule of the "last" interaction from the J, chan-
nel before the graph splits into the J, and J, chan-
nels suffices. That there remains a problem is
seen by the Reggeon graph of Fig. 14(a). Should

energy not be conserved at vertex A or vertex B?
To answer this we return to our hybrid graphs,
now considering Fig. 14(b).

Parametrize all the internal four-vectors as

(b)

FIG. 13. Other Reggeon graphs. Energy is not con-
served only at the vertex labeled with an r. These and
the graphs of Figs. 12, 11, and 5 have only one branch-
ing vertex (see text).

(k, —g)' = a, ( —B,)s„, (112)

and k». So we begin by requiring all the denom-
inators in the lower and upper right and left ver-
tices to be & m'. This yields

)a, [ & 1, Ib, )
& m'/s», k»'s m', (10'I)

lb4I & 1, la41& m'/s», k«'am', (106)

la, l
~ m'ls», k»'~ m', (109)

which is expectgP since k, is associated with P,
through no large energies and k4 and k, carry mo-
mentum mostly along P, . The restrictions on k,
and k, yield

la~I & m'Is», )b&l & m'Is», k,~'s m', (110)

and

la, l
& m'/s», k»'& m',

while b, remains free at this stage.
Next we examine all the invariant energies

across the Reggeons and require them to be» m'.
Reggeon with e, :

k; =a;p, +b)p2+k;~, g 1
y ~ ~ ~ s 5 (105}

Reggeon with n, :
l, =A,p, +B,p +l;, i =1, . . . , 4. (106}

First we show that this amplitude has the form of
three N vertices and two ~ vertices which are con-
nected by two-dimensional integrations over k, ~

(p, —k, —l, )'=(1 —a,)( —a,)s„,
Reggeon with a,:

(k4+ l 2) = b4A, s,2, (114}
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(a)

~ Q2kp, o

Qp+ -k,~i

,JiggQs+k;k,

(b)

FEG. 14. (a) The Reggeon graph involving the double cross. This graph contains two branching vertices 4 and &.
At either one, one may have energy nonconservation. (b) The hybrid field-theory graph used to study the structure
of the double crossed graph.

Reggeon with a4..

(P —k + l )' = (1 —b )A s„,
Reggeon with o.,:

(k, + l, —l, )'= b, (A., -A, )s»,
and

Reggeon with a,:
(P, —k, +l, —l,}'=(R—b, )(A, —A, )s„.

(116)

by the upper right d ep ends on a, —a „but not b, .
%e have yet to learn about the size of b, . To de-
termine this we examine those denominators of the
vertices A and B which may depend on a„a„b„
or b, . Using our restrictions found so far we note
for vertex A. that

(k, —l, )' —m' = s„A,B, + (k, —l, )i' —m', (120)

(l, —l, + k, —k, )' —m' = s„(A, —A, )(B, —B, —b, }

These are large only if

la, l, lb, l, I pl » m'/s„, (118)
and

+(l, —l, +k, —k, )i2 —m',
(121)

(l, —k, )' —m' =s„A,(B, —b, ) +(l, —k, }i'—m',
IB, I, IB,I, IA, I, IA.I, IA, -A. I, IA, -A.I»m'/s, .

Now by using these restrictions we find that the
lower vertex is independent of a, and a„but de-
pends on 5, . The upper left depends on a„but not

and for vertex B that

(Q, —k, —l, )' —m'=s„A, B,+(Q, —k, —l, ),' —m',

(123)
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(l4 —l3+ Q3+ k~ —k, )~ —m~

Sl= s„(A, -A, j(B,—B~jj,~
12

+(1» —l, +Q, + k, —k, )i' —m', (124)

m'/s» s ib, i ((s,/s„,
and piece II,

(12'I)

order 1 and much greater than s, /s».
These observations allow us to split the b, inte-

gration into two pieces; piece I,

(l, +k, —Q, )' —m'=s„, A, B,+b, + —'
12

+ (l, +k, —Q, )i' —m'. (125)

S12 S12
(126)

With this we see that the upper vertices do not de-
pend on b, because the b, and b, parameters are of

And here we see the appearance of the crucial
quantity s, /s». If ib, i » s, /s„, we may drop s, /s»
in vertex 8 and our amplitude would be independent
of sl It must then contribute to the three terms of
T, having no discontinuity in s, and is, thus, of no
interest to us. We learn then

Ib, l =s, /s„,
such that

m'
b + ((S S

S12
'

S12 S12
(128)

In piece I we may neglect b, in vertex J3. In piece
II we change variables to b, = b, + s, /s» and neglect
b, in vertex A.

