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A Hamiltonian formalism is developed to describe the classical motion of a bag-type model
for small oscillations of the boundary around a static configuration and to give an approximate
quantization of the system. It is shown that in the case of the one-dimensional bag the method
reproduces the exact form of the mass-squared operator, which is known from the light-cone
quantization. The formalism is then applied to the study of a three-dimensional bosonic bag
and in particular to the analysis of the P-wave excitations.

I. INTRODUCTION

In the relativistic bag model, as proposed in
Ref. 1, the hadronic fields are confined within
a finite region of space, the bag, by the action
of a uniform external pressure. This pressure
is introduced in the theory by adding to the po-
tential-energy term in the Lagrangian a term
proportional to the volume of the bag, of the
form -BV. It is easy to show that the dynamical
system so defined is invariant under Lorentz
transformations. ' The phenomenological para, m-
eter B determines the scale of hadron masses.

The model appears to have a rich dynamical
structure and useful phenomenological applica-
tions, ' ' but the nonlinearity of the equations of
motion for the boundary makes the study of the
exact form of the solutions of the theory extremely
difficult, even in the case where one assumes that
the fields are uncoupled in the interior of the bag.
The only classical solutions which are known up
to now correspond to motions of the system with

a static spherical. boundary. A semiclassical
quantization of these solutions has been used in

Refs. 1, 2, and 5 for a very interesting phenome-
nological analysis of the S-wave states of the bag.

In this article we try to go beyond the static-
boundary solutions by considering the motion of
the bag in the limit of small boundary oscilla, -
tions. From the Lagrangian of the system we
derive an approximate Hamiltonian, which becomes
exact in the limit where the amplitude of the mode
with a static boundary becomes much larger than
the amplitudes of the other modes of the field.
In this sense our Hamiltonian describes the small
oscillations of the bag about the static-boundary
solution.

We shalt. use the approximate Hamiltonian to
deduce information on the excited states of the
quantum system. We shall derive an expression
for the invariant masses of the quantum levels,
which we expect to become exact only in the

limit of large occupation numbers of the static-
boundary mode, but which we conjecture to give
good approximate results also for the lower
levels of the spectrum. This conjecture is sup-
ported by the anal. ysis of the one-dimensional bag:
This system can be solved exactly by the use of
light-cone variables, and we shall see that the
expansion of the mass-squared operator for small
boundary oscillations in an ordinary spacelike
frame reproduces the correct result, known from
the light-cone quantization.

In this article we study a bag model for a single
complex scalar field. Even if nonsuitable for
phenomenological. purposes, this system has the
advantage of an algebraic structure much sim-
pler than a set of spinor fields, and we find it
convenient to illustrate our method.

Notice that the Lagrangian of the bag is singu-
lar, in the sense that no independent kinetic-
energy term is associated with the motion of the
boundary. The passage from the Lagrangian to
the Hamiltonian is then not straightforward, and
involves the use of Dirac's method to elimina, te
the boundary degrees of freedom. ' This in turn
requires a careful definition of ratios of infinite
factors, so that the whole procedure becomes
quite complicated. In the approximation of small
boundary oscillations, however, the constraints
expressing the dependence of the boundary vari-
ables on the field degrees of freedom linearize,
and the boundary variables can be eliminated by
a linear canonical transformation. The final. re-
sult is the appearance in the Hamiltonian of a
term which couples the normal modes of the
expansion of the fields and is strongly reminis-
cent of the term responsible for collective excita-
tions in nuclear physics. This Hamiltonian can
be diagonalized, and one obtains a new set of
normal modes, which describe the small oscilla-
tion of the whole system about the static solution.

The plan of the article is as follows. In Sec. II
we study the small oscillations of a one-dimen-
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sional bag. The problem is academic, since the
exact solution of the equations of motion is known,
but it is a useful test of the method. In Sec. III we
apply the formalism to the three-dimensional
bag with a massless charged scalar field. We
show that the different partial waves decouple,
and we derive the form of the Hamiltonian that
describes their evolution. In Sec. IV we diagonal-
ize the Hamiltonian for the P waves. This sector
is particularly interesting, because it contains
the first excited levels which cannot be obtained
from a semiclassical quantization of the static-
boundary solution, and because it contains an
expected zero-frequency mode, representing a
translation of the whole system. In Sec. V we
present a few conclusions.

II. ONE-DIMENSIONAL BAG

(2.2) and (2.3) admit as general solution

P{x, t) = g P exp sin vm
m= -~ X2 —X1 X2 —X1

{2.5)

i7T ~t X —Xl
Q(x, t)=P exp sin wm

X2 —X~ X2 —X~
(2.6)

in the left-hand side of Eqs. (2.4} we find the con-
dition

Substituting this expression in Eqs. (2.4), we
find that the coefficients of all time-dependent
terms in the product (9 p*/sx)(e Q/Bx) at x =x,
and x =x, must be zero. This can be achieved
by taking just one of the normal-mode coefficients

different from zero. Inserting

The system we want to study is defined by the
Lagrangian'

so that

(2.7)

.„() et st sx sx
1

where Q(x, t) is a complex scalar field subject to
the constraints

&p(x t}=vB ' ' e'
7T m

immit X —X~x exp sin mm
X —X2 1 X2 —X2 1

(2.8)

P(x,(t), t)= P(x, (t ), t)

=0, (2.2)

and x, (t), x,(t) are the boundary variables, i.e. ,
the end points of the bag.

The boundary conditions [Eqs. (2.2) J represent
two holonomic constraints: It is possible to
obtain them as equations of motion starting from
a different Lagrangian, ' but, for our purposes,
it is more convenient to assume them in the def-
inition of the system.

