
PHYSICAL REVIEW D VOL UME 12, NUMBER 8

Regge cuts in inclusive reactions*

15 OCTOBER 1975

Frank E. Paige and T. L Trueman
Brookhaven National Laboratory, Upton, ¹~York 11973

(Received 2 June 1975)

The contribution of Regge cuts to single-particle inclusive processes is analyzed using the techniques of
Gribov. The dependence of these contributions on the polarization state of the target is emphasized. A general

formula is obtained and certain contributions to it are calculated. It is not possible, however, to reduce this to
a simple, powerful formula expressing the total cut contribution in terms of other measurable quantities, as
can be done for the cut contribution to the total cross section. The reasons for this are discussed in detail. The
single-particle intermediate states, analogous to the absorption model for elastic scattering, are explicitly
calculated as an illustration.

I. INTRODUCTION

The Mueller-Regge analysis' of inclusive cross
sections has had many successes. Graphs of the
form shown in Fig. 1(a) seem adequate' to explain
the unpolarized inclusive cross section for a+6-c+X in the fragmentation region of a. More
specifically, graphs of the triple-Regge type, Fig.
1(b}, seem adequate' in the region of large
s = (P, +P,)', large M' = (P, +P, —P,)', large s/M',
and fixed t = (P, —P,)'. However, such graphs give
no dependence on the polarization of b.4 Such a
dependence, which has recently been observed, '
could be due to Regge-cut graphs" of the type
shown in Fig. 2. The objective of this paper is to
analyze these graphs.

Our calculation is based on the techniques de-
veloped by Gribov" and parallels to a large extent
the calculation of cuts in the forward elastic am-
plitude. " Unfortunately, the results which we ob-
tain are neither as simple nor as powerful as those
for the total cross sections. To explain why this
is so we begin by reviewing the cut calculation for
the total cross section. By analyzing various pos-
sible specific insertions for the blobs in Fig. 3(a),
and, especially, by making kinematic approxima-
tions appropriate to the dominant region of inte-
gration, Gribov'' showed that the cut amplitude

F,„,(s) at t=0 is given asymptotically by

i d'q ds, ds, t'(q„')
4s (2w)2 2wi 2wi sin'wu(q, ')

xA, (s„q~')Aa(s qi ),

where a(qj') is the trajectory function of the ex-
changed poles, assumed to be identical here,

~(q ') =1+Ts (1.2)

is the signature factor, and Q'~ is the two-dimen-
sional momentum-transfer vector orthogonal to the
incoming momenta, with q' =q, '+O(1/s}. The
Reggeon-particle amplitudes for a(q) + a —a(q) +a
and u(- q) + b - o(- q) + 5 are denoted by A, and A, .
These are functions, respectively, of s, = (p, +q)' and

s, =(p, —q)', having the usual left- and right-hand
cuts in these variables. The integration contours
go below the left-hand cuts and above the right-
hand ones.

Evidently if there is sufficient convergence in
s

y and s„ then the contours of integration can be
distorted so as to express F,„,(s) in terms of the
discontinuities of A, and 4& across their right-
hand cuts. (Problems connected with the con-
vergence of the integrals are discussed in Ref. 10.)
This is a powerful result because these discon-
tinuities are directly measurable in single-par-
ticle inclusive reactions. ' ' " For exs,mple, the
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FIG. 1. (a) Mueller Regge-pole graph for inclusive
cross section; (1) triple-Regge graph. FIG. 2. Mueller Regge-cut graph.

12 2422



12 RE GGE CU TS IN INC LUSIVE REAC TIONS 2423

inclusive cross section a+b -d+X, e.g. , Fig. 3(b},
is proportional to' "

1 . 1—.disc, F, = —.[F,(s + i e, s —i e, s, +i e, q')

Pb P
Pb

Pd

q = ~P. +XPa+q. . (1.5)

—F6(s +Et& s —5E&s'& —1e q&)],

(1.3)

where F, is the forward amplitude for a +& + d
-a'+b'+d' and s =(p, +p~)', s =(p,'+p~)',
s, = (p, +p, p, )—', q' = (p, —p,)'. (Of course, j s )

= ~s ~; these variables are distinguished because
they have different boundary cond'itions. ) In the
limit s -~ with s, and q' fixed,

(a)
disc, F, fi'(q'), , &(q') $*(q')sin' v&k(q')

xdisc, A, (s„q'),
where 4, is the Reggeon-particle amplitude. It is
readily seen that this amplitude is the same as that
which enters into the calculation of F,„,(s).

The cut contribution to the total cross section is
proportional to the discontinuity of F,„,(s). This
can be obtained from the imaginary part, but in
preparation for the more complicated problem of
interest in this paper, let us calculate it directly.
Properly speaking, the function given in Eq. (1.1)
is F,„,(s+i )e. We need to find also F,„,(s ie). T-o

do this we reexamine the transformation from d'q
integration associated with the Reggeon loop to the
variables used in Eq. (1.1). This transformation
is done by using the Sudakov parametrization"

(o)

FIG. 3. (a) Regge-cut graph for total cross section;
(b) related Mueller graph.

Then

d'q =-', [P(s, m, ', m, '}]'i'dkdyd'q, ,

where

(1.6)

s = $s +ma +qg

S2 = —XS +my +qg2 2
(1.8)

This shows explicitly that if s has a small imag-
inary part & &0, then the integration contours are
displaced downward for s& & 0 and upward for s; & 0,
as earlier asserted. If «0 the opposite is true.
Thus we have

A(a, b, c) =a'+b'+c' —2ab —2bc —2ac .

We use the exact rather than the asymptotic form
because we must circle the branch point of X' '
at s =(m, +m, )' as well as the branch points im-
plicit in the Reggeon signature factors in going
from s -+i& to s ~ —&E. The variables s, and
s, are given for large s by

d2q "ds "ds s' " 2

i d' s'~'~"
(2

)' „.„„( )
[&'(q '}bf:(q ')fib(q ')+ &"'(q ') N. (q ') iyb(q ')] .

The cut coupling functions N ' are defined by

(1.9)

(1.1O)

where the contours C'are as shown in Fig. 4. The sign between the two terms in Eq. (1.9) is plus rather
than minus because of the branch point in Eq. (1.6).

With the strong convergence assumed by Gribov, '
iy,'(q, ') = — ds, ImA, (s„q,')

S0

= —&N(qi') .

Hence



2424 FRANK E. PAIGE AND T. L. TRUEMAN

(2v)' sin'wc. (qJ ) . pl'I p
]sin L~«Lg& )

(1.12}

the upper alternative applying for ~=+1, the lower for 7'=-1. This result of course agrees with that ob-
tained by taking the imaginary part of Eq. (1.1) and using the optical theorem.

The above extended review is intended to make the following discussion easier to follow. At first sight
one might think that the calculation of the graph in Fig. 2 would be very similar to that )ust outlined, and,
in particular, that this graph could be calculated from the two-particle inclusive cross section, that is,
from the graph shown in Fig. 5. This is not correct because the Reggeon-two-particle amplitude depends
on extra variables. " These complicate the boundary conditions, and they also introduce extra singulari-
ties in the y Sudakov variable associated with the loop, preventing the simple contour distortion used in ob-
taining Eq. (1.10}.