In region I we then have that the lower vertex
contains all the b, dependence, the upper left ver-
tex depends on a2 only, the upper right vertex de-
pends on a2 —a, only, the vertex A contains all the
b, dependence, and B depends on none of al Q2 bl,
or b, The am. plitude for Fig. 14(b) splits a,s

0

4 zest 1 6

g is„i~ dA, dB,d l, idA~dB~d i~i( —B,) Vj~ &(A, —A~) 5p'
4(2s)'

Al A6

g'is„i' dA, dB,d l, idA4dB, d'l, i( —B,) &A, 4(A, -A, ) 6p'

g' is„i db, da, db, d 'k»(l —a, ) &a, i p '
2(2w)4 Di, ~ Di

d'k. (I -b, )"&, 'p'

x ", d(a, —a, )da, db, d'k»

(129)

where the various denominators have been labeled DUR for upper right, etc. Needless to say, we may
markedly simplify (129) by noting that various blocks are just N or &~, , ~&, ~, For example, we see0( ) 0(g

that the lower- and upper-left integrals are just (is»i/jir2s) N„and ([s»i/~2s)N, , respectively. By
scaling b, we see that the upper-right vertex is R"5'"6"(is»i/+2v)N . Vertex B is also easy to handle
since it is exactly the same as we encountered for r before, and we note

g„,g„s»"4s» 6s»"exintegral over vertex B = —Q g $ „s»"4s»~6s,"a ~4 "jjr
The integral over vertex A requires a little more doing. Scale the variables as b, = s, /s»b„B„
s,/s»B„B, = s, /s»B„so the range of b, is

m'/s, s Ib I«1
while the range of integration on A., and A2 is

m'/s, « iA, i, IA, [((l .

Recalling one's experience" with the triple-Reggeon vertex of Fig. 15, we note

(130)

(132)
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s ~x &~s+ ~5-&) ]~ '
~

&& integral for vertex 2 =

Putting together all these simplifications we reach

(133)

s ~ (~3+~ ')-1
T,(region I of Fig. 14(b))=

( , (
~'2 ( Q g„$~ („s»"s'~4 's»"s'~8 's, "2 "4

(134)

The study of region II proceeds just as above and results in the same integral as (134) with the replacement

+ —1 s& (4+ 6-~) —1
(135)

Introducing angular momenta I„.. . , l, for each Reggeon we are able to evaluate the partial-wave ampli-
tudes for regions I and II,

d 9r, ~d 'k, ~dl, ' ' ' dL,

1 1 1 1
X

J~ —(l, + l, —1) J, —(l, + l, —1) J, —(l, + l2 —1) J, —(l, + l, + l, —2) ' (136)

and

&Pk„d 'k„dl, dl,
,, (o,)"'G, (

1 1 1 1
J2 —(ls+ l4 —1) J~ —(l5 + le —1) J~ —(l, + l2 —1) J, —(l, + l4 + l6 —2)

(13

In the next section we will use these results to
derive our Reggeon graph technique. Here we
finish by noting the important presences of y...,
and y» which provide zeroes at physical J, and

J3, respectively, thus decoupling this graph and its
branch points from physical partial waves.