The Lagrangian of Eq. (2.1) implies the following
equation of motion for the field in the interior of
the bag:

c}2 8
2 Q(x, l ) —,p(x, t ) = 0, (2.3)

and, together with the boundary constraints
LEqs. (2.2)J, it also implies the two additional
nonlinear boundary conditions

d(p* dQ dX1—
dx bX,'„„dt

(
dx1—

BX 8X j„„dt
=B,

(2.4)

Equations {2.2}-(2.4) look rather difficult to
solve, but it is easy to find a set of static-boundary
solutions, characterized by constant values of
x, and x,. Indeed, with x, and x, constant, Eqs.

l =x, -x,. (2.9)

As a matter of fact, we should consider as free
parameters in Eq. (2.8) also the arbitrary phase
0 and the over-all position of the bag in space,
determined for instance by the coordinate of its
center

x, = —,'(x, + x,). (2. 10)

These are, however, cyclic variables.
The purpose of this section is to study motions

of the system which can be thought of as small
oscillations about the static-boundary solutions
of lowest frequency, corresponding to m= 1. We
expand ar ound the se solutions be cause a semi-
classical method of quantization associates with
them the state of lowest energy. We shall obtain
a Hamiltonian, quadratic in a set of canonical
variables that describe the small oscillations of
the system and depending on a "large" action
variable, related to the amplitude of the static-
bvundary solution.

Before proceeding, we find it useful to summa-
rize briefly the properties of the exact solutions
of the system, which, as we have mentioned in

is a solution of the classical equations of motion
of the bag.

Notice that, for each value of m, Eq. (2.8) gives
a one-parameter class of solutions, the relevant
parameter being the length of the bag,
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the Introduction, can be obtained by a suitable
canonical transformation in the light-cone frame. '

According to Ref. 1, it is convenient to intro-
duce light -cone var iable s

Equation (2.21) can now be written as

@(O X+) n. + (e -2xina
I )e

-2xinx /xi4
v2n

x ' = (f s x)/v 2 (2.11)
~ +n. - (exni a 1) xninx /A (2 23)

v2n

and to consider x as the evolution variable. In
terms of these variables the equations of motion
and boundary conditions become

where a new set of expansion coefficients has
been introduced, so that the canonical light-cone
Poisson brackets

and

a2
P(x', x ) =0,

4i{x, (x"),x') =0

(2. 12)

(2.13)

I &4(o) (,, )(,
, e(~')) =o,

3 4i(v), i
sg '

) 2,4*(o') = —5(u-o')

(2.24)

(2.25)

9$+ 9$
Bx Bx

5

(2.14) imply harmonic-oscillator Poisson brackets for
the variables 4„, (n = 1, 2, . . . ; i = +, —)

x =x {&). (2.15)

where x, , i = 1, 2, are the end points of the bag.
The crucial point is now that Eq. (2.12) is in-

variant under changes of parametrization of the
form

(2.26)

(2.27)

It is apparent from Eq. (2.23) that the infinites-
imal generator of x' evolution is given by

By choosing a new variable in such a way that H =P = —
pgC5+ . C

A (2.28)

dv 2 a/*
d$

(2.16)
On the other hand, the total P momentum carried
by the field is given by

[which is always possible since (& iti*!S()(S$/& $)
is a non-negstive-definite quantity], the nonlinear
boundary condition (2.14) reduces to

Bx Bx

d$,', =1, i=1, 2
QX

and can be satisfied by taking

(2 .17) =BA.

Substituting in Eq. (2.28) one finds'

(2.29)

(,=x', (, =x'+A,

where A is a constant parameter.
Equations (2.12) and (2. 13) now give

(2. 18)

or

P =, nC„*i 45„ i
n=l i=%

(2.30)

(2. 19) M' = 2P'P

and

P(x', x') = iIi(x', x'+A) =0. (2.20)

The most general solution to these equations is

(2.31)

This equation becomes the following equation
for the mass-squared operator of the quantum
system:

I' = 4~B Q Q nC''„, 4„;+ c
nn 1 i= 1

(2.32)

4 (ir, x') = 4i(x', x'+A~). (2.22)

It is useful to parametrize the field in terms of
a variable g with constant range: 0&a &1. One
defines

where one allows for the presence of an additive
constant that cannot be determined from the clas-
sical limit.

%e see that the mass-squared operator is given
by a sum of terms proportional to the occupation
numbers of an infinite set of uncoupled harmonic
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oscillators, labeled by an internal quantum number
n and by an index i = +, —associated with the
two possible charge states of the complex field P.

Let us now analyze the evolution of the system
in an ordinary spacelike frame. It is convenient
to map the region x,(t) (x (x,(t) occupied by the
bag into a constant domain

and

C, =P, + —J) dix(cr — )(Ii*4'+II4 '*),

the equations of constraint are

C0=C) =0,

(2.41)

(2.42)

by

0(g ~1

x(g) =x, +o(x, —x, )

and are consequences of the fact that no indepen-
dent kinetic-energy term is associated with the
motion of the boundary.

From the Lagrangian we obtain the Hamiltonian

=x, +(z —;)l.
We define

(2.34) Ho=
II'(&x)II((T) + 4 ' *(v)4 '

((r)
Ctf +Bl.

4(~, t) = ip(x(~), t)

In terms of 4 the Lagrangian becomes

(2.35)
Because of the presence of equations of constraint,
however, the inf inite s imal generator of the motion
will be an expression of the more general form"

H = 80+ v0C0+ v) C ). (2.44)

It is easy to see the meaning of the multipliers
v, and v, in Eq. (2.44). Taking the Poisson brack-
et of B with x0 and l we find

Bl
l

(2.36)
x, = t, H, x,}= i. , (2.45)

where we have introduced the notation f and f '

for Bf/a l and af/ez, respectively.
The appearance in L, of the combination

and

t=tH, I}=~,. (2.46)

i0+ l (y —,.'-) 4'
l

51.
ri(v)= . ,( )

= I 4(g) —[xo+ I (g ——,')] 4'(o }, (2.37)

P, = -- ' du[il*(&x)4 (v)+II((r)4'*(g)], (2.38}
1

is due to the fact that the Lagrangian contains
the time derivative of the fields at fixed x, where-
as 4 is the time derivative at fixed g.

