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We have carried out a semiclassical calculation of the particle spectrum in the Gross-
Neveu model. It is a twodimensional model with N species of fermions interacting through
a symmetrical scalar-scalar interaction and is renor~~&izable, asymptotically free, and
exhibits spontaneous symmetry breaking. We find a rich spectrum of particles which can
be interpreted as fermion-antifermion bound states and multifermion bound states. These
states faQ into supermultiplets whose origin we do not completely understand. The binding
mechanism is a vacuum-polarization effect rather than the direct interaction between
particles. A general method for handling fermions in semiclassical calculations is devel-
oped.

1. INTRODUCTION

The problem of finding the particle spectrum
(e.g., bound states) of a quantum field theory has
been a long-standing one. Recently, we" and
several other groups' ' have been developing
semiclassical methods for attacking this problem.
For the sine-Gordon equation a field-theoretic
version of the WKB method appears to give the
spectrum (including the "elementary particle, "
numerous bound states, and solitons) exactly. '
It is no doubt an accident that WKB is exact for
this system. However, these sine-Gordon results
do suggest that semiclassical methods may be-
come a useful tool for attacking the bound-state
problem in field theory.

So far, work on semiclassical methods has been
deficient in at least three respects: (i) Most of
the work has been on systems in two-dimensional
space-time; (ii) the theories have usually been
super-renormalizable; (iii) it has not been clear
how to incorporate fermions in a systematic way.

In this paper we study a model which answers
a number of questions raised by points (ii) and
(iii). We will have nothing directly to say about
(i) as we will still be in two dimensions. However,
it now appears to us that the problems of going
from two to four dimensions are technical rather
than conceptual. Of course, a program can be
as easily halted by severe technical problems as
by conceptual ones.

Specifically, we use a WKB method to compute
the particle spectrum of the Gross-Neveu' model.
It is in two-dimensional space-time and is defined
by the Lagrangian

f q( }y'y(kk) + g ~ y(k) y(k} {1 1)
2k=1 k= 1

The model thus contains N fermions coupled sym-
metrically through a scalar-scalar interaction.

We will generally suppress the particle-type in-
dices k and use the notation

f q
(k) f{)It(k)

(1.2)

Z = T()i P'q —g(r k))I} —
k O', (1.3}

where we have used the notation of (1.2) and intro-
duced a neutral scalar field o. Using the equation
of motion

the Lagrangian in (1.3) becomes equivalent to that
in (1.1). Our WKB method is based upon the eval-
uation of certain functional integrals by a station-

y(k) p(k}

The model is renormalizable (g is dimensionless),
y, invariant, and formally scale invariant. For
large N one can sum the leading sets of diagrams
and establish that in this limit the model is asymp-
totically free. Gross and Neveu' also found that
gtI) develops a vacuum expectation value so that y,
invariance is spontaneously broken. In the process
the dimensionless coupling constant g is traded
for an arbitrary dimensional parameter g{$g) and

disappears from the theory. The end result is
that the theory contains no dimensionless param-
eter other than the number of fermions A'. Con-
sequently, any physical dimensionless quantity
such as the ratio of two particle masses can de-
pend only on N. This rather striking phenomenon,
whose ultimate origin is the renormalization
group, will be present in our WKB calculations.
We can take this as an indication that semiclass-
ical methods are compatible with renormalization-
group ideas.

Following Gross and Neveu, we find it useful to
replace (1.1) by
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ary-phas e approximation . It is not obvious how
to use a stationary-phase method when there are
integrations over anti commuting fermion fields .
The advantage of the Lagrangian in (1.3) is that
the fermion fields enter bilinearly and can be
integrated out of the problem leaving an effective
action containing only the boson field o. We then
do the o integration by stationary phase . To do
this we must find space-time -dependent fields 0.

around which the effective action is stationary .
This effective action is nonlocal and highly non-
linear, but it turns out to be possible to find
stationary points . The first such example was
found by Callan, Coleman, Gross, and Z ee.' It is
analogous to the kink in the y ' theory ' "or the
soliton" in the sine-Gordon equation, i .e ., it is
a parti clelike solution which is time -independent
in its rest frame and which has a peculiar top-
ology . We have found a large number of further
stationary points of the effective action . In partic-

ularr,

we find solutions whi ch are parti c1elike but
have a nontrivial time dependence in the rest
frame . The WKB method then quant zes these
classical solutions producing a spectrum of parti
cle masses.

The kinklike solutions produce an exotic sort of
particle which probably has no counterpart in
four dimensions . However, the vast majority of
our solutions are not kinks . They correspond to
less exotic objects such as the original fe rmion,
fermion-antif e rmion bound states, or multif e rmion
bound states . Such states surely exist in four-
dimensional theories, and we would conjecture
that in four, as we ll as in two dimensions, there
is a correspondne ce between classical field con-
figurations and particle states ~ Assuming this
to be so, it remains to be seen if such a corre-
spondence can be effectively exploited .

Below we will describe the particle spectrum of
the model as given by our WEB calculation . To
interpret this spectrum we wil 1. need to know

something about the symmetries of the model .
The Gross-Neveu model has an obvious U(N) in-
ternal symmetry. Actually it has an O(2N) sym-
metry of which U(N) is a subgroup. This may be
seen as follows . Choose a Majorana represen-
tation' for the y matrices y' = v', y' =i o" and write

+ iy( (1.5)

where g,' and g," are He rmitian two -component
spinor s . The Lagrangian then takes the form

g ~ q(A) y(k) + q(» y(A)
I r)] 12')~2

+ y(") v
~

g
@) + g(")a

a ~(»
I g r)~ I 2 2 g~ 2

g2
go+ (P ) sg rr+ /so $s ) — (1 6)
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FIG . 1 . The particle spectrum for N = 7 . The integer
n, running vertically, labels a s upermultiplet, each of
whose members has a mass h2„' = g&()(14//~) sin( n m j14).
The horizontally running integer, n 0, is an 0 (2 N)
quantum number. The degeneracy of each dot (boson)
or box (fermion) is (14) !/ n 0 ' (14 -n 0) .',

which is Hermitian and nonvani shing because the
P's anticommute. When written in the form (1.6),
it is clear that the Lagrangian is invariant under
orthogonal transf ormations on the 2N- component
vector pi~" (k = 1, 2, . . . , N), j = 1, 2. The fermion
number operator Q = J gtg dx has nontrivial com-
mutation relations with other generators of O(2N).
Therefore, a nontrivial representation of O(2N)
will contain states with more than one value of Q .
Hence we may expect, for example, that some
fermion-antif ermion states wil l be degenerate
with fermion-f ermion states ." The a field is an
O(2N) scalar while P is an O(2N) vector. The only
other O(2N) representations which we will en-
counter are the totally antisymmetric O(2N) ten-
sors of rank n, ¹ The number of states in a
multiplet corresponding to such a tensor is
(2N) !/rs, !(2N - rs, ) !. Scalar s and O(2N) vectors
are special cases of completely anti symmetrical
tensor s of rank n, = 0 and n, = 1, respectively .

Because of our inability to evaluate certain
Gaussian functional integrals we have not been
able to carry through a complete WK 8 calculation
in the Gross -Neveu model . What we have been
able to do is a sort of ze roth -order calculation
which, in ordinary potential theory, is analogous
to using the quantization rule ttP dq = 2 nv rather
than the more accurate Pp dq = (2 s + 1)v. [In the
sine -Gordon equation the analogous approximation
is equivalent to setting y' = (X/m')(1 —k./8vrrs') '

= P./m'. ] Even with this approximation our results
should become exact in the limit of large N and
are probably qualitatively correct for any N
greater than 2 or 3 .