T~ = lns

r, = In(s»/s, ),

T, = In(s»/s, ),

(140)

(141)

(142)

VI. FORMULATION OF THE DIAGRAM RULES

We are now prepared to translate our results
from the analysis of the hybrid graphs into rules
for the equivalent Reggeon diagrams. To facilitate
this transcription we define the usual Reggeon en-
ergies'

and the E, contours run to the left of singularities
in F. With this notation the partial-wave amplitude
for region I of Fig. 14(b), E&I. (136), becomes (see
Fig. 16)

E =1 —angular momentum. (138)

The relation between T,(s», s», s„ f,) and E(J,, t,)'
becomes

12S» T I
ldE2 E3
(2«)3

x exp[- (E,r, +E,r, +E,T, )]

xF(E(, t(), (139)

where the "times" conjugate to the energies E, are

FIG. 15. The hybrid graph contribution to the elastic
amplitude where the two-particle-two-Reggeon function
+ and the energy-conserving triple-Reggeon vertex
appears.
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F(region I, Fig. 14(h))= ' ~~ s
' (2m)25 (Q~ —k~-k4)(2&} 5 (Q~ —k~ —k8)(2&)~5~(Q, —k, —k~)

x(2m)35~(k, —k, —k,)(2v)~5~(k~ —k~ —k~)NNNyyr. . . r. . .G(&„k,~)' ' 'G(~6, k6&)

1 1 1 1
E & & E f f 62 E2 fS 64 ES1 1 2 1 S 5

(143)

where

1

e,. —[1 —o.(k, ,}], (144)

and &,. =1 —l,
This result has its natural interpretation in

terms of "old-fashioned" perturbation theory where
momentum is conserved, but not energy at each
step. The progress of energy is represented by
the energy denominators in (143) which give the
total energy E, in channels 1, 2, or 3 minus the
energy of the propagating quasiparticles at each
step of the interaction. These steps, which cor-
respond to different time stages, are shown as the
dashed intermediate lines in Fig. 16. For region
II of the double crossed graph one has vertex 8
involving Reggeons 2, 4, and 6 occurring "before"
A, and the Reggeon energy denominators are, as
we read from Fig. 17,

1 1 1 1
E - 6 —C2 E1 —E. —6 —f E2-63- 6 E —E,1 1 2 1 1 4 6 2 3 4 3 5 6

(145)

q, =lns, ; (146)

then is the time at which energy E, and momentum

Q, leave the interaction,

g2 = lns12; (147)

and then the time when energy E, and momentum

Q, leave,

g3 = lns13. (148)

All energies S1 s12 and s» are to be given in

some convenient units, say the common mass of
the problem, m'. If we consider energy E, —E,

E3 to be 1ost at time q„ then the ampl itude in

time space depends only on

graphs we have considered there are four times
we have distinguished. They are as follows: First,
the time the lower vertex with energy E, and two-
momentum Q, emits Reggeons. This time is g, =0
in our examples. Next is the time at which the
energy-nonconserving interaction takes place,

which is consistent with Eq. (137).
How are we to interpret this result? A very

attractive formulation is to focus our attention on
the "time" variables involved. In the triple-Begge

Qa Ez

= lns, ,

~2 = ~2 —'j1

12s
$1

T3

= ln
s
S1

(149)

ATE)

FIG. 16. The time ordering appropriate to the old-
fashioned perturbation theory interpretation of the
partial-wave amplitude of Fig. 14, region I. The time
(rapidity) runs upward. The time in vertex B is later
than in vertex A. Each of the dashed lines corresponds
to an energy denominator. In this figure we read off
the energy denominators to be

[(E)—Cg —62) (E~ —C3 —6'g —C2)

&(E~-&3- 4) ( 3-~5-&6)l '.

E,,Q)

FIG. 17. The same as Fig. 16, except it is for region
II of the integration for the hybrid graph of Fig. 14.
The time of A is now later than that of vertex &.



A BARBANE I, BAR TE LS, BRONZAN, AND SIDHU

U =QtiP1 +~„P2 + Ug ~

we may define the time

7 ln 'Pl '
m

(149)

= lnb
S
m' (150)

Now these times are just the rapidities asso-
ciated with any given vertex or momentum at that
vertex. For a vector

In the double crossed graph in region I, the range
of the momenta at the A vertex is such that the
times in A are between 0 and &„ while in the 8
vertex the times are of order 7, . These time as-
signments switch when we go over to region II of
the double cross. This suggests that w'e ought to be
able to write the double crossed graph for region I
as an integral over the time of vertex A. which
ranges only from zero to &, . That is, if we define
the time-momentum-space expression of the par-
tial-wave amplitude F(E„Q;)by