From the Lagrangian I we can derive the ex-
pressions for the momenta II(o), II~(o), p„and
p, conjugate to the dynamical variables 4i*(o),
4(&x), xo, and I We find.

v, and v, are then the velocities of the quantities
x0 and l and are related through v, :v0 zv„
v, = v, +-,'v, to the motion of the boundary. We
cannot, however, insert into Eq. (2.44} the values
of v, and v, that we could deduce from the nonlin-
ear boundary conditions, Eqs. (2.4); rather, we
should find those equations as a consistency con-
dition for the system.

It is easy to find further consistency conditions.
One can check that {C„ci}=0, and that

C,' -=(H„C,}g0,
(2.47}

C', =-(H„C,}~O.

The consistency requirements C, = C, =-0 imply
then the additional constraint equations

and
C0= C,' =0 {2.48)

r

p = —— do (ir ——,')[II*(iT)4 ' ((r) +II(o )4' *(a )] .
l ~

(2.39)

1

C0 =P0+ — dg(II*4 '+II@' *)
0

(2.40)

We see that the momenta are not all independent,
but that two constraint equations are implied by
by the Lagrangian. Defining

At this point we indicate only formally how one
should proceed to define the Hamiltonian, since
the expansion for small boundary oscillations
will introduce simplifications that will make the
following passages not necessary. After having
established the additional constraints C,' = C,' = 0
one should check their consistency by taking
their Poisson brackets with H. Now one has
(Co, C', }40, (Ci, Ci} w 0, (H„co}e 0, IH„C,')
40, I C„ci] = t C, , C,'}= 0, and the requirements
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[H „c,')
[c c')

(2.49)

(2.50)

and

pa=i Q, dvv 2 sinwo[II*(o)e' II-((r)e 'a]
v' p

(2.55)
Equations (2.49) and (2.50) are only formal, be-

cause they both involve a ratio of infinite factors,
of the type 6(0)/6(0). However, by a careful
definition of those ratios, one shows that they
give values of vp and v, in agreement with the
nonlinear boundary conditions. The equations
Cp = Cp: Ct: C,' = 0 can now be used in principle to
eliminate all the boundary variables (coordinates
and conjugate momenta) in favor of the field vari-
ables (but the Poisson brackets must be replaced
with Dirac brackets} and Eqs. (2.44), (2.49}, (2.50)
define the Hamiltonian of the system. We shall
see shortly that in the limit of small boundary
oscillations the elimination of the boundary vari-
ables does not require the introduction of Dirac
brackets, but can be performed by a linear canon-
ical transformation.

The static-boundary solution is given by [see
Eq. (2.8)]

The static boundary solution is characterized
by

B ''l BI r
p =

1 2 & l9 s i Ps6] =—/+6

and all other canonical variables equal to zero
(for simplicity, we take the cyclic variable x,
also equal to zero). Let us perform the canonical
transformation

(2.56)

(2v Pa)'i' 2 BPa

(2.51)

4 (o, t)= Q P„(t)v 2 sin(iino) e""',
n=l

(2.52)

with 4ii(t) real, Q„(t} (n) 2) in general complex.
In Eq. (2.52) we have expanded the field into a
set of normal modes, and have factored out from
all the modes the phase of the first one. The
dynamical variables are now 4i, (real), 4i„(gen-
erally complex, n ~ 2) and the angular variable 8.
The conjugate momenta are given by

p, =
~

derv 2 siniio [lli'(o)e'e+II(o)e 'a], (2.53)
p

1

p„= dos 2 siniiiTII(o)e (2.54)

It is convenient to choose the phase and amplitude
of this solution as dynamical coordinates. We do
so by expanding

(all other canonical variables unchanged). Then
the static-boundary solution becomes character-
ized by the set of "large" conjugate variables
6 and P~, whereas all other canonical variables
are zero. 8 is a cyclic angular variable, pe is
an action variable.

We can now describe the smail oscillations of
the system about the static-boundary solution by
expanding the Hamiltonian of Eq. (2.44) up to
second order in the small variables Q„pl (p p„
(n) 2), I, p, , and po (xo is cyclic). Notice that

vp and v, , linearly related to the velocities of the
end points of the bag, must turn out to be small
variables if the system is consistent. This im-
plies that we can limit the expansion of the con-
straint equations to the terms of first order in
the small coordinates and momenta. This is the
crucial point that will allow us to solve the bound-
ary constraints and to obtain an explicit form for
the approximate Hamiltonian.

Expanding 0 up to second order we find

&/z

H = 2(iiBP9)'i'+ qB/ '+ +,' +44ii' iig+[P „*P„+I ii{Q„*P„—4i„Pi')+ ii'n'4ii' Q„]

1/2-

p Pp+ — P, ,C, + a + P~ C, n + s "niWn —In 1Cn

+~i Pi+
2

Pi((o-2)siCi&+g(p. +P.*)((o-2)CA&+ gtvn(4.*-4.)((o —2)siC.&

n&l n&1
(2.5't )
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where we have denoted by (S C„) and ((w ——,') S C„) the integrals f 2sinwmo coswmdo and J 2(o —~)
& sinewy cos~ do.

This Hamiltonian can be brought to a more convenient form by a canonical transformation

n
p = ""' + "-'- — &" [ (n+1)] + —j [n(n —1)]"

2 n+1 2 n —1
(2.58)

n+1 '' p„, n —1 '' i p„„, i p„,
n 2 n 2w [n(n+1)]' ' 2w [n(n —1)]' ' '

where p„, , Q„„defined for n~ 3, and p„, pn, — defined for n~ 1, are now real variables. It is useful
to define also

p, =&21, „y,= y, ,/W2.