We find the particle spectrum shown in Fig . 1 .
There is a large, unexpected degeneracy beyond



12 SEMICLASSICAL BOUND STATES IN AN ASYMPTOTICALLY FREE. . . 2445

that required by O(2N) symmetry. This degen-
eracy might be real or it may be an artifact of
our zeroth-order calculation. There are super-
multipliets listed by a "principal quantum number"
n = 1, 2, . . . & N. The common mass of the states
in the noh supermultiplet is

2N . nm
M =go —sinn 0 + N 2

For large N the bubble exchange is weak' and a
Schrodinger equation calculation is valid. One
computes a 6-function potential by summing the
diagrams in Fig. 2(a) at zero-momentum transfer
and then solves the Schrodinger equation as in
Ref. 2. In this way one finds a binding energy
which agrees with that computed from (I.V}

n=1, 2. . . &N, =M, —' n'-n +O (1.9)
where a'0 is the vacuum expectation value of 0'."
We see that ratios of masses are independent of
g as they should be. If n is odd the supermultiplet
is composed of fermions and contains O(2N) rep-
resentations corresponding to all completely
antisymmetrical tensors of rank n, = 1, 3, 5. . . ~ n.
For example, the n = 1 state is a fermion belong-
ing to a vector representation of O(2N}. This is
the "elementary particle" of the theory. For large
N,

M, = go'o, (1 9)
which agrees with the result of Gross and Neveu.
The n = 3 supermultiplet contains an O(2N) vector
which is some kind of excited state of the ele-
mentary particle and a completely antisymmetri-
cal O(2N) tensor of rank 3. The latter is a bound
state of three fermions and/or antifermions. The
supermultiplets with n even are composed of
bosons and contain O(2N) antisymmetrical tensors
of rank n, = 0, 2, 4. . . ~ n. For example, n = 2
contains an O(2N) scalar and an antisymmetric
tensor of second rank. The tensor is a set of two-
body bound states with fermion-fermion, anti-
fermion-antif ermion, and fermion-antif ermion
quantum numbers. The O(2N} scalar is a different
sort of object. It may be thought of as a particle
associated with the a field. At the n=4 level there
is an excited rr, a state which can be thought of as
an excitation of the second-rank tensor at n=2
and a. new state corresponding to a completely
antisymmetrical tensor of rank 4. This new ob-
ject is a bound state of 4 fermions and/or anti-
fermions analogous to the 2- and 3-particle states
found at levels n =2 and 3. The pattern continues
in the same way for n =5, 6, . . . on up to ¹

The quantum numbers of the states in our spec-
trum are not unexpected. In the limit of large N
the leading exchange is the sum of bubbles shown
in Fig. 2(a). In the nonrelativistic limit, this
exchange produces an attractive 5-function po-
tential. Such a potential will produce bound states
only in channels where the spatial wave function
is completely symmetrical. For fermions this
means that the O(2N) wave function must be com-
pletely antisymmetrical, i.e., an O(2N) antisym-
metric tensor.

to the indicated order in N . These nonrelativis-
tic bound states correspond to the states with
n, =n. They are the lowest states with given O(2N)
quantum numbers and are consequently stable.
Equation (1.9) is valid only if n/N is small. For
n and N both large the binding energy per particle
is, in units of M„

nM, -M„2N . n n'" =1- —sin
nM, mn N 2

(1.1O}

which for n/N- 1 shows binding by a finite fraction
of the rest mass. Thus, strong binding can occur
even for large ¹

The bubble exchanges in Fig. 1(a) are not the
only important interactions for large ¹ For
fermion-antifermion interactions in an O(2N) sin-
gle state the annihilation bubbles in Fig. 2(b) are
dominant. The sum of these bubbles leads to an
interaction which is marginally attractive. In
leading order in N, Gross and Neveu' found a o

bound state at the fermion-antifermion threshold.
It is presumably the n = 2, O(2N) singlet state
discussed above. We find that it is bound in the
next order in N '. This disagrees with a detailed
diagrammatic calculation by Schonfeld" who finds
that the. bound state remains at threshold to this
order. We do not understand the origin of this

+
I I

+ + ~ ~ ~ ~

(o)

+ ~ ~ ~ ~

(b)

FIG. 2. (a) The leading exchanges in the l.arge-N
limit. The s channel contains the bound state. (b) The
annihilation bubbles which dominate in the OP N) singlet
channel.
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discrepancy. In any case there is a weak attrac-
tion between fermion-antifermion pairs in an
O(2N) singlet state .One might therefore imagine
that the particles in the model will be made up of
a number of fermions and antifermions paired
into O(2N) singlet states plus further "valence"
fermions and antifermions in an antisymmetrical
tensor state. Our particle spectrum is consistent
with such a picture.

The particle spectrum ends at n=N where the
mass is M„=2Ngv, /w. The mass of the Callan-
Coleman-Gross-Zee kink is (in our zeroth-order
approximation) M„,.„„=Ngo,/w. Thus the Nth state
is just at the kink-antikink threshold. Higher-
mass states would be unstable against decay into
kink-anti, kink pairs. '

There is a striking similarity between the sine-
Gordon equation and the Gross-Neveu model. In
the zeroth-order WEB approximation the particle
spectrum of the sine-Gordon theory is given by
M„=(m2$/w)sin(wn/2$) where (=8wm'/X, plus a
soliton at mass M„„,,.„=m)m. With the identifica-
tion N- $ the energy levels are identical to those
of the Gross-Neveu model. The particle content
of the levels is, of course, very different in the
two theories. There is no doubt an underlying
reason for this correspondence between the theo-
ries but we do not know what it is. However, we
can use this correspondence to try to guess what
would happen if we could do a complete WKB cal-
culation. In the sine-Gordon equation the result
of the complete calculation is simply to replace
X/m' in the zeroth-order formula by
(X/m')(I —X/8wm') ' which is equivalent to making
the replacement $- $ —1. The analogous replace-
ment in the present model would be to replace
N by N —1 in Eq. (1.7) and in the formula for the
kink mass. The theory would then be singular at
N= 1. One expects such a singularity since at
N= 1 the Gross-Neveu model can be Fierz-trans-
formed to the usual Thirring model which contains
a single massless fermion. Our zeroth-order cal-
culation is certainly not valid for N as small as 1.

If it were to turn out that a full WKB calculation
differs from the present one only by cha, nging N
to N- 1, then the extra degeneracy in the mass
spectrum would presumably be real and a conse-
quence of some underlying dynamical symmetry.
Another possibility is that in a complete WKB
calculation the masses within a supermultiplet
will be split by terms of order N '. If this hap-
pens, the n=2 singlet state might remain at
threshold to order N ', in agreement with Schon-
feld.

While the finer details of our approximate
semiclassical spectrum are clearly not to be taken
too seriously, the qualitative picture of a rich

spectrum organized into some kind of supermulti-
plets is almost certainly correct. This unexpected
wealth of particle states seems to be a conse-
quence of the asymptotic freedom of the theory.
The detailed form of the classical a field which
corresponds to a quantum bound state suggests
that the binding mechanism is not a direct inter-
action between the bound fermions but rather is
some kind of vacuum-polarization effect. The
fact that the theory is unstable in the infrared is
most likely the reason for this.