Let us first consider the two-particle inclusive cross section; cf. Fig. 5. This cross section is propor-
tional to""

disc&iE =8. [ E&(s +le& s Et& s& +les& 'Ie& s& +1 &es& le~ s +56)

Es(s +le, s feq si+feq si IEq s~ +le, s~ ff, s ff)]

where F, is the forward amplitude for a+b+c+d-a'+&'+c'+d', and where

(1.13)

s =(p, +p, }',
s~ =(po+p~ —pq)',

s, = (p, +ps —p,)',
s'=(p, +p, - p, -p)' .

s =(p,'+p,')',
Sg = (pz +pb pit)

s~ =(PI/+Pa-Pc) ~

(1.14)

Momentum-transfer arguments are suppressed. As in Eq. (1.3), (X'( = (s (, etc. In the Regge limit appro-
priate for Fig. 5, s -~, s, -~, s/s, fixed,

a+%
F (s+8it, 3'-fe, s, +fe, s, -ff, s, +f se, -f serie), t, (,A„(s,+feqs, cf, s RK se/s, )sinn+, sinnu, ' 4

(1.15)

Subscripts are used on A~, ~-, (pc, p &= a I) to indicate that it is defined by the limit s - ~+ipse, s -~+ape,
s, ~+ia'e, s, ~+iF& with e&0. It is important to realize that the various functions Ap p are not
the same, as shall be seen later by explicit examples. The ratio s/s, can be expressed in terms
of s„s', and either a Toiler angle" or the angle between P,~ and k&, so that A depends only on internal
variables.

Now consider the Reggeon-two-particle amplitude as it enters in the cut graph shown in Fig. 2. Define
the variables as in Eq. (1.14) but with P, - P~ replaced by k everywhere, and note that M' =s, . To calculate
the inclusive cross section we need the cut amplitudes E,(s +ie, s - fe, M +fe). After introducing Sudakov
variables we must do the y integration over the Reggeon-two-particle blob. If Ims &0 then s, Ims, &0, and
if Ims &0 then s, Ims, &0. Hence the y contour goes below the left-hand cut and above the right-hand cut in

s„and the opposite for the cuts in ~, . Furthermore, if ImM'&0, then s'Ims'&0 and the contour goes be-
low the left-hand cut and above the right-hand cut in s'. If ImM'&0 the opposite is true (For furth. er
discussion see Appendix A.} Thus the cut contribution to the single-particle inclusive cross section is

d~g (M~) ~~»'&+ ~&»'&
N~ k~)dtdM' 16ns' 2i 4M' (2w)' sinwa, sinwa,

. A i s, sl, S', S M
+ 2+~ ++, + jy ly
1 C 2 ITS

1

(1.16)

8, = y(s + t'e) +~ ' +4~', s, = y(s —c6) + tlfg
' +k~'
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FIG. 4. Contours for Eq. (1,10).

Here s' can be expressed in terms of s„s', t'
=k'=k~', s, M', t=q', where g =p, -P„and the
angle y between g& and 0& by"
M» h."t2(t, t', s ')

,
)

(cos)(+» sin}(cosy)»s A. (s„ t', yn, 2

with

cosX

= —[s'- (»I». +k».)']
s~

(1.19)

Evidently a singularity of & in s ' at s,' will induce
a singularity in y at a value of order s,'/M'. If we
assume that the singularities of A are essentially
those required by unitarity in s, and s', then the
contours C', and C, in Eg. (1.16}will be as shown
in Fig. 6.

Thus there are two difficulties in converting Eq.

(t'- m, '+s,)(t'-s'+t)+2t'(s'-t' m+, '- m»)
1'"(t' m ' s }A' '(t t' s')

(1.18)

For this large s, this becomes simply

M2
= —[s'- t- t'-2(t t')'~' cosy]s si

FIG. 5. Mueller graph for two-particle cross section
in Regge limit.

(1.16) into a powerful formula like that for the
total cross section in E»ls. (1.11}and (1.12). First,
the Reggeon-two-particle amplitude A. entering
the cut calculation has different boundary condi-
tions from that related to the two-particle inclusive
cross section. Second, the singularities in sy pre-
vent a distortion of the contour so that the integral
cannot be expressed in terms of the discontinuity
in s' which is measurable in the two-particle in-
clusive reaction.

These difficulties are reduced but not eliminated
by considering the triple-Regge region, that is, s
large, M' large, s/M' large, and t = q' fixed. In
this region both the s and the s, dependence are,
for any given graph, controlled by specified Regge
poles or cuts. Thus one knows the form of the cuts
in sy and one also knows how to change the ie pre-
scriptions. As we shall see, however, this in-
formation is not sufficient to determine completely
the cut amplitudes,

For definiteness we shall assume henceforth
that particles a and c have spin zero and that par-
ticle & has spin one-half. Then the cross section
for a+b c+X is related to the s-channel helicity
amplitudes Eq q with Mueller boundary conditions
by

d(X 1 1, 2,~ 1—.disc„» E„(s,M', t) —tP, »» —,disc»»» F,(s, M', t) (1.20)

where P& is the polarization vector and n is the normal to the scattering plane.
In the triple-Regge region the leading graph is the ordinary triple-Regge graph, Fig. 1(b). Its contribu-

tion to the cross section is"

dtdM' 16ws' " ""
& "»' sinw»w, (t) sinwa, (t) M' (1.21)

where g~ +; „is the triple-Regge coupling. AsQ~Q» I
has already been noted, this graph gives no de-
pendence on P». The second term in Eg. (1.20) is
proportional to P, (0} and hence vanishes.

From experience with two-body amplitudes we
expect that the one-loop Regge-cut graphs are the

most important ones at any reasonable energy. In-
finite summations of graphs" may be important
for determining the true behavior as logs ~, but
we will not examine that problem here. We are
therefore led to consider the graphs shown in Fig.
7 together with similar ones obtained by inter-
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changing the initial and the final particles. (Of
course, the graph shown in Fig. 7(d) gives no de-
pendence on P». )

To analyze the graph in Fig. 7(a) we introduce
Sudakov variables, "

k = xPa + yPg + k L

CI

CI+

/ / / / / / / / / / / / / / / / / / 8 ~ / / / / / / / / / /' / / / / / / / / /

C' C« I

/

C
I

Ct

M
Pa + Pa +&L ~s s

(1.22)

Then by an analysis very similar to that followed
for the elastic amplitude, ' "we find that the dom-
inant region of integration is x=O(1/s) and
y=0(l/M'}. The x integral gives the Reggeon-
particle vertex X q, + &, (k, ), where & and &' are
the initial and final helicities. The y integral gives

SI Sl

FIG. 6, Contours for Eq. (1.16). The cuts in s; and
s; have been displaced from the real axis for clarity.

the four-Reggeon vertex A+~, „~(q«, k«). Thus
the amplitude symmetrized under the interchange
of e, and n, and with the Mueller boundary condi-
tions is

-uF'.(s, M', q') = p,p» Ie"" "'+(-1}

(1.23)

where the signature factors have been written as

(=e ''~" 'i'2cos-,'v(u —v), v=-,'(1 —T), (1.24)

The poles associated with the Reggeons have been incorporated into A. The e" ' "' and the e'" J '~' in
the squarebr":-ckets arise because the outgoing s and s, have a —ie prescription, ' " corresponding to com-
plex conjugation of the outgoing Reggeon's signature factor. Note that the factor in square brackets is equal
to

e'' "&'+ '& '& ~'2(i} cos~yr(o.', —e, —v, +v, +&' —A),

so that the amplitude has the Regge phase associated with its M' behavior. The M' discontinuity is

1—.discs2F&. q(s«M «q ) =(~) p&p, c og s(vQ
&n, —v&+v3+l&. —X)

(l.25)

1 2 1d k A+~, ,~&, fq~&;, ~&cos~»(o., —n, +n, —o, —v, + v, —v, +v)

x (M')2'"& '. (I 25)

this together with Eq. (1.20) gives the cross section.
The central problem considered in Secs. III-V of this paper is the structure of A and the relation of it to

intermediate states. Before turning to this we shall discuss the other graphs in Fig. 7.
For the graph in Fig. 7(b) the dominant region of integration is x=O(l/s) and y=O(1/s). If k; =x;P,