In terms of these new variables 0 becomes
1/2 p 2 (~n)2 2

p = 2(7TBpg)' + Bj2 g n. i ( ) 4n. l

(2.59)

+ Vo o+~2B + + Ug ) —42B +

(2.60)

where the sums start at n = 1 for the terms with index —,at n = 2 for those with index +.
The constraints involve now only momentum variables; by a canonical transformation of the form

p. , (n- i)"* j„( i)'"
(2.61)

2 n~1 "'
g„, = g„.+ x,v'29 —,n odd

g„, = p„, —l /2B —,n even,

the constraints are brought to the very simple form

P, =O, P, =o, (2.62)

and the Hamiltonian becomes

8 1 /2

B=2(wBt „)"'+
7Tp p

—x,l2B p [2wg„,[n(n —1)]' '+2wg„[n(n+ 1)]' ')+ l &2B p (w$„,[n(n —1)]"'+wtjI„[n(n +1)1'~'[
& odd &.even

n —1 n+1 -2 1 n —1 n+1
+2Bw, ' ~ 2 + +2Bl' P — + +v++vP, .

rt odd n n rt even 2 n
(2.63)

The coefficients of xo' and I' in this last equation
must be dealt with with care, since they are for-
mal divergent expressions. These divergences are
introduced by the change of independent variables
of Eq. {2.61), and we expect that they cancel
against other formal divergent terms originating
from the asymptotic behavior of the P„,.

The correct way to treat the problem is to in-

troduce a cutoff on the number of modes of the
field, to eliminate the boundary variables, and
then to let the cutoff go to infinity.

%e introduce a cutoff by limiting the summations
to n .„,= 2N —1 and 2Ã for the odd and even terms.
The coefficients of x' and /' in EI become then
(8/w p~)'~' x 6BN and (8/w pe)'l'x B(2N + 1). By taking
the Poisson brackets of H with P, and P, we find
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the additional constraints
2N-1

~2Bx, = ~ f&f„,,[n(n —7)] +&/„[n(n+7)]'i2),
n d

&28 / =
& P fvg„+[n(n —7)]'i2 +vg„,[n(n+ 7)]'i2),

n even

(2.64)

which we can use to obtain a new Hamiltonian, expressed now entirely in terms of the field degrees of
freedom:

H, =2(NBp, }"2+ Q p"' + ' "' ~"'
~tR ni

2N- &
2

Q (vy„,[n(n —7)]'i'+ay„[n(n+7)]'i2)
n odd

2N 2

P (vg„,[n(n —&)]'i'+vg„[n(n + &)]'i'[
+ n even

(2.65)

The structure of Eq. (2.65) is interesting. The
term

(2.66)

= (wn)2$„—,y,„,„(n=even), (2. '10)
+2

where we have defined

is the Hamiltonian for a sequence of free oscilla-
tors, with frequencies v (appearing once because
the sum starts at n = 2 for i =+) and 2v, 3v, . . . , 2IVv

(each appearing twice)
The other two terms in the Hamiltonian repre-

sent separate couplings of all the modes with odd
and even frequencies, originated from the elimina-
tion of the boundary variables.

H, can be diagonalized by a rotation in the space
of the 4N -1oscillators. This rotation can be done
conveniently in two steps. The rotations

n odd, even
vnq„ {2 'll)

From Eqs. (2.69) and (2.70) we find

an%'odd=
7V[( )2 2] (n odd),

Fn+even

(iv+ )[(an)' —(u2]

(2. 'l2)

(2.'13)

which, together with Eq. (2.7l) give the eigenvalue
equations

(2.67)

2N-1
( }2

„~dd, (vn)2 - (u2

2N (sn)2

(2. '14)

(2.75)

2,=,„('P', „)*,
n odd =1

H4 = — n'ng„

(2.68)

(n =2, 3, . . .), defined within the subspaces of de-
generate oscillators, decouple the modes g„„
which form then a sequence of free oscillators
with frequencies 2n, 3n, . . . , 2N~, and the coupling
terms take the form

and

(wn)' —(u2 „~dd (wn)2 —(u2

=0
7

=0

These two equations can be written

(2.76)

To find the eigenmodes of H, +H, +II4 we must
now solve the equations

and we see that we can remove the cutoff. In the
limit N -~ Eqs. (2. '76) and (2.7'7) become

= (vn) 2 $ ——4'odd (n odd)7m
(2.69)

47
cu tan —=0

2
(2.78}
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(d~ cot —=0 (2. '79)

and generate the sequence of eigenvalues

= +pl~ n~0, (2.80)

+ dna„* a„

Notice that the net effect of the elimination of the
boundary variables has been to shift downward the
frequencies of hat of the eigenmodes of the field
in the fixed cavity 0 ~ a & 1. In particular, the
coupling introduced by the elimination of the vari-
ables x, and po shifts one of the eigenfrequencies
to zero. This zero-mode term is expected, and
restores the translational invariance of the sys-
tem. One can check that the corresponding nor-
mal momentum is indeed the total momentum of
the system.

Summarizing, we have the following expression
for the Hamiltonian:

l/2 p 2

HO=2(sBPe)'t + ' + xnan+, a„,
ape 4B

and annihilation operators for an infinite set of
harmonic oscillators, and we have allowed for the
presence of an additive constant k.

This result should be compared with the exact
form of the mass-squared operator of Eq. (2.32).
We have derived Eq. (2.83}as an approximate ex-
pression which becomes exact only in the limit
Ne -~,. but we see that it actually reproduces the
correct result for the entirety of the spectrum. "
This gives us some confidence that an analogous
expression which we shall derive for the three-
dimensional system can give useful information
also on the masses of the low-lying states.