The paper is not meant to be self-contained.
The reader is expected to be somewhat familiar
with our previous papers, ' especially that on the
sine-Gordon equation, ' and with the original paper
of Gross and Neveu. ' In Sec. II and Appendix A
we work out a general formalism for handling
fermions. This method will work in four as well
as two dimensions. In Sec. III we find all the time-
independent stationary points of the effective ac-
tion for a. To do this we use some techniques
from scattering theory. Time-dependent station-
ary points are obtained in Sec.-IV. We find them

by guessing the form of the solution and explicitly
verifying that they are stationary points.

II. FERMIONS IN THE SEMICLASSKAL METHOD

Our semiclassical method, which was suggested
by ideas of Gutzwiller, Maslov, and Keller, is
based on a stationary-phase approximation to the
functional integral for tr e '" . When fermion
fields are present one is integrating over anti-
commuting as well as commuting variables, and
it is not obvious what a stationary-phase approx-
imation means. Below we will show how the
fermion fields can be integrated out explicitly
leaving an integral over commuting fields only.
The final integral over the commuting field is then
done by stationary phase in the usual way.

The way in which we use an approximate rep-
resentation for tr e ' to compute the particle
spectrum of a theory was illustrated in our pre-
vious papers. Having obtained a semiclassical
formula for tr e '~ the succeeding calculations
are the same for fermions and bosons. We will
not repeat the details here.

A. Integrating out the fermions

Using the Lagrangian in (1.3) the functional-
integral representation for tr e '~ is

tre ' = dP dg do

T oo 2

&& exp i di dx + ij')(i y' go)q-
0 «oo 2

(2.1)
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where integration runs over periodic fields o, i.e.,

a(x, f+ T) =a(x, t). (2.2)

(i!f-ga)&=0, (2.3)

which is a linear equation with periodic (in time)
coefficients. The general theory of such equations
is well known. One looks for solutions to (2.3)
such that

(l(;(x, t+ T) = e "i
()(,(x, t ), (2.4)

which defines the Floquet indices a, . In many
ways the Q. , are analogous to the eigenvalues of
the more familiar Dirac equation in a time-inde-
pendent potential. If we put the system in a finite
spatial box the n, are discrete as are the energy
levels for a time-independent a. As the size of
the box goes to infinity the n, form a continuum
for ~o(~& ga, T, where a, is the vacuum expecta-
tion value of 0. For these continuum "states, "
g approaches plane waves at infinity as it does
for an ordinary scattering process. There can

It turns out that the boundary condition on the
fermion fields is that they are antiperiodic
(!((x, i+ T) = —()((x, t ). This is discussed in Appendix
A.

The integral over (!( and (t( in (2.1) is of the
Gaussian type which can be evaluated exactly. It
is worked out in Appendix A. Here we simply
state the result in terms of certain Floquet in-
dices u, which are defined as follows. For a
given o, consider the Dirac equation for g

n, —(d, T (time-independent a) (2.6)

The Dirac equation in an external scalar field
is invariant under charge conjugation. It follows
from this that the n, come in plus-minus pairs
with equal magnitude but opposite signs. We will
use this fact to simplify a number of formulas.
Our equations will be written in terms of the
positive u& only. The reader should keep in mind
that in what follou s we will take the symbol (x,. to
mean a positive index and all sums or products
over the indices g are to be taken over positive

indi ces only.
With this convention that a, refers to a positive

index, it is shown in Appendix A that

also be discrete "bound-state" indices in the
interval 0 ~

~ (x, ~& ga, T. For these discrete indices

g falls exponentially at spatial infinity in analogy
with the behavior of an ordinary bound-state
wave function.

In Sec. IV we will give an explicit, nontrivial
example of discrete and continuum indices n.
They also appeared in our work on the sine-Gordon
equation, where, in a different context, we called
them stability angles.

The origin of the analogy between Floquet in-
dices and energy eigenvalues is not hard to find.
A special case of a cr periodic with period T is a
time-independent field a(x). Setting (!(=e ' 'U(x)
in (2.3) leads to the usual eigenvalue problem for
~. If ~, is an eigenvalue, the corresponding index
is clearly cu, T and we have the correspondence

d exp i dt dxpi —go (It
=e'"~ 1+ e ' ')'", (2.6)

where as usual N is the number of species of fermions. W'e can write

11 (i ~ r ")*"=gc(id[ }[r p (-; err, ,), c(rr[ &(-11
(2N)!

(2N - )n! qn!

(2.'I)

where the sum is over all (finite) sets of integers n, such that 0 & n, & 2N. Inserting (2.6) and (2.7) into

(2.1) yields
T O,2

tre '" =P ([n[C)fir[dr[ p(' didr ~ iN(r(d) —iL,d, (p[),
Q ~oo

(n)

(2.8)

where we have indicated that y and the n, depend functionally on 0 and the integration is over all o such

that a(x, t+ T)=a(x, l) and ~a(x, t)~-~ ~aacs ~x~-~. Equation (2.8) is exact. Our semiclassical approx-
imation will be to do the integration over o by stationary phase.

B. Renormalization

The argument of the exponential on the right-hand side of (2.8) is divergent and must be renormalized.

We do this as follows.
Starting in a finite box of length L and with an ultraviolet cutoff A we subtract a constant Ny(0) from

the action and supply a multiplicative renormalization factor Z in front of the a'/2 term in the Lagrangian.

With these modifications (and using the notation a, =(a)„„)we can write the argument of the exponential in
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(2.8) in the form
00 2

i — —0'-ap PxQP+N P 0) cP Op Pl, Q,. 0) +s LTZ +N p Qp Q 0
Q «oc

(2.9)

where the first term in large parentheses contains
the differences o' —c,' and y(o) —y(c,) and the
second contains the corresponding differences be-
tween a = ap and o = 0. We renormalize the second
term which contains only constant fields according
to the prescription of Gross and Neveu. ' That is,
we choose Z such that the second term in (2.9)
is a maximum at v„an arbitrary dimensional
number which we choose as the vacuum expecta-
tion value of 0. The calculation is identical to that
done by Gross and Neveu except that we choose
to use a noncovariant cutoff procedure where the
spatial momenta 0, are cut off at A. Having thus
determined Z, we can then ignore the second
term in (2.9) which is just a c number. In the
first term in (2.9) we find that there is a logarith-
mic divergence in N[y(c) —y(c,)] which precisely
cancels against the divergence in —,

' Z(c' —c,').
The integrand in (2.8) then becomes finite.

Explicit examples of this renormalization pro-
cedure are given in Secs. III and IV.

C. Occupied fermion states

In a previous paper, we introduced the notion of
occupied fermion states. The ground state of a
quantized fermion field in a time-independent ex-
ternal field o is the configuration in which all
states in the negative-energy sea are filled.
Excited states corresponding to particles or scat-
tering states are obtained by occupying some of
the positive-energy states. Looking at Eqs. (2.6),
(2.7), and (2.8), it is clear that we can extend this
notion to the idea of occupied Floquet index states.
The term in Eq. (2.8) for which all the n, =0 cor-
responds to the vacuum sector of the theory in

which no positive-u states are occupied. For this
term the factor e'"~~'~ in the integrand corre-
sponds, according to (2.6), to the contribution to
the action of the filled states in a "negative n
sea." The terms in (2.8) for which the n, are non-
zero can be thought of as configurations in which
ith positive index state is occupied by n; fermions.
According to (2.6), n, must be less than 2N. This
is in agreement with the Pauli principle. We can-
not put two identical fermions in the same index
state so that with N species of fermions and N
species of antifermions one can put at most 2N
fermions in a given state ~

When we do the stationary-phase integration
over 0 to obtain the energy levels of the system
in the semiclassical approximation, each term
in the sum over (n} will yield a distinct set of
quantum states. Therefore we can think of the
set of integers (n} as being quantum numbers
which label states. In our actual calculations this
labeling of states will be equivalent to classifying
states according to irreducible representations of
O(2N).