+ y; pI}, + k., is a momentum inside of the three-Reggeon amplitude, then the dominant region for it is
x; =O(M'/s) and y; =O(l/M'). Thus the only x and y dependence is in the o, +b- u4+b and the o, +a- n, +c
amplitudes, respectively, and these integrals give the usual N vertices. The analysis of Abramovskii,
Kanchelli, and Gribov" shows that the only discontinuity is that through the Reggeon n„as can be verified
by considering the ie prescriptions. Thus for this graph together with the one having the initial and final
particles interchanged,

—.disc„2 F», (s, M', q') =, d'k~ X (q+k~, k~) g . „(q~, q~+k~)
2g 16m' L f)f ~ iy i m~f)t, O(4 J.y J.

sxi'~~, ~~(k, ) [-21m((,~, g,*)], (M')+'" '. (1.27)

The triple-Regge vertex g++, (q&, q& +k&) in this formula reduces at k~=0 to the vertex g++, (q«')
defined as in Eq. (1.21). The forward Reggeon-particle vertex fq~q . &,(k&) is given by Eq. (1.11). The
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nonforward vertex Jq++(qj +kj, k~) can be studied by analyzing nonforward two-body reactions. " Thus by
making a reasonable parametrization of the k~ dependence of g . (q~, qj +k~) it should be possible to
estimate this graph. Indeed, one would expect that its size in relation to the triple-Regge graph would be
comparable to the size of cuts relative to poles in two-body reactions.

For the graph in Fig. 7(c) the important region of integration is x=O(I/s) and either y =0(1/s) or
y =O(1/M'). The calculation of the y =O(1/s} regionis exactly parallel to the calculation of enhanced graphs
in the elastic amplitude and gives a contribution of the same form as Eg. (1.27). In fact, the graph in Fig.
7(b) must go smoothly into that in Fig. 7(c) for large (p, +k)'. If the N~z in Eq. (1.2'I) is calculated by in-
tegrating the discontinuity of the Reggeon-particle amplitude over values of (P, +k) less than some large
so, then the effect of including the graph in Fig. 7(a) is simply to replace N++ in Eq. (1.27) by

P(q )g ~; (q +k k)(so) '
(q~+k, k, )—k, k ) @~+1-+ —Q5

This is just the result found in Ref. 10.
The graph in Fig. 7(c) also has a contribution from y =O(1/M') with the same form as in Eq. (1.26). In

fact, the graph in Fig. 7(a) must go smoothly into that in Fig. 7(c) for y small compared to O(1/M'). This
contribution is not simply related to the measured triple-Regge coupling, and a discussion of it is post-
poned to Sec. IV.

Finally, we consider the graph in Fig. 7(d}, which contributes for x=O(l/s) and either y=O(1/M') or
y=0(1). The calculation of this graph is similar to that of enhanced graphs in the elastic amplitude, "so
we only quote the result, symmetrized under the interchange of a, and e, :

1 2 s ~&+

2
disc.„2Fg , g(~, M', q') = p, p, Re((, t,*) M, g, ~, ~(q„')1, (M') 8 —(M') 2' "4 'x, d'k~g~q, , ~(k~') lq~q ,. ~),(k~)

8m &6+1- Q Q4
(1.29)

Po

Po

Po
Po

Pc

Pc

Pg

Po

FIG. 7. Regge-cut graphs for the triple-Regge region.
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Everything here is known. It is apparent from Eq.
(2.13) that this amplitude vanishes for A'22K.

The formulas given above summarize the struc-
ture of the contributions of Regge cuts to inclusive
reactions in the triple-Regge region. The outline
of the remainder of this paper is as follows.

In Sec. II we give a general discussion of the
effects of spin in inclusive reactions.

In Sec. III we turn to the study of the four-Reg-
geon vertex A. We consider the simplest possible
model for A, namely the contribution of the one-
particle intermediate state in s'=(q+b)2. This is
a natural generalization of the absorption model"
to cuts in the Reggeon-particle amplitude, and it is
closely related to a model considered recently by
DeTar. ' We find that the one-particle contribu-
tion to A can be expressed in terms of the double-
Regge limit of the two-to-three amplitude. How-

ever, this contribution is not proportional to the
two-to-three cross section. More significantly, it
has singularities in the physical region.

In Sec. IV we show that these singularities are
the consequence of terms in the one-particle graph
with anomalous s and M' dependence. Such terms
arise because the one-particle graph does not be-
have like the graphs shown in Fig. 7(c) and 7(d)
in the appropriate limits. We discuss how the
anomalous terms might be removed.

In Sec. V we calculate the contribution of the
closed box graph to the four-Reggeon amplitude.
We find that this graph has a somewhat different
cut structure in s, than the one-particle graph,
contrary to the conjecture of De Tar."

In Sec. VI we give a brief summary of our re-
sults.

Parity invariance implies"

Fv, ~=(-1) F-&, , -~
X'- X=(-1)

As a consequence

do 1 1
. disc& F++(s, M', t)

(2 3)

1—sP~ ~ n —.disc~2 I' (s M
&
t)2t

(2.4)

1 1
discg F)t.t x = —.disc@2 +y2i M (2.6)

Equations (2.6) and (2.3) then imply that
(1/2i) disc„2 F„is real and (1/2i) disc„2 F, is
imaginary and guarantee the reality of the cross
section as given by Eq. (2.4).

If we assume Regge-pole dominance of the in-
clusive process in the end-of-the-spectrum region,
Fig. 8, I'q, ~ has the form

Fg g(s, M', t)

If p, does not 1.ie in the .&-z plane, as implicity
assumed here, but has azimuthal angle y, then the
conventions of Jacob and Wick" imply that

F2 g(s, M t q2) =e ~t Frig(s M t 0)

(2.5,'

From the fundamental relation between the M'
discontinuity and the sum on intermediate states
it is clear that

II. SPIN DEPENDENCE OF INCLUSIVE CROSS SECTIONS

In this section we review the properties of in-
clusive amplitudes associated with spin, which
are needed in this paper. We assume that particle
& has spin ~ and that particles a and c have spin
zero. This assumption is not important for our
considerations and we make it for simplicity. The
inclusive amplitude will be denoted by Fz. z(s, M', t)

where ~ denotes the helicity of b in the a& center-
of-mass system.

If

(2.7)

24 is the Reggeon-particle amplitude for o,(q)
+b~- u, (q) +b z . Time-reversal invariance can
be applied to Mueller's formula' to reduce the ex-
pression for do/dtdM' in this region. We use the
Jacob and Wick" convention

(2.8)

(Notice the change from outgoing to ingoing wave
boundary conditions. ) Mueller's formula then gives

p, =2(1+sr P, ) (2.1) P4

is the density matrix of the polarized target b in
the lab frame, then the inclusive cross section is
given by

der 1, (P,)=,disc, v2 p p, „~~ F~~ i(s, M' t) .
X, X'

(2.2) FIG. 8. Graph corresponding to Eq. (2.7) .
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—.disc~2 EQ ), — d x e pN py ~' + j, ~ j, o p. p, ~ +

d xe '&" p p~A. '- j, x)j, 0) p, p~A. — (2.9)

We assume, as usual, that in the Regge-pole-dominated amplitude, the (+) and (-) boundary conditions are
interchanged by simply complex conjugating the signature factors associated with the s-dependent Regge
poles. Then

1 1
2, disc~2A g' ~ g — . disc&2A (2.10)

and

2 (p(&)
- '; cos2s(ai vi) cosa w(o& v~) s

2FS

cos&g ~y py ~+ v, —.disc&2A +.„+M, t1

+ n P~ sin~ v( a, —v, —a + v, ) —.discN2 A ~ .~, (M'
&

t )3 2g & IXg+ (2.11)

This formula takes into account all symmetrization necessary in u, and u, .
In evaluating the general cut graph of the form shown in Fig. 2 it will be necessary to integrate over the

transverse momentum k which we will do by integrating

d Qg=edt

where q& is the angle between ki andy, i. From (2.5) the y dependence of the Nfunction for the right-hand blob is
trivial:

Similarly, from (2.3), (2.7), and (2.8)

(2.12)

(2.13)

(2.14)

Notice that when & and c carry spin, if their helicity is not observed there is no interference between tra-
jectories of different naturality. However, the trajectories n, and a4 may in general have different nat-
urality. If they do, Eq. (2.13) must have a minus sign on the right-hand side. In the following we assume
a, and a, to have positive naturality.