III. THREE-DIMENSIONAL SYSTEM

In three dimensions the Lagrangian for the bag
containing a complex scalar field P(x, t) is

d'» ——v,P+ ~ v, P -B . (3.1)
S(f)

S (t} is the spatial region occupied by the bag. We
denote by aS(t) the boundary of this region. @ is
constrained to vanish on sS(t):

(2.81} P(x, t) =0 for x ~ &S(t) (3.2)

where we have introduced the normal-mode vari-
ables an, and a„*, and have substituted for the mo-
mentum of the zero mode its expression in terms
of po.

The right-hand side of Eq. (2.81) exhibits a di-
vergence forPe-0, which is, however, of kine-
matical orgin and is introduced by the expansion
of the mass-squared operator in terms of the mass
of the static-boundary solution. By taking the
square of Eq. (2.81) and neglecting terms O(l/Pe),
we find

The equations of motion that follow from the
variational principle 6 J dtl. = 0 are then

82
—,P(x, t) —V„'P(x, t) =0, x~ S(t) (3.3)

and

[V„P'(x, t) V, P(x, t)](1 —V, ) =B, x~ &S(t), (3.4)

where V~ is the velocity of displacement of the
boundary in the direction of its normal.

Eqs. (3.2)-(3.4) admit solutions with a static
spherical boundary of radius R,. In particular,
it can be checked easily that

= 4n'Bpe +p 4vBna„*,a„, + p 4wBna~ a„
n =2 n =l

(2.82)

( ) ~BBo s~n I»I 'mt/R (3.5)

which we should consider an approximate expres-
sion, valid only for

pe» p 4Bna~; a„, .
n&i

A semiclassical quantization of the system gives
now

~OP0ratar =47TB &~e + nan, +an + + Z nan an + k,2=
n- n=1

(2.83)

where Ne stands for the possible integer values of
the action variable pe, at; anda„~ are creation

solves the equations of motion.
A semiclassical method of quantization associ-

ates with this family of solutions the ground state
of the system, and, for this reason, we shall study
the small oscillations of the bag about this clas-
sical solution.

The formalism that we shall use is quite similar
to the formalism used in Sec. II. , and so we shall
give only a concise description of the steps in-
volved in the linearization of the constraints and
the elimination of the boundary variables. We
shall, however, treat in some detail the kinematics
of the three-dimensional system.

It is convenient to map the region of the bag S(t)
into a constant region, which we take to be the
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unit sphere. We define the mapping by the equa-
tion

x('R)=Rz+ gb, V,z'Y'(6, @},
l, m

(3 6)

where z, 6, P are polar coordinates in the z space,
I and ~ are indices that label a set of real ortho-
normal spherical functions, R and b, are para-
meters of the mapping.

This mapping defines a unique parametrization
of the points in the interior and at the surface of
the bag, once the shape of the surface is given (at
least for not too large boundary deformations).
The interior of the bag is represented in z space
by points with z (1, and the boundary by the sur-
face of the unit sphere.

To understand better the properties of this map-
ping, notice that the expression

l, m

and divx'(z}=0, because E(%) is a harmonic func-
tion. For small displacements of the boundary of
the sphere, the shape of the new boundary is char-
acterized by the value of the normal component of
x'(%), x„'(%), whereas the tangential component of
x'(z) just defines a mapping of the surface into
itself. The problem of representing a small bound-
ary deformation by the vector field x'(z) reduces
therefore to solving the Neumann problem for a
sphere, which admits one unique solution if and

only if J &Qx„'(z) =0. Since the series g, „b,
&z' Y'(6, @) is a complete expansion for the func-
tions harmonic within the unit sphere, we can
represent by x'(z) an arbitrary small deformation
of the bag, provided only that the volume remains
unchanged. But an arbitrary dilation of the system
can be represented by the first term Rz in the
right-hand side of Eq. (3.6), and we can see that
Eq. (3.6} defines a unique representation of the
small deformations of the bag.

In this article we shall be interested only in
small deformations about a spherical shape, so
that the discussion we have given of the mapping
should be adequate. One can argue from continuity
considerations that the mapping of Eq. (3.6} gives
a unique representation also for a range of large
deformations of the bag. Of course, for too large
deformations the representation of Eq. (3.6} would
not be adequate (it cannot be used, for instance,
to describe the fission of a bag).

x'(%)= gb, V,z'Y.'(e, y}
l, m

defines a field of vector displacements, over the
unit sphere, with curlx(z) =0, because x'isderived
from a potential function

The vector representation of Eq. (3.6) has many
computational advantages over other possible rep-
resentations. In particular, the terms with I =1
have the form

(3.7)

(3.8)

where we have defined

82

l, m i j
(3.9)

We see that Bij is a symmetric traceless matrix
[traceless because z' Y'(6, Q) is a harmonic func-
tion]: This simplifies remarkably the steps lead-
ing to Eq. (3.31).

We define as ~ and M, j the determinant and the
inverse of the matrix Sx, /&z, . = &x, /sz, .:

tif =det
I (3.10)

(3.11)

(Notice that det]M, , l=M '. )

We introduce the field

4 (z, t) = y(x(z}, t) (3.12)

and express L in terms of 4. We need formulas
for &Q/&tl„„„,d and SP/&x, . These are given by

ay ae=Mij—
8~. ' Bz. (3.13)

and

at ~ 5b
(3.14)

where we have symbolically denoted by b all the
boundary coordinates, a dot stands for a time de-
rivative, and summations over repeated indices
are implied. This convention is adopted also in
the equations that follow. Explicitly,

(3.15)

and

(3.16)

A change in the coordinates b, with / =1 generates
then a uniform displacements of the whole bag, and
the momentum conjugate to b, is (3/4n)' 'P, p
being the total momentum of the system.