It is intuitively clear that to find the particle
spectrum of the model we can restrict ourselves
to those terms in (2.8) in which only discrete in-
dex states are occupied. Those terms in which
n's in the continuum are occupied correspond
to scattering states of the theory.

In practice we will find that all the o's which
satisfy the stationary-phase condition have the
property that there is a single discrete index
state np and we will be able to occupy it by a num-
ber 0 ~np &2N of fermions or antifermions. For
such c's, the general formula in (2.8) reduces to

tr e '" g [dc] exp — —(c'-c,')dtdx+f N[cp(&r) —y(c,)] fn,u,(c)-(2N) ) Z

, &() l(2N-n, ) ) «p «oe
(2.10)

where we have renormalized the integrand as in (2.9). The particle states which we obtain from (2.10)
will evidently carry the quantum number n, . We can identify this quantum number with O(2N) representa-
tions as follows. The combinatorial factor(2N) ) / no) (2N- no) ) is clearly the degeneracy of a state labeled
by n, . The number of independent components of a completely antisymmetrical O(2N) tensor of rank n, is
easily found to be (2N) ) /no! (2N- n, ) ). Therefore we can identify the terms in (2.10) as coming from states
which are completely antisymmetrical O(2N) tensors of rank n, . The special cases n, =0 and n, =1 are
O(2N) scalars and vectors, respectively.

D. The stationary-phase condition

To evaluate (2.10) in the stationary-phase approximation we need to find the points where the phase of
the integrand is stationary. These are fields v satisfying the functional equation
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Oe —[[a(a', a')]* —a,']d)'da'+)([) (a) —a(a )] —a a, (a)) =0
Xa O aa

(2.11)

and the boundary conditions c(x, t+ T) =c(x, t ),
(o(x, t))-(a, ) as (x(-~. In Appendix Awe show
that for a nondegenerate n, which is not equal to
an integral multiple of m

( )
u, =g]T), (x, t) }])(,xt), (2.12)

where [t), satisfies (2.8) and (2.4} and is normalized
such that

(2.13)

Using this result we can write (2.11)as

——Zc(x, t)=-f)tQ I|', (x, t) t]()xt)1

+ n,$,(x, t )y, (x, t ), (2.14)

&c(x) . 2
—([c(x'}]' —c,'}dx'

«I

a)aI [~, (a)-ta, (a,)]-aa, (a)) =a. (2.15)
$=o

which is valid unless no=ad, 2m, 3m'. . . . In practice
we will find that our solutions have no=ad. A
slight modification of (2.14) is then required. This
is discussed in Appendix A and Sec. IV.

Evidently our formalism leads to a kind of time-
dependent generalization of the Hartree-Fock
method. The (t), are solutions to the Dirac equation
in the scalar field o mhich is in turn determined
self-consistently by (2.14). The first term on the
right in (2.14) is the contribution to c of the neg-
ative-o sea and the second term is the contribu-
tion of the additional n, fermions and/or anti-
fermions in the state u, . While Eqs. (2.3), (2.4),
(2.13), and (2.14) look like Hartree-Fock equations
our semiclassical approximation should not be
confused with the usual Hartree-Fock approxima-
tion. Our equations refer to time-dependent fields
whereas the Hartree-Fock procedure for approx-
imating an energy level is based on time-indepen-
dent equations.

In Sec, IV we mill display explicit time-depen-
dent solutions to Eqs. (2.3), (2.4), (2.18), and

(2.14), suitably modified to take account of the
fact that uo will be m. Before doing that we will
find a set of time-independent stationary-phase
points. For a time-independent c we have [see
(2.5}]u, =&a, T where the e, are the positive energy
levels of the Dirac equation in the time-indepen-
dent external field o. The analog of (2.11) is then
easily seen to be

In the next section we will see how to solve (2.15)
directly without recourse to the analog of (2.14).

S„(T)-=

T «] ] z
(or „—oo ) dt dx

2

+ N(w(cr. ..) y(c.)1 —n.u—.(c.„r) . (2.16)

In practice we will find that ao = m for all no and T
and that the sum of the first two terms on the right
of (2.16) does not depend on n, so that

(2.17)S„,(T) =S(T) —n, w

in an obvious notation. W'e mill go through the
quantization for this particular case. The exten-
sion to more general situations is straightforward.

E. Calculating the particle spectrum

In Sec. IV we will find a solution to (2.3}, (2.4),
(2.13}, and (2.14) for each given value of T and

no. These are the stationary-phase points of the
functional integrals in (2.10). To carry out the
full WKB method, we should then perform a
Gaussian functional integral around each station-
ary-phase point ~ We have not been able to see
how to compute these Gaussian integrals. In our
semiclassical approximation the particle spec-
trum depends only on the phase of the Gaussian
integrals. This phase is generally small com-
pared to the main phase which is the phase of the
integrand at the stationary-phase point. There-
fore, as a first approximation we can neglect the
phase of the Gaussian integrals and still hope
that our result will be qualitatively correct. We
will certainly be getting the correct answer for
large ¹ For large N the phase of the integrand
is of order N while the phase of the relevant
Gaussian integrals will be of order 1.

In our previous papers we have shown how to
take translational invariance into account and how

to obtain the correct energy-momentum relation
Z = (P'+ m')'~2 for our particle states. We will
not go through the same calculations here. Our
classical o fields mill correspond to particles at
rest. The energies of states will then be the
masses of particles.

Except for this neglect of small phases from
the Gaussian integrals and the restriction to the
rest frame, the calculation of the particle spec-
trum will proceed as in the sine-Gordon equation.
Let or „,be a solution to (2.3), (2.4), (2.13}, and

(2.14) for given T and n, . We can define an effec-
tive action
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We define T(E) by

d S(T(E))
dT

and make a Legendre transformation

W(E) =S(T(E)}+ET(E) .

(2.1s)

(2.le)
In the semiclassical approximation the energy
levels will then be the roots of

W(E) =2krr+ n, rr,

0=0, 1, 2, . . . , k40for n, =0.
(2.20)

Note that the energy levels will depend only on the
"principal quantum number" n defined by

n=2k+ no. (2.21}

If n is even (odd) the energy level E„contains all
0(2iV) antisymmetrical tensors of even (odd) rank
up to n. The states with n odd are fermions while
those with n even are bosons. The specific cal-
culations of Sec. IV produce the spectrum dis-
cussed in the Introduction.