The Regge-cut contribution of Fig. '?(a) [Eq. (1.23)j to A+~ ~ & is then

1 g

4 cos 2 &((a, —v, ) cos 2 i((a, —v, ) 16m

0 2r

Qo 0 2 7T

-i &&(a2+ g-&2-u&i / i . , ( a&+ g-v: -u&i '-
(v?&) cr2+ g —a& —"& —i

Notice that the explicit phase of this is just that associated with the Regge behavior in ~U". From thi. s and

Eq. (2.10) we conclude that

2?r

is real.
Thus
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1 1—.disc„~A z, , q(M', t) =
2~ . ' ' ' 4 cos-,

'
v( o, —v, )cos2v(n, —u, )

0

Xty~& .+ z(t ) cos27f(Q) V~ R& + F2 + Q V~ Q4 + V~) (/if )W+ 4 1 3

(2.17)

III. ONE - PARTICLE GRAPHS FOR

FOUR - REGGEON VERTEX

In the Ird:roduction we found that the essential
problem is calculating Regge cuts for inclusive re-
actions in the triple-Regge region is to determine
the four-Reggeon vertex A. In this section we con-
sider the simplest contribution to A, namely that
from the one-particle graphs shown in Fig. 9.
These graphs give an unsymmetrized Reggeon-
particle amplitude, from which the cross section
is computed by using Eq. (2.11). While A can be
expressed in terms of the amplitudes for the ap-
propriate double-Regge graphs, e.g. , Fig. 10, it
cannot be determined from the two-to-three cross
section. This illustrates the general discussion
in the Introduction. The double-Regge amplitude
consists of two terms with different analytic struc-
tures, "and the cross section determines only a
certain combination of them. The residue of the
pole in s'=(q+k)' in the cut calculation is given by
a different combination because of the Mueller ic
prescriptioa, and the discontinuity of the cut in

&, =(p. +k)' is given by just one of the terms.
The meaning of the graphs shown in Fig. 9 per-

haps requires some discussion. It is well known
that the graph shown in Fig. 11 does not contribute

to the cut in the elastic amplitude. ' Qn the other
hand, the sum rule Eq. (1.11) for the Reggeon-
particle vertex N certainly includes the one-par-
ticle intermediate state. The resolution' of this
apparent contradiction is that there are multipar-
ticle intermediate states within the Reggeon cou-
plings. The contribution of these cancels that of
the one-particLe state for this particular graph
but not in general. In the special case that the s'
channel (o., +a - a, +a) and the u' channel (a, +a- o., +a) are identical, the correct one-particle
contribution to N can be obtained by keeping just
the s''- and u'-channel poles.

The interpretation of the graphs in Fig. 9 is sim-
ilar although slightly more complicated. We shall
see that for each graph there is one term for which
the integration over the y Sudakov parameter, cf.
Eq. (1.16), picks up only singularities in s' =(q+k)'.
This integral thus has the same form as that for
the elastic amplitude, and the one-particle approx-
imation is defined in a similar way. The y inte-
gration for the remaining terms picks up left-
hand and right-hand singularities in s, =(P, +k)'
as well as singularities in s'.

The one-particle graphs for the four-Reggeon
vertex are evidently closely related to the double-
Regge graph, Fig. 10. The amplitude for this
graph consists of two terms and is conveniently
written as" "

Pc Pd

Pg Pb

FIG. 9, One-particle graphs for four-Reggeon vertex. FIG, 10. Double-Regge graph.
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a(t )

F„(s,s„s„ t„ t, ) = )3,(t,) p, (t, ) — (s,}"1'1' e "("1"1' '1' '
S2

x [V (t t )l) + e b ~t tt) —btt(t 2)- b»)/2 t)~t(tt) —
2tt( t2) V (t t 7}] (3.1)

where in terms of the momenta defined in Fig. 10

s =(p, +p, )', s, = {p,+p~)', s, =(p~+p, )', t, =q, ', t, =qt', ))™„'—(q»+q»)' -s,s, /s,
and where v; =-,'(1 —r;), v» =-,'(1 —r, r, ). Near )) =0, V» and V» are analytic in )), so the two terms
(3.1) have cuts in s and s, and in s and s» respectively. " At right-signature points, V» has poles
(t, (t, ) —n, (t, ); these last cancel in the full amplitude. Equation (3.1) remains valid even for s'=(q,
bt m, ', with tt being replaced by rt' =s' —(q»+q, ,)'." Of course, then V» and V» depend on both s'

An equivalent form for F» which displays more clearly the analytic structure is

[{S te) t+ Tt( S te) t ] [(Sb te) t+ Ttrb( Sb te)2 t] -ib(b -~ +v ) t
4 cosb t(( t)(t —vt) cos2 tt((12 —o(t —v»)

[(s —te) 2 + Tq(- s —tt) 1][(st —1 )et b + Tt Tq(- st —te) t 1]
+P,P2 4 cos—,tt(a, —v, ) cosb)((u, —u, —v„)

where it should be noted that

e ' ' 't '~'"» ' = 1 ——,(1 —T ) (1+ r, ) = + 1 .

(3.2)

in Eq.
in

q, )
and q'.

(3.3)

(3.4)

This rather unsymmetrical factor is introduced to simplify subsequent equations.
Since the Reggeon-particle amplitude with Mueller boundary conditions has normal analytic structure, it

should have the standard Regge phase for its M' dependence. We can therefore calculate the amplitude and
obtain the M discontinuity from Eq. (2.1'1). For the graph shown in Fig. 9(a) with the Mu lier boundary
conditions' "

d4k 1
Fb ~(S, M', t) = —i . . . F„(s,s„M', t, t') F„(s,s„M', t, t') T ), . ~(u„) . (3.5)

Here F» and F„are the double-Regge amplitudes for producing particle a„T„,~,„,~ is the amplitude for
the right-hand side of the graph, and

s =(P. +Pb}', M'=(P. +Pb P.)', t=(P. -P,)'=q', -
s, =(p, +k)', s'=(q+k)', u„=(p —k)', t'=k' .

A bar over any variable is used to indicate that it has a reversed ie prescription, viz. ,

(3 6)

S„
S =ST +E

Is„l
s =s„—i e (s„=Res) .s„

Is„ I

(3.7)

Since the intermediate particle is off shell, the q variable of the double-Regge amplitudes is replaced by

q'=s' —(q, +k, )' .