Moreover, a quantity which often appears in the
computations is the matrix



2416 C ~ REBBI

Inserting these expressions into Eq. (3.1) we find

aX ac * ~ ~ Cg, fI}C}'
dszN C} -b ~

M)f — 4 -5 'M]f

where (P(z) and (i((z} are now two real fields, and

(i((z) is subject to the constraint

dszg z)f z) =O. (3.25}

(3.17)

The canonical momenta conjugate to the variables
4'(z} and b are

6}, which is to be considered one of the indepen-
dent coordinates, is the phase of the mode of the
field appearing in the static-boundary solution.

The momenta conjugate to (II, (i, and 8 are

p(z }= ~ [e( eii (z ) + e ' Il (z} ] (3.26)

and

(3.18) q(z) = [ie' Il *(z) —ie ' 11(z)]
V2

d zz f(z )[ie ' eli ~ (z) - ie ' ll (z )],
f(z)

dsz M
5b "az,

ae
x @ —5 Mf — +c c.

a zf

(3.19)

The momenta are not independent dynamical
variables, but are constrained by

a "zf
(3.20)

As a consequence the Hamiltonian is given by the
expression (see Refs. 8, 9}

and

pe= ~2
d zf(z)p(z)

x dsz z ie' II*z -ie ' ll z

+ d'z pzqz -gzpz

In the static-boundary solution we have

(j((z) = v 2 (2BR,'/((}' 'f(z ),

g(f) = vt/R„

Pg =4BRO

(3.27)

(3.28}

(3.29)

H= d'z II 'z II z M '

84*
+M)f M(~ M+8M +vaCa

Bzf zg

=Ho+ vaCa, (3.21)

and R = R„whereas all remaining canonical vari-
ables [(}((z), p(z), q(z), b, , p„, and p, ] are
zero.

We perform a canonical transformation by de-
fining the new variables

where the multipliers v, must be determined from
consistency requirements. It is apparent from
Eqs. (3.20) and (3.21} that v, is the velocity of the
boundary variable b .

The static-boundary solution is given by

2BR ~ ~~~sinnz
(3.22)~wz

and

y =R (p, /4B)'~'

ala
0(*)= 4(z) — —, (Bp ) 'f(z),

] B 1/4

f ~'~DA~f(~(

(3.30}

The function
sinvzf z)=

z
(3.23)

—(4Bpe)

is normalized to unity.
It is convenient to factor a phase out of the field

4((z, i) defining

(3.24)

[We call the new field variable (P for convenience
of notation. This new Q(z) is not to be confused
with the field @(x}appearing in Eqs. (3.1)-(3.4).]

The static-boundary solution is now character-
ized by a pair of "large" conjugate variables e
and Pe (8 is a cyclic angular variable), and by
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zero values of all remaining canonical variables.
We then expand the Hamiltonian of E(I. (3.21) up

to second order in the "small" variables (t)(z),

P(z), ()1(z), q(z), r, Pz, b, , P, , and u„and
find the Hamiltonian H"' that describes the small
oscillations of the system

+ Ro' pz +qz) +Ro VQ z + Vgz

I

+ 3z'Raf (z)' dBz'f (z')q) (z') +2vR, '[g(z)p(z) —(p(z)q(z)]

r22BR,zr'f( )' ~ 16R,r(Bz f "f(z')6(~)+B„B„BR(2zf,(z)' —1 ——(vf(z)]')

12RRO sf(z) sf(z) 8R
(R )„,R sf(z) &Q(z) C(, )B B) C',

f a

where C", stands for the linearized form of the constraints and

R, = (pe/48)2f'.

(3.31)

(3.32)

(3.33)

and

pe is the proper canonical variable that should be used in H, but the use of R, simplifies the notation. R,
is the value of the radius of the bag when no oscillatory mode is present.

The explicit expression of the constraints C ' is

Cz' =pz+ d'z —Bn ' 'p z zf +2RO' Bm '~ z zf
2 f Zf

Bt," =2, „~2(BV)'~' f 6 z z' Y'„(66) -2(~) ~ R,'f(z) (3.34)

This is all one needs to eliminate the boundary
variables through a linear canonical transforma-
tion and to obtain a second-order Hamiltonian
containing the field dynamical variables alone.
However, it is convenient to perform first an
expansion into partial waves of p, g, p, and q,
according to the general formula

~(-) = P '," ' 1.'(8, ~).
l, m

It is straightforward to check that after the ex-
pansion H"' takes the form

(3.35}

(3.36)(~) 16m BRO

3 ~ 1,%P

L,m

where the partial-wave Hamiltonians 8, as well
as the constraints C'," contain only the l, m com-
ponents of the field and boundary variables (the
l =0 components of the boundary variables are

r and Pz). Thus, the motion of the system, al-
ways within the approximation of small oscilla-
tions, is resolved into a linear superposition of
independent motions, each involving one definite
angular momentum component of the fields and
only one of the boundary degrees of freedom. The
technique developed in Sec. II for the one-dimen-
sional system can then be applied to the different
l, m sectors to diagonalize the partial-wave
Hamiltonians. In Sec. IV we shall consider in

detail the sector with t=1, which, for reasons
already mentioned in the Introduction, we find
the most interesting.

IV. 1=1 SECTOR

Inserting the expansion of Eq. (3.35) into Eq.
(3.31) we find the partial-wave Hamiltonians H) „.
The Hamiltonians H, which describe the P-wave
small oscillations of the bag are given by

Ro p 8 +q 8)

d(p2, ~(z) ' 2,
( }

d()I, ,~(z} ' 2

+2vR, '[(})2 (z)p, (z) —9), (z)q, (z)] +U, C," (4.1)
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and the constraint functions are

C, '„=P, „~2B dz
'" —R, 'g, „(*I)gI l,

of a cutoff, which will be removed at the end of
the computation.