For time-independent o's we do not need the
full VfKB quantization formalism. If 0'„ is a
solution to (2.15) then the energy of the cor-
responding quantum state is the "classical" en-
ergy

=+ V 2 —go2)dX

III. TIME-INDEPENDENT SOLUTIONS

We want to use the semiclassical functional
method on the model Lagrangian

&r, = 0(r ri}C+ 5 g'(00)',

where P is an N-component massless fermion
field, a model originally studied by Gross and
Neveu. As explained in Sec. II, this amounts to
finding, for a time-independent auxiliary scalar
field o{x), the solution to

Oo (x)
——] [u(x'}]' —o,'] dx'

+ N Q [(u, (c) —ur, (u, )] —n,~,(c) =0,
i=0

(3.2)

—1VQ [ur, (o„,)- ur,. (c,)]+ n,ur, (u„) . (2.22)
1=0

It will turn out that most of the energy levels ob-
tained from time-independent 0's in the next sec-
tion are the subset of levels obtained from the
general formula (2.20) with k =0. In these cases
the time-dependent solutions degenerate into time-
independent fields. There are additional time-
independent solutions in which o(+ ~}= —o(- ~)
= + o, . These are analogous to kinks in the y'
theory or solitons in the sine-Gordon equation.

(i g - g)og( )x= 0 .

Choose the representation

(3.4)

= &z~ &a=

Then setting 0,' = u' and multiplying on the left of
Eq. (3.4) by (iP'+ ger) gives

(~2 ~ s 2 g 2o2 go le )q
—0 (3 5)

or

[(u'+ S„' —g'(o' —o,') gu'cr, —g—'o, '] p =0.
Put this in the form of a Schrodinger equation

(3.5)

g"- [ g'(o' —o,') + gu'o, ] 0 = —(ur' g'o,')0—
and make the identification

k2 —(~2 g2c 2)

rr(x) -=g'(c2 —o,') + go'o, =g'(o' —a,')+ gu',

with the boundary condition

u(x) - o, as
~
x ~- ~ .

(3.7)

(3.s)

(3.0)

(3.10)

%e now have a problem expressed in the Schro-
dinger formalism of Appendix 8 and can write
the potential u(x) as a function of reflection coef-

which determines the stationary-phase points of
Eq. (2.8). %'e will show how to solve this equa-
tion directly, by using the results of Appendix 8,
without knowing a particular classical solution
a(x). Classical solutions can be reconstructed by
the inverse scattering method. The strategy is
the following: Equation (3.2) is reexpressed as a
function of the scattering data of an associated
Schrodinger scattering problem. This is arranged
in such a way that the following are true.

(a) u(x) is expressed as a function of asymptotic
scattering data

o(x) =E(r(k) (-™&k& + ~); k, (1=1, 2, . . . , n)j,
(3.3)

where r(k) is the reflection coefficient and the set
—k, ' are the bound-state eigenvalues.

(b) Varying functionally with respect to o(x) in
Eq. (3.2) becomes separate variations on r(k} and

(c) An algebraic expression for the bound-state
energy levels is obtained without finding an ex-
plicit classical solution to the scattering problem.

(d) Knowing the levels, o(x) and g(x) can be re-
constructed by inverse scattering methods.

This will be shown in detail below.
Consider the Dirac equation for the time-inde-

pendent potential o(x)
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ficients and bound-state eigenvalues of the asymp-
totic scattering problem. The reader is advised
to examine Appendix B at this point in order to
follow the argument.

Consider the trace identity for the coefficient
C„Eq. (B16), which by Eq. (3.9) and Eq. (3.10)
implies

-iC,
2 0
-(c2 —v ')dx (3.1 1)

which is the first term in Eq. (3.2). By using Eq.
(B13)

for j = 0, we get an expression for C, directly as a
function of scattering data:

+iC, 1 '", 2in[1 —lr(k) I'] dk+ —.k.
g 2' ~ g

(o' —o,') le v

2
(3.13)

We have kept only one bound-state eigenvalue in

C„.„= . k" in[1- ~r(k)~']dk- . (2k,)""
E ~0O 2j+ 1

(3.12)

the above formulas, since keeping the sum over
them leads to linearly additive energies, and
therefore to no new bound states, as the reader
can verify. The astute reader can now see the
strategy. The variation 5/5c(x) in Eq. (3.2) is
being replaced by separate variations on r(k) and
k„ the independent scattering data.

By carefully counting modes in a box, as in
previous papers" one sees that

N P [tv, (v) —«, (v, )l =)V — v + «, (v) —Vv,),d (d

i=0

(3.14)

where the phase shift & is given by

a*(k)
a(k)

1 '" in[1 —)r(q)~2], ~k

(3.15)

Here P stands for taking the principal value and
we have used Eq. (B11), keeping only one bound
state, k, . From Eq. (3.8) one immediately gets

r 1 kdk '" in[1 —~r(q))2] kdk, k
(k2 + g2c 2) 1/2 k q

q (k2 + g2a 2)l/2 (3.16}

Having done this we can assemble the pieces of the action in Eq. (3.2), written as a function of scattering
data, and carry out the variations,

~~
= —(I,(o(r, k,})]——[I,(a(r, k,))] + (d0(k0) —gc, — (d 0(k0),

where I, is the representation of J '"[-—,
' (a2 —c02)] dx,

ln [1 —
~
r (k) ~

2] d k + —,k„+

2 7Tg

and I, is the representation of j5 d&u,

1
'" kdk '" in[1 —~r(q)~2]

" kdk, ~k
2 27/ (k2 + g2a 2)1/2 k q (k2 + g2o 2)1/2

(3.17)

(3.18)

(3.19)

To find the stationary point, or to solve Eq. (3.2), first vary with respect to r(k), which implies r(k) =0.
The stationary point is one for which the potential u(x) is ref lectionless. Here we see why previous ap-
plications of the semiclassical functional method'" always seemed to give ref lectionless potentials. It is
simply one piece of the stationary-phase condition for the integrand of the path integral representing
tr e '8', which is clear only when one has converted the problem to one involving asymptotic scattering
data directly.

After some algebra, the second term I„Eq. (3.19), can be written as

f &-2 2 2)1/2 0 g, +ko / 2 2 2)1/2 + (g QO 0 ) t n
0 i,fC ++ 00 ) k 2 0 (k +g00') 0

(3.20)

where A is a cutoff momentum. Defining k0=ga0sin6) implies e0 ~0cos6}, and noting that

02a 2 k 2)1/2 m(g2a ' —k )12tan c' 0 0 =go cosg —80 0 2
(3.21)
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gives

kdk, ~k r dk r„», tan ' „=go,cos6 —-8 +go sin6, » „», +go, sjn6 ——gg, .
o ~k +geo k 2 0 ~k +gOO)

(3.22)

As explained in Sec. I 8, the renormalization
constant Z is defined to be such that the constant
field a =a, satisfies the variational equation (2.11).
In that constant o, one simply has a free massive
fermion and Eq. (2.14) gives the value of Z

, N dkv, (k'+ g'a, ')"' ' (3.23)

One then sees that the divergent parts of I„
coming from Eqs. (3.20) and (3.22), exactly cancel
ZN 'I, and the remaining finite terms in Eq. (3.17)
are, after some cancellation,

S 2 . 2 n= —go sin6- —gv 8cos8+ ~go cos&.

(3.24)

Varying with respect to 6 gives the quantization
condition

Coleman, Gross, and Zee. For such a a(x)

1
C = ——. u(x)dx2i

1 g'(a' —a ')dx~ —. a2i ' i (3.29)

which adds on an extra term in Eq. (3.24). The
calculation is similar to the one above and one
finds that for any n, the only consistent solution
is k, =1 or ~, =0. Therefore there is only a single
kink which is the same hyperbolic-tangent solution
as was found in the Q' theory. ' In this kink, the
Dirac equation has a zero-energy bound state
g„with $,g, = 0. We can put any number n, & N
of fermions in this state without increasing the
energy, and since $,$, =0, the trapped fermions
do not res.ct back on a(x), leaving the simple
hyperbolic tangent an exact solution for any n, &

¹

The mass of a kink is found to be
—6 —~ sin6=0,

which implies

7 n
2 N

(3.26}

(3.26)

N
kink g 0

independent of no.