H(H, , Q)= dq, f dq, dq, e'*"*" H(q„„„Q),
0 0 0

(151)

then If(r„Q&) ought to have a simple expression in terms of propagators for the Reggeons

G, (Q, ~}=e-'"(o) e(T)

and restricted time integrals. For region 1 of the double crossed graph we write (as in Fig. 18)

(152)

d k d2k
H(k;, „,) = f (

' „* dq G (k„q)G,(k„q, —q)G (k, —k„q, —q)G (Q, —k„q )G (Q, +k, —k„q, —q )

x G, (Q, —k„q, —q, ) N, , y, , N, , y, , N, , r. . . r.34 34 58 58 12 1'3'5 2'4'8 (153)

Using (152) for G, (Q, g) and q, =r„ri, =&, +&„and
dl, =r, +w, we find (148}for E(E, , Q, ).

A general prescription is given in pictures in

Fig. 19. One locates four times &0=0
g3 on a time axis. All Reggeon interactions before
g, are restricted in time integration to be
This will all be interactions in channel i. Some
of these interactions will have their time integra-
tions automatically restricted by the step function
6()l) in (152). Others, as in the double cross will
have their times restricted by hand. All interac-
tions after q, occur only in channel 2 or in channel

3. After q, there is no interaction between chan-
nels 2 and 3. In the case of a graph like the double
crossed graph or its generalizations (Fig. 20) one
will find two or more three-Reggeon vertices
whose time variable is not restricted by 6) func-
tions alone. One must choose these one at a time
and note them with the time q, =lns, . The others
have their time integration restricted to be ~g, .
This gives directly the two terms of the double
crossed graph and & terms in a graph with & such
vertices.

We can also give energy-momentum space rules

/s

+k~+„Ee
All

Interaction
have ~ g

er

AII

Interactions
have

~l 93

FIG. 18. The time-momentum-space Reggeon graph
for the double crossed hybrid diagram. The times are
g =0, g=lns&, g=ln+12, and &3=in&~3. The inter-
mediate time + is integrated over 0 —9 -g ~.

FIG. 19. The "time" space classification of all allowed
Reggeon graphs. After g& there is no interaction between
the Reggeons going up to &g and those progressing toward

The time g1 always occurs at a branching vertex.
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for each Heggeon graph. To do this we first rotate
the energy contours by —,'m to the real axis. The
propagator becomes

(154)

instead of (144). Introducing the 5' functions

nl 1
2ni x+i& ' (155}

6+(x)+5 (x)=5(x), (156)

we may write the partial-wave amplitude for
region I of the double crossed graph, Eq. (143), as

FIG. 20. A Reggeon graph with three branching
vertices. This graph gives three contributions to
E(+f |q()j) Each of the branching vertices is noted in
turn. Energy nonconservation occurs there. The noted
branching vertex will carry time p&, the time integra-
tions in the other branching vertices will run up to q&.

In energy space the noted branching vertex receives a
factor of 1; the other branching vertices receive a
15+ function.

i(EE„Q ) = J ' ~, "(22)'5'(Q, —k, —k, )(22)'5'(Q, —2, —k )(22'P5'(Q, —k, —2 )(22)'5'(k, -k, —k, )

x (2n)'&'(k, - kE —kn) t
'

n
' Gk((5)„kk) ~ ' ~ G, ((2), k )N ~ (2n)5(E, —(5), —(d )

XN y„(2n)~(EE —Q)2 —Q)E) N y (2n)&(E —(u, —(u )

X r (2n)5'((d2 —Q), —Q),)r (157)

For region II we make the replacement

5'((5), —(2)E —(2),) —5'((5), —( E
—(5)E). (158)

When E,=E, +E„ that is, over-all energy is con-
served, the sum of regions I and II reproduces
exactly the contribution of the double cross to the
two-to-two amplitude, as it ought.

In energy-momentum space our Reggeon rules
are begun by stating the criterion for a vertex
where energy may not be conserved. Basically,
it is a vertex whose time integration is not re-
stricted by the e(q} in Green's functions. We call
such a vertex a branching vertex. We give two
kinds of definitions for these vertices.

Definition I
(a) A possible branching vertex has one line en-

tering from an earlier time and two departing to a
later time.