We introduce a cutoff in the following way. It is
convenient to define the operator

with

(4.2) d 2
K —— 2+ —2,dz z

(4.6)

8 sinmz
g(z) =z-

Bz z

We recall from Sec. III that the momenta p,
conjugate to the cyclic boundary variables b,
are proportional to the components of the total
momentum of the sy ste m. Prec isely,

p p tot (4.4)

In the following we shall not write explicitly
the indices 1,m', we shall keep only the subscript
1 in p, to avoid confusion with the symbol of
the field momentum P(z).

The most convenient method to deal with the
constraint C "=0 is to introduce a linear canon-
ical transformation such that the new momentum
variable is proportional to the constraint itself.
This leads us to the change of variables:

which is a positive-definite Hermitian operator in
the space of functions vanishing at z =0 and z =1,
with inner product

1

fg = dzf'(z)g(z) .
0

(4.7)

sinz cosz
(4 6)

which we denote by y„(z, & v, & z, ~ ~ ), and the
corresponding eigenfunctions, normalized to
unity, are given by

Throughout this section we shall frequently use
the notation fg for f,'dz f(z)g(z), or, more gen-
erally, fOg for J'dzf(z)Og(z), where 0 is an
operator defined in the space of the functions g(z).
See Eq. (4.12) and the following ones.

The eigenvalues of K are the squares of the
zeros of the spherical Bessel function

~1 — — ~1
42BA0

W2 g„f„(z) = . "zj,(z„z) .
sing„

(4.9)

V'2B A0
7r

As a cutoff procedure, we shall replace g(z)
with its projection g„(z) over the subspace spanned
by the first N eigenfunctions f„(z). One easily
evaluates

j(z) =H, A(z) — ' bg(z),
v'2B R0'

q(z) = —v'2B bg(z),
q(z)

0

p(z) = P(z)
0

il (z) =ft.0(z)

which gives

(4.5) dzg(z)f„(z) =- W2w g„

gn

It follows that

g~(z) = g (g~f. )f.(z)

n=1

(4.10)

(4.11)

(,) 42B 80-
m

However, this transformation has the unpleasant
feature of transforming the field (t)(z), which sat-
isfies the boundary condition (IJ)(1) = 0, into a field
P(z) which does not vanish at z =1. The non-
vanishing of Q(1) entails divergences in some of
the equations needed to eliminate the variable b,
that make them ill defined.

As we have already seen at the end of Sec. II,
the proper way to deal with the problem is to
alter the constraint equations by the introduction

We perform now the change of variables of
Eq. (4.5) with g(z) replaced by g„(z), and the
Hamiltonian becomes

H = [P'+q'+ QKQ+ )Kg+ 2v( pg —pq)
0

+ 2b(qKgv —&'4gN ) + b'g~(K +44l' —

(4.12)
where we have omitted the now trivial term vC. '

The consistency condition (H, p,}=0 gives

(4.13)
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and we can use this relation to eliminate b and to
obtain the new Hamiltonian

p +0 +4&4+ 4&4'
0

2 (g -
)

[)})(K-w }gwl

g„(K—w )g)))

(4.14)

where only the field variables appear. [Notice
that (K —w')g(z) =0. This demonstrates the nec-
essity of using a regularized g„(z) to take into
account correctly the effects of the motion of the
boundary. ]

To find the eigenvalues &u/Ro of H, we look for
solutions of the form Q(t, z) = e' '~"')r)(z) (and
analogously ))) = e ' ~ oP, etc).

After some simple passages we find the equa-
tion

[K —((u + w }'][K—()d —w)']&t) (z)

= (K —)d' —w')(K —w')g„(z) ', " . (4.15)
~(K —w')g„

g„(K—w')g„'

zero mode ee ~n 3 tot (4.20)

The left-hand side of Eq. (4.19) has simple poles
for [)4)~ =(K„+w), is negative for

~
u) ~&K, —w, and

changes sign between two consecutive poles. We
deduce that there is one eigenvalue in each of the
intervals separated by the points K, —m, K, —m,

Ky + & K3 'TT K2 + TT etc ~ In particular, since
asymptotically K „=(n+ —,')w —O(1/n) we must have

The main properties of the sequence of eigen-
values can be read off Eq. (4.19}. As expected,
there is a zero eigenvalue, which corresponds to
no internal excitation, but to the translational de-
grees of freedom of the whole system. The zero-
frequency eigenvalue implies the presence in II
of a term of the form pppp where pp is the normal
momentum of the zero-frequency mode and P is a
numerical factor. It can be shown that, as ex-
pected, pp is proportional to the boundary momen-
tum p, and therefore to (one of the components of)
the total momentum P of the system [see Eq.
(4.4)] and that the corresponding term in H is
given by

Denoting by A the quantity
~
)d,„„~= (n + —,')w —O(1/n) . (4.21)

y(K w')g„—

g'„(K —w )g)4
'

Eq. (4.15}gives

(K —)d2 —w')(K —w')
4)(z) =

[K (,„)2][K („,p]g)))(z)A (4 18)

This in turn implies

g„(K —w') g„A =g„(K —w') )})

(K —(o' —w') (K —w')'
g" [K —((u+ w)'][K —(u) —w)'] g"

(4.17)

or

(g), = 3.537 ~ ~ ~ = 1.126 ~ ~ 7T,

(u2 = 6.284 ~ ~ ~ = 2.000 ~ ~ ~ m

e3 = 7.673 ~ ~ ~ = 2.442 ~ ~ ~ m,

g =9.426 ~ ~ ~ =3.000 ~ ~ ~ 7T,

cu, = 10.887 ~ ~ = 3.466 n .