IV. TIME-DEPENDENT SOLUTIONS

(3.30)

Using the definition of the energy E in Sec. II and
using the above value for 6 gives the energy spec-
trum

2 . 2 - 3 nE = —Nga sin&= —ga Nein — e (3.27)
w m

o 2 N

1 1+y—cr, y tanh gv, yx+ —,ln 1-y (3.28)

where y=sin6.
For y close to 1, a looks like a well-separated

kink-antikink pair: The presence of many fer-
mions in the kink and the antikink prevent them
from collapsing on each other.

So far we have been looking for a time-indepen-
dent a(x) satisfying the boundary condition a'(x)-a„(x~-~. There is another type of solution
with boundary condition a(+ ~) = —a(- ~ }= s ao.
This is the kink originally discovered by Callan,

where n, is the number of occupied fermion states.
Knowing that u(x) is ref lectionless and knowing

the value for 8 allow us to reconstruct a(x} by
inverse scattering methods. "'" The result is

1+y0' Go + Goy tanh go'o yx —~ ln 1-y

In this section, we exhibit nontrivial time-de-
pendent, periodic solutions to the functional Eq.
(2.11). After semiclassical quantization, as ex-
plained in Refs. 1 and 2, they will give us addition-
al particlelike states.

Time-dependent solutions to the fermion-loop
functional are more difficult to find than time-in-
dependent ones. This is because the formalism
for inverse scattering in a time-dependent poten-
tial has not been developed yet; hence, we have
no general method analogous to Sec. III and Ap-
pendix 8; instead we have to guess the correct
form. The very simple analytic form of the re-
sults of this section leads us to suspect that there
must exist some easily tractable general formal-
ism, at least for potentials which are periodic in
time, and ref lectionless.

Considering the close relationship of the results
of Sec. III with those of the sine-Gordon Lagran-
gian, we look for periodic o fields which would be
analytically related to the sine-Gordon doublet in
the same fashion as the kink of Sec. III is related
to the sine-Gordon soliton. After contemplating
for some time the analytic form of the sine-
Gordon doublet and of the small oscillations around
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it, as given in Ref. 2, we are led to try, in units
of o„setting g=1,

a=i+ kf, + 1}f.,

where

f, =D 'cosQt,

f~=D '=(coshKx+ acosQt+b) ',

(4.1)

with t and x expressed in units of ( go, ) '. K, Q,

$, q, a, and b are constants to be determined
later by consistency.

For the solutions of the Dirac equation"

(ty'-o)q=p

with o as in (4.1), we try the form

(4.2)

y(k) aA X-&A)

Cf1 ]
with

"1=oo+ o1f1+ /xaA+ /xs~s+ /x~A)

d, =P. +P,f, +P.f, +P.f.+P,f.,

where we have introduced the functions

f, =D 'sinhKx, f, =D 'sinQt .

(4.3)

(4.4)

(4.5)

aQ q i+k'2kf"2k . f
where A is a normalization factor, which is found

to be

1 1 kW2

A v~L (4k'+ K') "/'

One also finds a set of relations among the
parameters of o:

$= —2a, q=- 2bK', Q'+K'=4,

)1~+K~(1 b~}+ Q~a~ =0

u' —k

(4.7)

(4.8)

By analogy with the sine-Gordon doublet, we

write

2 2E

(1 + e2)1/2 s (1 + e2)1/2 (4.9}

One can then consider e and b as free parame-
ters at this stage.

It is then straightforward to compute the a' s
and P's of (4.4). One finds, up to an over-all
phase,

1 iK ia aQ (1-ik) ia = — 1+ —f + ——
2k 4f -T) —f

(4.6)
1 1 ik -K i+k a i+k
A /// 2k 1)/ k (d

where A is an ultraviolet cutoff, in units of ger, .
Considering the value of the renormalization con-
stant Z in (2.14), we then see that the first term
of the right-hand side of (4.11) is exactly equal to
the left-hand side of (2.14). We will have achieved
our task of finding a time-dependent solution to
(2.14) if the second term of the right-hand side
of (4.11) cancels exactly with the contribution of
the bound states, which we now compute.

The bound-state solutions to the Dirac equation
(4.2) involve linear combinations of the functions

y, =D ' cos 2 Qt cosh-,'Kx,

p, =D 'sin2Qtsinh2Kx,

Q3 D ' sin-,' Qt cosh 2 Kx,

p4=D 'cos2Qtsinh2Kx.

By identification in Eq. (4.2), one finds the
bound-state wave functions to be

(4.12)

1 —a —5
0 +1 1+g2 &/2 1 P40 —2'g

1 —b-2g 1+b-a
a--,'q ~' 1+~ & 1+~+-,'q ~

(4.13)

1-b —2q i 1+6-a
a —-'rl ' () ')'I' ) ~ 1+ —'q ')

1 —a —5
+1 j +g2 1/2 g ~4

Q —pg
(4.14)

where X and p, are free parameters; X//p, being
arbitrary, this means that there are two bound

states, both of which have their Floquet index
equal to a n. Because of this, one must be careful
in applying the reasoning of Appendix A to com-
pute their contribution to o: One must apply first-
order degenerate perturbation theory. This is
most easily done by noticing that a perturbation
Rr of the type considered in Appendix A is diagonal
in the basis

We can now compute the contribution of the con-
tinuum states given by (4.6) to the right-hand side
of Eq. (2.14). The result is

N 2e'b(k'+1) "'D 'N

L &d L(1+ e')[k'(1+ e') + e']

(4.10}

The sum over the continuum modes then gives

P1()))(&)= —, ~ J
awr)) '(, a,

)
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1 ~1&

= - ]Lf.2 2

(4.15)

gD-I
0000 (I + e2)l/2 (4.16}

Combining this with Eq. (4.11), we see that we

have found a solution to the functional Eqs. (2.11)-
(2.14) by choosing

N - n (I + e'}' '
0

N 1 —(2/E)tan 'e (4.17)

To compute the action around one period S„,(T)
according to Eq. (2.16), we follow the related cal-
culation of the sum of stability angles in the sine-
Gordon equation as described in Appendix C of
Ref. 2. We do not reproduce the details, but

simply give the result:

S„,(T) =2N(tan 'e —e) —n0E

with

(4.18)

T = —= v(1+ e')'/'2-F

0 (4.19)

Hence the classical energy, according to (2.18),

In such a perturbation, the Floquet indices move
away from a m. The amount by which they move
gives the value of ltl0$0 which will enter Eq. (2.14).
Performing this calculation and normalizing the
bound-state wave functions gives the remarkably
simple result

APPENDIX A: Tr e-t'&& FOR FERMION FIELDS

We derive Eqs. (2.6) and (2.12). For an anti-
commuting fermion field (t} the boundary condition
in the functional integral for tr e '"' could either
be that it is periodic /it(t+ T) = /t/(t) or that it is
antiperiodic /tl(t+ T)= —lt/(t). By means of a
simple example we will see that the latter is the
correct condition. Consider a simple fermionic
oscillator defined by the Lagrangian

I, = iat (t )a(t ) —/dat (t )a(t ) . (Al)

The system has two energy levels &p and E'1 cor-
responding to the single fermion state being empty
or occupied. Since we have not specified the
quantum-mechanical ordering of the Lagrangian
we know the energy levels only up to an additive
constant. However, 61 &p must be e, so we have

a = 0 at n = n„ this means that af ter some comput-
ing we recover as a particular case the time-inde-
pendent solutions of Eq. (3.27). This also means
that we have found analytically a particular small
oscillation of those time-independent solutions,
which looks like a vibrational excitation. This is
a first step in the calculation of the quantum cor-
rections to the time-independent solutions. We
also see that in Eq. (4.9) we can choose e pure
imaginary, e =i/v, and still have a real o in Eq.
(4.1). Such a o will then describe the scattering
of two fermion-containing kinks of Sec. III with
velocities x v in the center-of-mass system.