For the graph shown in Fig. g(b) the amplitude is

d4k
F), ),{s,M', t) = —i . . . , F„(s,u„M', t, t') F»(s, tt„M', t, t') T q, „),{s„),

(3.6)

(3.9)

where F,4 and F» are double-Regge amplitudes for producing particle d„and

u, =(p, —k)'--s„u' =(q —k)' = —t)'+(qi —k,), s„=(p, +k)' . (3.10)

Note that it is V;t(- ))') which enters in this formula.
To analyze the integrals in Eq. (3.5) and Eq. (3.9) we introduced the scaled Sudakov" parametrization

1, 1k= —xPt + 2 f Pt +kg
S

By the usual arguments'

t'=k' =k '

d4k = ch'dy'd2k1

2 M2 (3.11)

(3.12)

To leading order the only x' dependence is in T ), +~, and the x' integral of 132p4T z .+q gives N
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For s &0 and M' & 0 we have

ss'=y'+(q~+k )', u'= —y'+(q —kx)', s, =, y', u, =- —y', q'=y' (3.13)

pt'«hen find using Eq. (3.3) that the four double-Regge amplitudes appearing in Eq (3 5) and Fq (3 9}
become

F p p (s) txx(i)f2}tx2 txxs \7t( txx tlx) ttx V (qt ) + x t 4 xx t
V (

I

)12 1 2

p p (s) txt(iiffx)tx4 Xxtettt( tx3 tt&i s itt(-tx4 —v4) 4 V (qt) + 1 + ~1 4x l t
V ( t)34 3 4

p p (s)txx(M )tx4 Ixxe- ( tx4-U4) Q

(q' —ie) 'x 4+ T, T,(-q' —i e) 5
T V —q'14 2 cos-, v(a, —n, —v„) 1 4 41

p p (s)tx)(ilf )tx2-txs& (txx- 4) &-i (txx-tt2)h

x Vxx(- q') +
(q' —ie} 4 2+ 7,T,(-q' —e)4

2 cos-,'v(a, —n, —v»)
T, V„(-q ) . (3.14)

Making use of the formulas in Sec. II, we find after some straightforward algebra that the Reggeon-par-
ticle amplitude for these graphs has the form given in Eq. (2.15) and (2.16), with

2 1 2 12

(q
' —i e ) 'x '4 + T, T,(- q

' —i e) 3

('q —ie) & 2 % 4+ TxTxT4T4( q —te)-
2 cos-,s(a, —a, + a, —n, —v„—v„) J

+ (-1)' ', , V„(-q')V„( q')--
2

—"

T, T, V„(—q
'
) V„(-q

'
)

(q' —e) 4 "2+ T,T,(-q' —ie)x
2cos2r n, —n2 —v23

(q'-ie) "4 "+T,T,(-q' —ie)+ "
COS, m +, +4 ~14

(q' —ie) 4 "x'"4 '4+T, T, T, T,(-q' —ie)%
2 cosxv(ax —nx+a3 —n4 —vxx —v)4)

(3.15)

Note that from Eq. (3.14) the terms proportional
to V21V~ and to V»V„contain a product of branch
points, which have been combined here.

The crucial step in this calculation is Eq. (3.14).
The explicit phases in these formulas combine

with the external signature factors to produce the
standard Regge phase in Eq. (2.15). The y' con-
tour for the remaining integral goes below the
left-hand singularities and above the right-hand
ones, and the resulting A is therefore real. It
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is also worth noting that the product of F» and

F„ in Eq. (3.14}, and hence the residue of the
s' pole in the cut calculation, is not simply re-
lated to the cross section.

To do the y' integration in Eq. (3.15), we make

the change of variables y-@+m for the u' terms.
Using Eq. (3.13) we then have

2 I I 1 11 1 (qJ i )

1

Pb

a, Pb

FIG. 11. Feynman graph which does not contribute
to Regge cut.

(3.16}
)2

m2 —u —tC g2+y —Se

In the one-particle approximation we are to ignore
the s' dependence of the V... since this comes
from the effects of higher intermediate states in
s'. We therefore evaluate the V, , at the poles,
obtaining V;, (3),) for the s' pole terms and V„(3i2)
for the u' pole terms. However, we must not
evaluate the factors of (3)' —ie) 1 2, etc. , at the

poles, since these factors come from cuts in g.
If we were to do so, we would be changing the
i& prescription of the ~, cuts, and we would not

obtain a real cross section.
With these approximations the integral. of the

s' pole term involving V»V34 is not convergent;
nor is the integral of the u' pole term involving

V32 V/4 These are the terms having pol es in both

a, and n„and their structure is the same as
that found in calculating cuts in the elastic am-
plitude. In the special case that the s' and u' chan-
nels are identical, the integral over the sum of
these two terms is convergent and is given by

—'[ V, (rl, )V ('01)+ V (rl )V, ('rl )J. (3.17)

We shall use this as a formal definition of the
integral of these terms. The integrals of the re-
maining terms are all convergent for appropriate
values of the n, and can be easily evaluated. The
result is

~ Qff

&p co

1

(~ ~ v )
( )1} 12( )1} 43(gi)

2 3 4 34

cos n Q —it +ln —Q —v

+ V32(02) Vi, (rl2) + . . . (3)2)+ + V23(3)2) V„(ri2)
COS 2 ~(+3 +, ~23)

1
+ .. . )

(3)2)" ~V,2(3i2)V„(3)2

(3.18)

This is the final result for the one-particle con-
tribution to the four-Reggeon vertex. We could

evaluate this expression if we knew the amplitudes
for a+ b -c+d, , + e, but we cannot do so from
knowledge of just the corresponding cross sections.
As can be seen from Eq. (3.1), the terms in the
cross sections which behave like
(s) "1' 3(s,) 2' "& ~1 3 involve the sa.me combina-
tions of the V... but the cosine factors weighting
them are different except for special values of

the a, . See Appendix B. This is, of course, what

we expec ted.
For the Reggeon-particle vertex the one-par-

ticle approximation causes no difficulty and in-
deed is quite successful phenomenologically. The
one-particle approximation for the four-Reggeon
vertex has singularities for certain values of the

u, in the physical region coming from the explicit
cosine factors in Eq. (3.18). Those from the

[cos2n(12, —122+123 —i3., —v„—v„) ' and from the

[cos2n(Q1 112 + (x3 (xq v23 v14)
' are removed

when the M' discontinuity is taken, but the others
remain. (There are, in general, no factors in the

V, , which cancelthem. ) We shall see in the next
section that these singularities are reflections
of additional terms with anomalous s and AP de-
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pendence.
In the discussion following Eq. (3.1) we noted

that the V, , have poles in n, -n, which cancel in
the double-Regge amplitude. They also cancel
in Eq. (3.18).

IV. SINGULARITIES OF ONE - PARTICLE GRAPHS

At the end of the last section we noted that the
one-particle contribution to the four-Reggeon ver-
tex A has singularities as a function of t and t'
in the physical region. These singularities, which
are not present in the integrand in Eq. (3.15),
arise from divergence of the y' integral at zero
or infinity. Of course, they cannot be present
in the full amplitude. In this section we discuss
in some detail how they are removed. In so doing
we find limits on the possible validity of a one-
particle approximation for A, and we demonstrate
the necessity of a close interrelationship among
the graphs shown in Fig. 7. For definiteness we
concentrate on the term in Eq. (3.18) proportional
to V»(q) V„(q), this being singular at

az a2 =2 +1+ ~ca =0 + 1 a2 (4.1)

We should check our previous assertion that
V„(q) does not have zeros at these points. For
simplicity we assume that all of the trajectories
have positive signature. We first consider the
case in which there are no fixed poles. Then the
form of V„ is"

V»(r)) =4c os2{{cnos2T{(n,-n, )

V„(q) -(q) '" ', a, —a, = 2n+ 1& 0. (4.3)

Had we not ignored the q' dependence of V» in

Eq. (3.15), this behavior would make the y' in-
tegral convergent at zero, thus eliminating the
singularities at negative values of a, —Q, .

We now consider the case in which there is a
multiplicative fixed pole at j, —m= -1, j, being
the angular momentum for u, and m being the
helicity for the two-Reggeon-particle vertex. '4

Such fixed poles are present in nonplanar graphs. "
Then the form of V» is

xP r(-a, +f)r(a —a -2)U, —, (4.2)
~

Yl'

4=0

where the v,. are arbitrary functions of the mo-
mentum transfers. Evidently V» does not in gen-
eral vanish at any of the values of e, -n, in Eq.
(4.1). However, as q-0,

so that Eq (.4.3) does not hold in this case. Thus
A would be singular even if we kept the g' depen-
dence of V» in doing the p' integral.