(4.22)

Summerizing, we have found that the P-wave
small oscillations of the bag are described by
the 8amiltonian:

Equation (4.19) is very convenient for a numer-
ical computation of the eigenvalues, which gives

(K —(u' —w') (K —w'}'

[K —(u+ w)'][K —(&)) —w)']

(4.18)
(4~)1/4

+ &/4 ~ {dna,mS, m ~

8 n-1 m-1
(4.23)

which is the eigenvalue equation for &.
Expressed in terms of the components of g„

[see Eq. (4.10)], after some straightforward alge-
braic simplifications, Eq. (4.18) becomes

2 K

()4- ))~*-4.— )*]+,",=0. (4.1S)
(K „+W) [4P —( K „+W) ]

Notice that the series in the left-hand side of
Eq. (4.19) is convergent; we can therefore remove
the cutoff and let the sum range from 1 to ~.

where pe is the action variable that characterizes
the large static boundary mode around which the
system oscillates, +„ is the nth positive solution
of the eigenvalue equa. tion (4.19), a„and a4
are the corresponding normal-mode variables,
and we have included the contribution from the
zero-frequency mode, even if it does not repre-
sent a proper oscillation of the system.

Equation (4.23) can be quantized semiclassically
by replacing the action variable pe with an occu-
pation-number operator Ne, having integer eigen-
values, and the amplitudes a„and a~ with
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annihilation and creation operators g„anda„. However, Eq. (4.23) is not suitable for an
extrapolation to small values of Ne, because of
the divergences for pe- 0, and also has an un-
pleasant noncovariant aspect. We replace, there-
fore, Eq. (4.23) with the equation

M = (F.' —P „,'}'"
oo 3

= —(4Bl"'(/ ~ —g P . „' a„„),
n= 1 tn= j.

(4.24)

which is equivalent to Eq. (4.23) in the limit of
large Pe, as can be easily verified by solving Eq.
(4.24) for E and expanding into descending powers
of Pe

W'e use Eq. (4.24) to define the mass operator
for the quantum system:

(4.25)

(We allow for the presence of an additive con-
stant that cannot be determined from the classical
limit. )

Equation (4.25} is of course rigorously valid only
in the limit of large Ne [where Eq. (4.24) is no

better than Eq. (4.23)], but, supported by the re-
sults obtained in Sec. II, we conjecture that Eq.
(4.25) may give good approximate results also
for the low-lying states of the spectrum.

Notice that, although we have considered only
P waves in this section, Eq. (4.25) can be gen-
eralized to include all excitations. One must sim-
ply replace the sum over n and m with a sum over
all possible values of /, m, and n, where the
eigenvalues +f ~ are to be determined from the
diagonalizations of the separate partial-wave
Hamiltonians, which can be performed following
the method used in this section.

Minimizing the energy F. , one obtains a radius

1

(4 B)1/4 (5.2)

with the corresponding energy

3/4
(4II)1/4 0

(4B)I/ 4

3
(5 3)

E = —+ —BR
4n

R 3
(5.4}

where Ky 4.493 ~ ~ ~ =1.430 ~ - ~ m is the first zero
of the spherical Bessel function j,(z).

A minimization of E now gives
3/4

(4ff}l/4 (5.5)

Our approximate treatment of the bag gives in-
stead [see Eq. (4.25)] (always neglecting the ad-
ditive constant)

These values agree with what one can find from
the semiclassical quantization of the equations of
motion, which, neglecting the additive constant
in Eq. (4.25), gives precisely E =~4 m(4B)'" for
the lowest-lying S-wave state. Notice that in the
variational ansatz one uses a field that obeys the
D'Alembert equation of motion inside the bag and

the linear boundary condition, but does not satisfy
the nonlinear constraint of Eq. (3.4). Still, that
constraint is compatible with the ansatz, and this
is the reason why the variational computation re-
produces the correct result.

One can perform the same minimization, as-
suming that a single P-wave excitation of the field
is present. In this case one finds for the energy
the expression

V. CONCLUSIONS
3/4

E = —(4II)~/
3 jr

(5.5)

4m
& = —+ —BR

R 3
(5.1)

where Kp 7 is the first zero of the spherical
Bessel function jo(z).

It is interesting to compare the results of Sec.
IV, with what can be obtained from a simple
variational computation.

If one quantizes the field 4/(x, t), subject to the
linear boundary condition Eq. (3.2), in a spherical
cavity of radius R and assumes that only one exci-
tation of the first S-wave mode is present (see
Ref. 1}, one finds for the energy of the system

with &, = 3.537 ~ ~ ~ = 1.126 ~ ~ ~ m.

We can interpret these two results by saying that
the inclusion of the motion of the boundary has
the effect of lowering the eigenfrequency Ky cor-
responding to a P-wave oscialltion in a fixed
cavity, replacing it with a new eigenfrequency
up„ the first solution of the eigenvalue Eq. (4.19).
It is understandable that the variational computa-
tion may originate too high an estimate for the
value of the energy, since it does not allow for
the boundary deformations that can lead to a lower
energy of the system. On the other hand, but this
is very speculative, it seems reasonable that our
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method, which becomes exact only in the limit of
small boundary deformations, may overestimate
the effect of the motion of the boundary when
applied to the low-lying levels.

If this is true, then the correct value of the
mass of the first P-wave state of the bag would
be between the two estimates of Eqs. (5.5) and
(5.61, which constitutes a rather good determina-
tion, since ~, and ~, differ by approximately 24%.

Finally, we would like to remark that we pave
considered a system containing a single charged
scalar field in this article because we wanted to
present our method of approximation without the
algebraic complications that are introduced by
the use of spinor or vector fields. It appears

to us, however, that the method can be applied
to a general system, and in particular to realistic
models of hadrons, where, in the absence of a
full theory, the expansion for small boundary de-
formations could be very useful to evaluate further
predictions of the theory to be compared with the
existing experimental data.
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