2N
(I + e2)l/2

By defining

& =tan 'e,

we find the quantization condition to be

(4.20)

(4.21)

1E'
p

=Ep P (d )

~p+ 2+~
1

where Ep is arbitrary. It is clear that

tr e-JET -IE0T (el0/ T/2 ~ e le T/2)

(A2)

(A3)

7T n
6) = ——

ff 2 N
(4.22)

Let us now compute tr e '" using the functional-
integral method. According to the rules for inte-
grating over fermion fields, one has

where n is defined as in (2.20)-(2.21). Hence the

value of the energy levels
T

tr e ' = da da~ exp i I.dt
p

2N . nnE = sin —.
@ 2N' (4.23) „,Det [i d/dt /v]—

Det [i d/dt ]
This is, in units of ga„ the result announced in
the Introduction by Eq. (1.7). The physical inter-
pretation of the level structure thus obtained is
also discussed in the Introduction. As for the
values of the various parameters of the solution,
we find

N-n, 1
N- n cos6„

(4.24)

Going back to Eq. (4.8), we find that the exis-
tenc e of a require s n ~ n„and, fur the rmore, that

2, «E,T~ &. (&}
Li ~ (0)

where the normalization is set by

tr e-iET~ —2e-(E0T

and the eigenvalues e„(u&) are defined by

idt f„(t)—0/f„(t) =e„(0/)f„(t),~ d

f. (t+ T) = +f. (t ),

(A4)

(A5)
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e„=- -co, n=0, +1,+2, . . . ,
2nr

while for the antiperiodic case

(A7)

where the + and —signs refer to periodic and
antiperiodic boundary conditions, respectively.
For periodic conditions

(t)t- o)y, =0

satisf ying

(A15)

ditions in a large box of length L. The eigenvalue
can be obtained from the Floquet indices as
follows ~ If we have a solution to the Dirac equa-
tion

(2n+ 1)we„=- ur, n=0, +1,+2, . . . .

It is easy to verify that the product of eigenvalues
in (A4) will reproduce (AS) if we choose anti-
periodic boundary conditions for which

e„((d) u)TII r„(0) II (2n+ ))m)

g, (x, t+ T) =e ' ' r,()(,xt),

y, (x+ L, t) =y, (x, t),
then the function

t
(„k=exp i 2n+ 1 —+ink—

satisfies

(A16)

(A17)

(dT= cos (AQ}

Any free-field theory of fermions can be re-
duced to a sum of Lagrangians of the form (Al}.
Therefore antiperiodic boundary conditions are
correct in free-field theory. We will assume that
this is general and take our fermion fields to be
antiperiodic in time.

Having established the boundary conditions, the
calculation of the functional integral in (2.6}pro-
ceeds along the lines of Appendix A of Ref. 2.
Recalling that ))) really stands for a set of X two-
component fermion fields g ', g ', . . . , g~" we
write the functional integral in Eq. (2.6) in the
more explicit form, setting g=1 for simplicity.

and

$„,(x, t+ T) =g„, (x, t),

$„,„(x+ L, t ) = $„(x, t ),
(A18)

We now have the eigenvalues and, from (A12},

=I,(0)II cos ~2 (A20)

Comparing with free-field theory shows that, up
to a phase which represents an ambiguity in the
vacuum energy, I,(0) =II,[2] so that

&exp i " i —v}g~
k=I

(A10) t, (o) =II (e'"' ' + e '~) ') . (A21)

which defines 1„(c). It is immediate that

t„(o)=[I,(&x}]", (A11)

and according to the rules for integrating over
fermion fields I, is given by

As n1entioned in the text, for the Dirac equation
in a scalar external field charge-conjugation in-
variance implies that the nk come in plus-minus
pairs with equal magnitude and opposite signs.
Using this fact we can rewrite l)(a) as

( ) ( )
Det[y'(t)( —c)]

Det [y' t)t]

I (0) II ( )

where the eigenvalues & are defined by

y'(ttt c)5 = ek-
and

[(x, t+ T)= —g(x, t),
g(x+ I., t}=g{x,~},

(A12)

(Ala)

(A14)

t, (o) = g (e'~~ '+ e "') ')'
ak&P

=g e'"'(1+e "')',
ak &0

which yields for I„

t„(&r) =[I,(o)]"=e'"~Q (1+ e '"&)'"
cxk&p

nk&0

(A22)

(A22)

where we have imposed periodic boundary con- This is equation (2.6}where in the text we used
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1 5c., g„., (x, t)]„., ( xt)
T 5c(x, t) f J'" $„*~)„~dxdt

Q ~oo

We can simplify (A24) by using

$„,(x, i)[„,(x, i) =P, (x, f)q„(x, &)

and

(A24)

(A25)

r
T

g„*g dxdt = T
Q ~00

0a'0a d& (A26}

where to get (A26} one uses the Dirac equation to
show that J ~

P~'dx is time-independent. Combin-
ing (A24), (A25), and (A26) yields

$„ (x, &)y, (x, i)
5c(x, t } f"

~ g, ~'dx

which is Eq. (2.12) for g= 1 with the normalization
convention (2.13). Equation (A25) can be incorrect
if the eigenvalues in (A19) are degenerate. One
then has to use degenerate perturbation theory.
This point is relevant because we find o's which
have discrete c.'s at s w. The eigenvalue in (A19)
corresponding to u=- w and n =1 is degenerate
with that corresponding to n= n' and n=0. When

such a circumstance arises it is straightforward
to work out the generalization of (A25). This is
done explicitly in Sec. IV.

One can easily extend these techniques to more
general cases. Consider the functional integral

I= dP dP expi -Ag (A28)

over antiperiodic P's. The matrix A is any com-
bination of c-number functions multiplying y

matrices and/or internal symmetry matrices with
the periodicity property A (t+ T) = A (T) and }'
Her mitian.

As before, we can define Floquet indices by

(if-A)4'=0,

g(x, T + f ) = e '"i g(x, t } .
(A29)

A calculation identical to that done above yields

I =g (e'"&~'+ e '"&~') .

In general, the n, will not come in a pairs, but
we can always write I as

J =exp — ~z 1+ g (A30)

the convention that all a's are positive.
We now turn to the derivation of Eq. (2.12). It

is based on the fact that a, is essentially an
eigenvalue of y'(i P' —o). Using ordinary first-order
perturbation theory for the eigenvalue problem in
(A19} leads to

We now have the filled sea contributing a phase
~g„~ u~ ~

and each factor in the product represents
either an empty (1) or occupied (e ' "& ) state.