The full amplitude for the one-particle graphs
must, of course, be analytic even though A is
singular. Thus, the singularities in A must be
canceled by singularities in other terms having
the same s and M' dependence at the singular
points. This is a familiar phenomenon in the
Reggeon calculus. For example, we recall that
the amplitude for the graph shown in Fig. 12 is' "

1
E(s, t) = d'k P„g „.„I{/

e-\ F{CK)+ Ct2 I)/2
( )IX~+ ~-y

X
Qo + 1 —Dl CY2

e- {& &0/2 (s) &p

q, +1 —e, —n,
(4.5)

M2
c, & [3 '[&c,/M, (4.6)

the precise values of the constants c, and c, not
being important. For larger ~y'~, t' =k' is large

Pa
Pb

The first term in square brackets is the Regge-
cut term; the second, a correction to the Regge-
pole term. Each term is singular at 0., +n, —1=+„
and these singularities cancel in the full amplitude.
A similar cancellation of singularities has been
observed in calculations of triple-Regge graphs, "
but this case is less interesting because only one
of the terms has a discontinuity in M'.

The singularities of A indicat:e the transitions
between the dominance of the usual cut term and
of other terms in the asymptotic behavior of the
one-particle graphs. The extra terms come from
regions of integration in which we expect the one-
particle graph to be a bad approximation to the
full four-Reggeon amplitude. It is nevertheless
instructive to study these terms since they illus-
trate the nature of the problem. To do so we re-
call that in deriving Eq. (3.15) for the one-par-
ticle contribution to A, we assumed that the ener-
gies across the Reggeons are large and that the
moment;um transfers are small. This is true only
for

V2~ (Yi) = 4 cos~2 {{nmcos2 17(a~ —a~)

F(- n, +l)F(n, —n, -i) q'

Q~- Q2+1+& l t

Pb

FIG. 12. Graph corresponding to Eq. (4.5) .
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and the integrand should be small. For smaller
~y'~, s, is small and the thresholds in it must be
considered. Both effects are most easily taken
into account simply be restricting the y' integral

in Eq. (3.15}to the domain given in Eq. (4.8). (One
can check that other possible modifications of the
integral give similar results. ) Then in place of
the V»V~ term in Eq. (3.15) we must consider

~9 —j(X'- k) &py I xy
dy' 1 (y' -~e) ~ 2+~p, (-y'- c) i

2w ', ~~, &~, [&, „2~i q y -—i& 2cos-v(oi —o2 —~„) (4.7)

We find that

(ql" ~ 1 — . '"'" ~ ' '"" ~')
2 COS2 B(CK~ —'G~ —V)2) 1T Q~ —+ + 1 + V~2 S

1 2 12 1 2 1 12

'F + Q1 + 1 Vlo C2AI
(4.8)

Evidently the extra terms in Eq. (4.8) are negli-
gible for

~ n, —o, + v» ~

& 1 but cancel the singu-
larities of the first term at a, —~ = - v» +1. The
omitted terms indicated by the three dots cancel
the singularities of the first term at larger values
of

~ a, —n, ~. This cancellation is guaranteed by
the fact that A is defined in Eq. (4.'7) as an integral
of an analytic function over a finite domain. The
singular parts of the extra terms are independent
of the constants &y and c„but the finite parts de-
pend on these constants.

The first of the extra terms in Eq. (4.8) comes
from small values of ~y'~. Recalling Eq. (1.23),
we see that this term gives an s and M' depen-
dence of

(s/Af2)%' 3 ' n(Af )W+"s (4.9)

(~ hu:'-) ' (Af') (4.10)

Since this term comes from a region of integra-
tion in which + ' -M', its M' behavior is controlled
bythe large-s' behavior of the one-particle graph.

Clearly all of these extra terms are rather arti-
ficial. Consequently, a one-particle approximation
for A, if it is valid at all, cannot be expected to
be valid in the neighborhood of the singularities
cancelled by these extra terms.

We wish to avoid artificial singularities in A

Within integer powers this dependence corresponds
to a Reggeon e, and a Reggeon (a, )-particle cut
in the ac channels and to a Reggeon (a,)-Reggeon
(o~) cut in the bb channel. The origin of the Reg-
geon-particle cut can be seen by looking at Fig.
9(a). For small ~y'( the energy across the Reg-
geon n, is small and the dominant behavior comes
from the Reggeon (n, )-particle (d,} cut.

The second extra term in Eq. (4.8) comes from
large j I'~ and gives an s and M' dependence of

and with them artificial extra terms like those in

Eq. (4.8}. Now, in general, A is related to the
four-Reggeon amplitude A ++, ,& by

2 d
(f f')=

CK3CXgg Q) fy. ~
0

"dy'
7Tl 3

(4.11)
s =y'+(&, +P.)', g =y',

where the variables are defined as in Eq. (3.15)
and have similar ie prescriptions. We must there-
fore discuss the behavior of A++. + for small
and large values of g'.

For small g' we have seen that the V2y&34 term
of the one-particle graph has an (q') & "2 branch
point, giving a singularity in A which must be can-
celed by a Reggeon-particle cut term. We do not
expect Reggeon-particle cuts to be present on the
physical sheet of the j plane. " Rather, we expect
that the particle should be replaced by a Regge
pole, as in the graph shown in Fig. V(c). This
graph behaves like (q') "& ~ + as q'-0, so that
the y' integral in Eq. (4.11) produces a singularity
at a, + a, —1 = n, . This singularity must cancel
that in N from the same graph, Eq. (1.28); as
we have seen in the Introduction the contribution
of the latter can be estimated from measurable
quantities. That is, the graph shown in Fig. 7(a)
must approach smoothly that shown in Fig. 7(c)
for q'-M'/s.

For large g', and hence large s', we expect that
the four-Reggeon amplitude has Regge behavior.
Since we have defined the four-Reggeon a.mplitude
by extracting a factor of (s/M') "~' 3 (M') 2' "4, the
appropriate behavior is (q') 6 "' "4. Then the y'
integral gives a singularity at n, + n, —1 = a„as
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in Eq. (1.29). That is, the graph shown in Fig. 7(a)
must approach smoothly that shown in Fig. 7(d)
for large g'.

A similar analysis can be carried through for the
V»V43 term in Eq. (3.18). The extra terms found
in this case have no discontinuity in M', reflecting
the fact that for this term the singularities of A

are canceled by taking the M' discontinuity. The
extra term which cancels the singularity produced

by integrating the (q') "& "2'+ 4 branch point at
q' =0 behaves like (s)2' ~ '. It is thus the analog
of the extra term found in calculations of triple-
Regge graphs. "

It is amusing to note that the four-Reggeon am-
plitude for the leading trajectory in the dual mod-
el" has just the behavior discussed above both for
g'-0 and for q'-~. For s'&0 and g'&0 the am-
plitude is

&~.,;.~( ', v')=(v')"'~ f & ( ) ~'"'~'~'" '(& —*) + '
0

X dydydydy y, "1 '(y) 2'y) 3'y)
0

y y y y, yy+yy, yy+yy 1-x}
1 2 3 4 xqt xql (4.12)

where the first factor of (q') &' + reflects the fact
that the four-Reggeon is defined by extracting a
factor of (s/M') "&' "3(M') 2' 4. As q'-0 the am-
plitude is given by a sum of four terms with the
behavior
(q')' (q') ' ~ ~ (q/) Q CX4 IX5 (ql)Rg (5@+ (5j IXg

(4.13)
As q' -—~, and hence a, ——~,

-(-q')+ + (4.14)

Since we cannot express A in terms of observ-
able quantities, we must resort to models for the
four-Reggeon amplitude. Any model must pro-
vide a smooth interpolation between the poles and
other singularities at finite q' and the required
behavior at small and large q'. While the dual
model provides one example of such a model, it is
far from unique. However, by considering var-
ious models with the right properties one may be
able to estimate roughly the size of A.