(b} Mentify all possible branching vertices.
(c) If a possible branching vertex has its time

restricted by another possible vertex, it is not a
branching vertex.

(d) The remaining possible branching vertices,
are actually branching vertices.

Definition II.
(a) It has two outgoing Reggeon lines.
(b) If we leave the vertex along one outgoing line,

we do not meet any Reggeon lines connected via

interactions (none, one, . . . ) to the other outgoing
line.

Also:
(a) Each line of a graph carries energy n and

momentum k. Associate with each Reggeon a
propagator

Gz(e, k) =i(a -[I —(n, (k)] +t5) '. (159)

(b) At each vertex where three Reggeons meet,
place the triple-Regge vertex r . If energy
is conserved at that vertex, place a Zn5((dk —(d, —(d2).

In a graph with k branching vertices select them
one at a time. The selected vertex does not con-
serve energy and receives a factor of unity. At
the k —1 other branching vertices put a 5'(~;„-
-P(d, „)) in momentum space or restrict their
time integrations by g, = lns„ the time of the selec-
ted vertex.

(c) Two-momentum is conserved at each vertex.
(d) Energy E, and momentum Q„ t, = —~Qkp,

enters the graph at the bottom (time zero) where
two particles create n, Reggeons via. a. function
N, 2(E„Q,; e„k„.. . , @,k, ,). Energy and momen-
tum are conserved here. n, Regions depart via an.
N&, function carrying off E,. and Q„j=2 and 3.

(e) All Reg eon energies and momenta are to be
integrated, d 'k de/(2n}'.

(f) At each vertex with n» 2 Reggeons coming
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from below put a factor yc] ... ,„,~" the generaliz-
ation of y, ,,

Fina, lly we complete the diagram rules by tel-
ling how the triple-Regge inclusive cross section
a +b-c+ anything is gotten from our P(J, , Q, ) con-
structed by the instruction just given. The reac-
tion is shown in Fig. 21. In terms of our variables
we want the limit sym s +& & sy, s l f ty 0

t3 = t, and the discontinuity in s,

t
a(ps) C(P~)

3

b(p,

FIG. 21. The inclusive cross section p&+ p2 p2+ X,
It is related to our six-point amplitude by Eq. (160).

do&a+5 —c+X) dJ dJ dJ s ~g+zs
(160)

YII. REGGEON FIELD THEORY FOR THE TRIPLE-REGGE
AMPLITUDE AND RENORMALIZATION

The diagram technique we have described finds
its most interesting application in the study of the
triple-Pomeron (P) vertex and the P corrections
to that vertex. As is well known, the P involves
a Reggeon with o.'(0) = 1, and, therefore, branch
points of multiple-P exchange in any of the 4,. chan-
nels pile up at t,. =0. Since it is precisely the be-
havior at tj t2 t3 0 that caused the interest in
the triple-P vertex, the formalism we have devel-
oped here applies. We, furthermore, can concen-
trate our attention on all 4,- near unity and all t,
= —iQ,.i' near zero. From Refs. 4, 9, and 10 we

know that to study the most important structure
in this region we need concentrate only on local
triple-P couplings since quartic and higher and
derivative eouplings are negligible. Furthermore,
noting that each y, , = -1 in this regime, we are
able to associate a fa.ctor i with each triple-P ver-
tex except the energy-nonconserving vertex.

In the case of all graphs conserving energy and

momentum the counting is straightforward and is
given in Ref. 9 and 10. Here we must account for
energy nonconservation as well. Our attention is
focused on the one-P to two-P proper vertex func-
tion I"""(E„E2,E„Q„Q~,Q,), which is the gener-
alization of the energy conserving I'"'" of Ref. 10.
Of course, we must have

k =1 and 2 are shown in Figs. 22 and 23. Note that
the basic building blocks of f'"" are the
energy-conserving j. "" and the vertex I'',
with one branching vertex. The appearance of the
weight factor k in (162) is familiar from the ex-
tensive discussion of the double crossed graph
in previous sections.