APPENDIX B: THE ASSOCIATED SCATTERING

PROBLEM AND TRACE IDENTITIES

In Sec. III we will use some formulas from the
scattering problem for a Schr5dinger operator.
These essentially reexpress the potential (time-
independent) as certain functions of the scattering
asymptotics, i.e., boundary conditions as ~t ~-
We could simply list the definitions and expres-
sions we will need, but the reader would have no
insight as to why the scattering problem or the
trace identities have anything to do with computing
the stationary-phase point of a functional integral.
So, we will begin with a brief discussion of the
strategy in a finite dimensional setting where the
technical difficulties of scattering theory do not
obscure the method.

The aim of inverse scattering methods is to
solve a nonlinear evolution equation by linear
techniques. A directly related problem is to find
a procedure to tell when such an equation has a
large, perhaps infinite number of conservation
laws and to write them down. Lax" in a classic
paper on the Korteweg-de Vries equation showed
how to associate a linear eigenvalue problem,
whose eigenvalues are timeindependent, with the
original nonlinear equation. These eigenvalues
are constants of the motion for the original prob-
lem. Zakharov and Faddeev" gave an interpreta-
tion of moments of these constants as regularized
traces of a singular boundary-value problem.
These are the so-called trace identities. We will
give a simple example of these notions for a sys-
tem on a lattice, i.e., the eigenvalues are as-
sumed discrete.

A more elaborate discussion for a particular
lattice case can be found in a paper by Flashka. "
Lax's basic idea is to take a space of N&&N sym-
metric matrices which are the values of a linear
operator L(f) and ask under what conditions are
the eigenvalues of L(t) independent of time. A

sufficient condition is that L(f ) be unitarily equiva-
lent to L(0). Since any unitary operator obeys
an equation of the form

U =SU where 8 = —J3~, (Bl)

unitary equivalence U '(f )C(i)U(f ) = L(0) for all f

implies what is known as the Lax representation

L=[B, L] . (a2

In other words, unitary equivalence implies Eq.
(B2). The converse is also true: Given some
skew Hermitian B, if Eq. (B2) holds then S(t ) is
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unitarily equivalent to Z(0). This is the key to
the inverse method, since if one rewrites a non-
linear evolution equation by guessing an I and a
8 so that Eq. (B2) holds, then the spectral prob-
lem for L determines all the constants of the
motion. In our case L will be the Schrddinger
operator and its eigenvalues are expressed in
terms of asymptotic scattering data. In Sec. IV
we find a solution to the stationary-point problem
essentia11y by guessing it. Faddeev has suggested
that our guess is the solution for an inverse scat-
tering problem for a Dirac operator containing
a time-dependent potential. If true, this means
that theoretically we could have solved the time-
dependent case in the same way as in Sec. III, but
using a different associated g.

There is more information in Lax's representa-
tion than one would suspect at first glance. One
can extract all the conservation laws for the sys-
tem without solving Eq. (82). Given a set of
eigenvalues A, , . . . , ~„of Z one defines moment
functions M, =Tr~„M, = Tr~, ', etc. The reason
for this is twofold: first the expression for X,
=f (q, q„) in the original variables is both com-
plicated and unknown; second, one can find the
M&, which are conserved, by a method due to
Faddeev and Zakharov.

One notices right away that the M& are coef-
ficients in the expansion of an invariant function.
Namely, Tr (L - X) '

=P& (I/X, —X) which is f in-
dependent for any ~ where it exists. Then
Tr(L —X) ' generates M, =TrI', since

(B2)

These are the famous trace identities, and al-
though they are trivial here, they become im-
portant for the Schr5dinger problem, where
Tr(L —A. } ' is replaced by the coefficient of a scat-
tering matrix, and the expansion is an asymptotic
one in inverse powers of the continuous eigen-
value.

After these lengthy preliminary remarks we
just state some definitions and results for the
Schr5dinger case which we will need, and hope
that now the relevance of these expressions will
not be so surprising, Vfhat follows, especially
the particular form of the trace identities, is due
to Faddeev and Zakharov, "whose work we merely
summarize. The reader can refer to their paper
for derivations and details. The two ingredients
we will need are a dispersion relation for the
phase shift and the set of trace identities, all ex-
pressed as functions of scattering asymptotics.

The Schr5dinger equation for a potential U(x)

—g„„+U(x}g=k'g, (s4)

subject to a suitable bound on the integral of the
potential, has a twofold positive continuous spec-
trum, and a finite number of negative eigenvalues
—k, ' (/=1, 2, . . . , n). The function r(k), the re-
flection coefficient, is defined through the asymp-
totic form of the solution g(x, k) of (84) as follows.

g(x, k)-e""+r(k)e "" (x- -~),
q(x, k) - t (k)e'" (x-+ ~) .

(B5)

Also, the coefficients a(k), b(k) are defined by

f (x, k) = b (k)g(x, k) + a(k)g(x, —k),

g(x, k}= —b( k)f (x, k) +-a(k)f (x, —k),
where a(k), b(k) are related through

lal'=I+ lbl'

(B7)

(Be)

In terms of f(x, k) and g(x, k), Eq. (B4) is inver-
tible, giving

a(k)= . (f g), (B9)

~h~~~ (f, gi=f,g- g„b. The c-oefficient a(k) can
be defined in terms of the coefficient of reflection
by .(k) = b(k) 2 1

a(k) a ' (Bio)

In order to express the phase shift as a function
of scattering data, we will need the following
dispersive relation for a(k}

"- I li- l.(~)l'3 „,' " ='"P'l 2m' „k-q
m

(I k o).k+ ik,
(B11)

If g, (x) are the eigenfunctions of the discrete
spectrum, normalized by the condition (, (x)
-e~~" (x- —~) and d, are the corresponding
normalization factors, d, = ( f'„"g, 'dx} ', then the
set S =(r(k), k„d, j is the asymptotic scattering
data for the problem (B4). It is well known that
the mapping U(x)- S of the set of potentials U(x}
into the scattering data is uniquely invertible.
Knowing S, one can recover U(x) completely. The
way to do this is by the method of inverse scatter-
ing and has been rigorously investigated by
Faddeev. "

We will need some more definitions, which are
the standard ones. The Schr5dinger equation (B1)
has a pair of solutions f (x, k), g(x, k), defined
uniquely for all real k by the conditions

f(x, k)-e"" (x-+~),
g(x, k)-e "" (x- —~).
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(812)

C2 =0,

The other main formulas we will need are the
trace identities. Here they are simply two ways
of writing a representation for the coefficients
C„ in the asymptotic expansion of Ina(k), ~k(-~,
in inverse powers of k

lna(k) =g ~C
tt = I

where it can be shown that

and

n=2j 0 ~ ~

c,(x) = U(x) .

In particular, Eqs. (814) and (815) imply

where c„(x}obey the recursion formula

d
n-~

o„(x)= ——o„,(x) -Q c„, ,(x)o, (x),

(815)

1
C2~+~ 2gi

k" In[1 —~r(k) )'] dk
1

C, = ——,
2i

U(x)dx,

but also

Q (ik )""
2j+ 1

l= I

(813)
+

C, = ——. U'(x}dx,
Si

etc.

(816)

1 "+' +"
C2g+ z

—— o2 + i (x)dx»
2z ~OO

(814)
These formulas will be sufficient to find the time-
independent stationary-phase points of Eq. (2.8).
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