We know phenomenologically that the one-par-
ticle approximation for the Reggeon-particle ver-
tex N is reasonably good. ' ' "'" In principle this
has problems similar to those of the one-particle
approximation for A. For N, however, the prob-
lem occurs only in the neighborhood of j = —1, and

so is of little interest, while for A it can occur in

interesting regions. Thus if n, is the f trajectory
and n, is the Pomeron, then the first extra term
in Eq. (4.8) is singular at I = —0.5 GeV' and I' =0.
At this point the one-particle approximation is
obviously wrong.

ternal Reggeons are reflected in branch points at
g' =0 of the four-Reggeon amplitude

A+, „+(s', q't, I'). For the s ' pole graph these
branch points have the forms (q')', (q') "&

(q')3 "4, and (q') ~ 2''3 "~. We have seen in

Sec. IV that if contributions from Reggeon-particle
cuts are to be avoided, then the (q') "& + and the
(q')~ ~ branch points must be modified. In the
dual model, they are replaced by (q') "~ "- "~

and (q')+ "4 5 branch points, solving the Reggeon-
particle cut problem, but the structure is not other
wise changed. One might thus be tempted to con-
jecture that a structure like this is in some sense
general. "

In this section we analyze the crossed box graph,
Fig. 13, for the four-Reggeon amplitude and find
that its structure is somewhat different. It does
have the (q')' and the (q') "& +' 3 4 branch points
found previously, but it also has an (q') "&++"
branch point. The reason for this extra term can
be understood heuristically by considering the
related two-particle double-Regge graph shown in

Fig. 14. Evidently this graph behaves like (s,'} &,

V. CROSSED BOX GRAPH FOR

FOUR - REGGEON AMPLITUDE

In calculating the one-particle graphs in Sec. III,
we found that the cuts in +y associated with the ex- FIG, 13. Crossed box graph for four-Regge~n amp1itude.
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(s,') 3 for s, s„s„s,', s,' large and the other vari-
ables fixed. But in the same limit s,' -s„s,' -s„
so the behavior of the graph is effectively

(s,) '(s3)+ =(s)"'(s3)+ "'(rl') ', (5.1)

S] Sp

since g' -s,s3/s. This (q') ~ leads to the (I)') "~' 3"
branch point.

We shall analyze the crossed box graph as part
of the graph shown in Fig. 13 rather than as part
of a cut graph. For simplicity we shall use Feyn-
man boundary conditions and assume that all tra-
jectories have positive signature. The variables
are

FIG. 14. Two-particle double-Regge graph.

s =(P. +ho}', s, =(P. +k)', s, =(f3+q)',

s'=(q+k)', i=q', i'=k',

g' =s ' —(q~ +k~}3 -s,s, /s .

The momenta can be parametrized as

q=~ p, + —p, +q„q =q,

(5 2) Then with the usual approximations' the amplitude
for the graph shown in Fig. 13 is given by

CXg+ CX 3

s
k = —P, + ~ P~+k~, k' =k~',

k, =~x, p, + —y, p, +k, .S 'g

2

(5.2)
(5.4)

where A. . . ,, which is identified as the Regge-
on-particle amplitude with the same energy fac-
tors extracted as for the cut calculation, is

A,
1 I )CX y+ CX3+ 1

3 4' 4 3 2(2W)

x d k~~ gg~dyj y~ jq) ] y y~ jg)
w 00

&&[(x, —is)" +3(- , —xi'} 3][(1+y,—ie) 3+(-1—y, —ie)"3]

x[(1 —x, —ie) 4+(-1 —x, —ie) 4]

1 1

x,y,3}'+k»3 —m +is3x,(1+y,)q'+(k„+k~)' —m'+is

1 1

(x, —1)(y, + 1)17'+(k»+k~ q, )3 —m'+-i& (x, —1)y„q'+ (k„-q, )' —333'+ i&
(5.5)

Tf1& problem is to analyze the behavior of this function as q'-0.
We can see immediately from Eq. (5.5) that A . „has an (3)'} 4' 3" term. Setting q'=0 inside of the

integral gives

I )CX y+CX3+ 11
a3a4.a n 423(2x)4 (q

1 1 1 1
' k, ' —m' (k, +k )' —m' (k,4+k~ —q~)' —m' (k34. —q3)

where (5.6)

la cx
= ~yi yi —&~) i+ —ya —& ) ~ 1+y, —ie) +(-1 —y, —jC)

I (- a —n —1)=-4me-'"' ~' 3'~'sin-,'m(n, ++3) 1 3
F(- ~,)I"(-n3)

' (5.7)
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Evidently the integral for I, , is convergent and nonzero for

+~+@3+ 1) A~~ 1) Q~+ —1 . (5.8)

Hence in this domain A. . . , behaves like (q') ""&"'as ))'-0. Notice that I, , has zeros which cancel
the poles (not shown explicitly) in n, and a, . Similarly, I,„cancels the poles in n, and a„so the
()}') &' 3" term has no poles.

To analyze the structure of A. . . , more completely, we write the propagators in Eq. (5.5) in expo-
nentiated form:

1
u, a, ;a,n, =

2(2 )~ (F444(n') " "'

QA, y6+6+AA. 4 ct gy J Ch, dy, —y, x, 1 + y, ~
1 —x,

x exp(i(X, [x, yq'+k, ~' —m']+ A [x,(1+y„)q'+ (k,~+k~)' —m']

+ X,[(x, —1)y,q'+ (k,~ —q, )' —m']

+&,[(x, —1)(y,+1)q'+ (k, +k„—q~)'-m'])) . (5 9)

The integrals over A., ~ ~ ~ A., and k, do not change the character of the branch points at g =0, since this de-
pends only on the a;. It is therefore sufficient to consider the function

f())') = ())') &' &+' dxdy( y] ' (x( 2 ~1 —yg&]1 —x)"&exp(ir}'[- X,xy+A x(l —y)+X, (I —x)y —A, (1 —x)(1 —y)]j.

(5.10)

The structure of this function at g' =0 is the same as that of A
The y integration in Eq. (5.10) can be done in terms of confluent hypergeometric functions. " The result

after combining terms is

where

I'(n, +1)1(n,+1) '

1
sinwn, +sinxn, f (,)

2
I'(a, +n, +2) g sinn(n, +n, )

' " I'(- n, -n, )
(5.11)

QO

f,(q') = (q')~~+~~ '+dx(x)~2 } I —x("4 e'"'"M(n, +1, n, +a,+2; —iq'u),

Xt

f, ())') = dx]x/2(1 —xP4e'~'" [u]» 'M(- n„- n, —n„—iq'u), (5.12)

u = (~, + q)x —(q+ ~,)(1-x), v = qx —Z, (1-x) .

We first consider f,(q'). We take the limit r)'
-0 inside of the integral, this being legitimate
provided that the resulting integral converges.
Then

f, tn'\ —(q'I""""J d Ix~1'*~ll —*I"'. (5.13)

This integral converges at x =~ provided that
a,+ u4 & —1. Any divergence at x = 0 or at x = 1

results from the original integral for f,(q'), not
from taking the limit. Hence

f, (n') ())') " "', a2+n"-l. (5.14)

This shows again that there is an (q') &' 3"
branch point.

For a,+o.4& —1, we let x=x'q ' and keep only
the leading term in the integrand, this being justi-
fied by the convergence of the resulting integral.
Then

u —(X,+g+q+g)x'q-'= ~'q-',
v -

(A + A.,)x 'q ' -=v,x 'q ',
and
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f (ql) (ql)ax-ax+ a3-a4 dxl
~

Xl ~ax+a4eivo '

x M(u, + 1, u, + u, + 2; —i~') .

(5.16)

The integral converges at x' = 0 for n, + u4 & —1,
and therefore

f (q')-(r)')"4 x' 3 4 u, +u4& —1. (5.17)

From Eq. (5.14) and Eq. (5.17).we see that f, (i}')
has both an (q') 4' x term and an (q')a'~'+ '
term.