Now the renormalization procedure will go
through as before, ""with the one change being
that a,n additional normalization function will be
needed for the energy-nonconserving coupling.
We encounter here an amusing complication which
does not allow us to proceed in any easy manner
to the detailed behavior of the triple-Regge inclu-
sive cross section (160) as a function of s, t, and

In the renormalization-group analyses of
Refs. 4, 9, and 10 one is able to give arguments
concerning the general scaling form of functions
such as P(E„Q,). Such scaling laws in themselves
are not enough here, interesting as they may be,
We need much more knowledge of the precise be-
havior of the scaling functions on their scaled ar-
guments before we can extract the information we
desire. The techniques for doing precisely this
are derived in a subsequent paper. We end this
long exposition with both contenting ourselves at
having achieved our diagram technique and encour-
aging the hearty reader to proceed to the next sec-
tion.

I (1 is)i = Z (li2)
iS ~ E2+Eg (161) VIII. CONCLUSION AND SUMMARY

Z&'»= 7 kZ&")
%=1

(162)

where F~"'~' is the one-P-two-P proper vertex
with k branching vertices. Skeleton expansions
can be given for F',"'. Some terms of these for

Now I'"' ' is given as an infinite sum over three-
Pproper vertices with 1, 2, . . .branching vertices

12S S S oo
s ' s1

(163)

In this paper we have derived a set of rules for
the evaluation of Regge-pole and branch-cut con-
tributions to the six-point scattering amplitude
in the triple-Regge region. Referring to the kine-
matics in Fig. 1 we showed that in the triple-Regge
limit
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E2

(I%2)

FIG. 22. The skeleton expansion for the proper three-Reggeon amplitude with one branching vertex, I'& ' . It in-(i, r)

volves I'& ' itself and the energy-conserving proper three-Reggeon vertex I'~ ' used in Ref. 10. All propagators
are full.

( ),2)

( t,2)

FIG. 23. The skeleton expansion for the proper F&
' . lt involves I'& ' and I ' . All propagators are full.(s, ~)
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S",t,. fixed.
13

(164) (166)

the six-point amplitude may be represented as

Te(s», s»y s„ t, )
(167)

where

dJ,dJ,dJ,
'2@i} S~2 S~s sS~

x g $zsg z z~F(J„J2,J~, $,.}, (165)

and T. =+1 is the signature of a, Reggeon in the J,.
channel. There are other contributions to T, but
they do not have a discontinuity in s„ the missing
mass, and do not contribute to the inclusive cross
section

'= —.disc, -„IT (s»=s+se, s,~=s —se, s, =le, t, =0, t2=t, =t).
2l

(168)

With the phase factors $ removed, the partial-
wave amplitude is real analytic. Our rules tell
how to evaluate it.

The function F(J;, t;) is very much like a three-
Reggeon Green s function in conventional Reggeon
field theory4" except that Reggeon energy E, =

=1 —J, is not conserved. This is due to the fact
that we have singled out a special "time" (rapi-
dity) g, = lns, in the progression of Reggeons from
their emission at time @0=0 where they emerge
from a two-particle source with net Reggeon ener-
gy E, and net two-momentum Q, (t, =- (Q, P) to
their absorption. at time g, =ln&» or g, =lns». If
we integrate over this time g, setting g, = g„we
recover energy conservation and the appropriate
form for Reggeon-graph contributions to the 2-2
amplitude with net rapidity Y= lns».

We have given detailed formulations for the eval-
uation of F(E;, Q, ) in energy-momentum space and
for its time-momentum-space analog H(q„Q;).
Either is convenient for the renormalization-grouI
evaluation of the energy-nonconserving vertices
involved. Because a particular intermediate time

has been prescribed, the counting of graphical con-
tributions to the Reggeon vertex functions is slight-
ly more involved than in the conventional field
theory. This is described in Sec. VII.

The renormalization group will give scaling
forms for the partial-wave amplitude F(E„Q,} in
the F, =0, Q; =0 limit appropriate, say, for multi-
Pomeron contributions to inclusive processes. In
order to extract from the triple Sommerfeld-Wat-
son representation, (165), the detailed behavior
of inclusive cross sections in s, t, and ~, it is
necessary to know rather much about the scaling
functions themselves. This is done in a subsequent
paper" for reasons of clarity in presentation.
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