The analysis of f, (q'} is very similar, and the
result is

f (i) ') -
(q ')', u, —u, + u, —u, & 0

('g ) 4 x 4 4, ux —ux+ux —u4&0.

(5.18)

Hence f,(q') has both an (q')' term and an
(7}') ' """x 4 term.

VI. CONCLUSION

We have seen that because of the overlapping
cuts in s, and s' and because of the complicated
Mueller boundary conditions we cannot, in gen-
eral, express the Regge-cut amplitudes for in-
clusive reactions in terms of other measurable
amplitudes.

In the triple-Regge kinematic region we expect
the Regge-cut graphs shown in Fig. V to be the
most important ones. We can, of course, deter-
mine the s and M' dependence of the amplitude for
each of these graphs. Furthermore, we have
noted the following.

(1) We can make a reasonable estimate of the

graph shown in Fig. 7(b). The Reggeon-particle
vertices have been studied in the analysis of cut
contributions to two-body reactions, "and the trip-
le-Regge vertex at k~=0 can be measured in in-
clusive reactions. ' Thus it is only necessary to
parametrize the k~ dependence of the triple-Regge
vertex. We expect that the magnitude of this graph
relative to the triple-Regge graph is comparable
to the magnitude of Regge cuts relative to Regge
poles in two-body reactions.

(2) With a similar parametrization of the non-
forward triple-Regge vertices we can estimate the
part of the graph in Fig. V(c) which has the s and
M' dependence of the graph in Fig. V(b). We can
also calculate the singular part of the contributions
of this graph to the four-Reggeon vertex A.

(2) We can calculate from measurable triple-
Regge couplings the singular part of the contri-
bution of the graph in Fig. V(d) to A.

(4) For arbitrary u; we can calculate the one-
particle contribution to A from the double-Regge
amplitudes. For special values of the n, we can
determine this contribution from the two-to-three
cross section; see Appendix B. Even for these
special values of the a„however, we cannot, in

general, relate A to the two-gap cross section":
the cuts of the four-Reggeon amplitude in q' are,
in general, more complicated than those of the
one-particle graphs.

(5) The one-particle approximation for A, if it
is valid at all, must fail at the points at which it
becomes singular.
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APPENDIX A

Here we work out explicitly the statements
made in the Introduction regarding the signs of
imaginary parts. First consider the process
shown in Fig. 5 and make the replacements

pg p~+ iqi )

q.'=0 p q. =0.
Then

(A1)

(A2)

S S+2l (i) +i}4) '(p +P4),

s, —s, +2&(i)o+'04 —'i)4} '(P, +Pb P4)-
s, =s, +2i(q, +q, —q, ) (p, +p, -p, ),
s' = s'+2i(rl4+8o —0, —i)„) ~ (p4+p'i —pa —pd) .

(A3)

For large s in the center-of-mass frame we have

p, = (1001), q, = e,(1001),vs

P4 = (100 —1), i), = e4(100 —1),Ws

(A4}

p = 1 ——2 —1001)+p q =e 1001)s, vs

p~ = 1 ——' (100 —1) + p, q~ = e„100—1),s, vs

S~—+ (e~ —&~) & 0, (A5a)

—+(& —~ )&0,S~

assuming s„s, are also large.
The Mueller graph for the two-particle inclusive

reaction requires for ingoing particles

(c,+c,) &0,
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and for outgoing particles

(e, +e,)&0,

S~
e~ —+(e), —fg) & 0, (A5b)

conservation now requires that

a c a c~

b'

e —
( +(e~ —e~)&0.

a c a C )

6~-Et -6z

So if we put

6g =Eg —5,
&c=~a-&)

Eg =Kg —5,

Ec Ea

with

and

at's & a&~b

Momentum conservation requires

(A6)

The Mueller boundary conditions for the single-
particle inclusive process require that

+ 6y + 0~ Ca + 6y ~ 0

while ImM' & 0 implies

(e~ —f~}+e), —&0.S2

At the same time

s, = (k+P, )' = ys + 2i (s)y(e, + e,},
s, = (k+p, )' =ys+2i)js y(e, +e, ) .

So the integration contour goes above the right-
hand cuts and below the left-hand cuts in s, and
vice versa for s, .

Likewise,

S2s ' = (k +p, -p, }'= ys, + 2 i y (s, —e, ) )/s + e, )/s —'
S~ S2

then all of these conditions are satisfied. If 5&0

Ims ' = 2 (e, —e, ) —' )is + 2 (e, —e, }~ Ws

is positive and if 5&0, Ims is negative.
Now consider Fig. 2 and Sudakov parametrize

the loop momenta as

0 =xP, +yPg+kj .

We then examine various complex values of

P„P~,P, keeping x, y, and k~ real. Momentum

and the imaginary part of s' is correlated with the
imaginary part of M' in the same way.

Finally, notice that the energy through the right-
hand blob is given by

(k —i),)' = —xs —2 i x(e, + e, ) v s

and so the contour s for X), ~ follow the same path
as in the ordinary cut if e, +e(, &0. (Notice that in
taking the discontinuity to obtain the cut contribu-
tion to the single-particle inclusive distribution,
~, +e, does not change sign and so N~. ~ does not
change sign as it does in the cut contribution to
the two-particle amplitude. )

APPENDIX B

We want to see in what cases we can determine the one-particle contribution to A from the two-to-three
cross section. We suppose that there are two double-Regge amplitudes E» and E„, so that the two-to-
three cross section is

1 .IF»+ F.~i' .
AS

(B1)

From Eq. (3.1) we can write

—
P P (s/s )~z (s )&a(s-&w(~2-~2)/2 gl +e- w(%1-v2-v»)/2 ~ )

=P i} (s/s ) 3(s ) 4(s- 4- 4 gr +s-' ( 3-"4-"34 g )

(B2)

where the W& are real. From the energy dependence of 0 we can measure
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o, = W, '+2cos-,'w(a, —n, —v„)W, W, + W, ',
c, = W, '+2cos ,'w-(n, —n, —v„)W, W, +W, ',
o, = cos-,'w(a, —n, —v, + v, ) W, W, + cos'w(u, —n, —v, + v, —v») W, W,

+ cos2w(u2 —a' —v2+ v4+ v34) W~ W4+ cos2w(n4 —u3 —v2+ v4 —v~2+ v34) W2 W4.

(BS)

Measurement of polarizations of the external particles gives no additional information. We want to calcu-
late

1 1 1
—W, W, +, W, W3 +, W, W4 +, W, W4 ~

cos-,'w(a, —u, —v„) cos~w(u3 —a4 —v44) cos-,w(a, —u, +n, —n, —v„—v„)

(B4)

We discuss various cases in which this can be done
done.

Case I: cy. , = o.'2 Q3: A 7]:7„7,= ~, . This
case is trivial. We have

A =W, W3+
1

)
W2W3Sln —

7T Q —Q1 2

1

)
W, W4 —W2W4sin —,m(z, —~,

A =(w, +w, )(w, +w, )

=03 . (B5)
1

sin —,'w(n, —a, )
(B7)

Case II: n, =@4, n, = @3' g 4) T2 T3 For ij
= 7, we have

1

cos~7T(o. , —&2

1+, ,
)

W, W4+W, W4
cos~w(o. , —~2

Case III: n3 =n4+ v34 Then

1

Cosp7T(CR, —Q2 —V, 2

o, = W, '+ 2 cos-, w(n, —n, —v») W, W, + W, ',

o, =(w, + w, )',

o, =[cosgw(n, —n, —v, + v, ) W,

(B8)

1
cos-,'w(u, —n, )

For 7, = —7, we have

(B8)
+cos2w(u4 —u4 —v2+ V4 —v») W2](W3+ W4) .

Up to sign ambiguities we can solve for W, and W,
and hence determine A.
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