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We derive representations for Green's functions in the Reggeon calculus. Our renormalization-group

integration method gives the t dependence of the asymptotic scaling functions, as well as the correction terms

which are present at nonasymptotic energies. The approach to the scaling form is governed by a critical

exponent. The method can be used to calculate the scaling form and the approach to scaling of any n-to- m

Reggeon Green's function. We discuss mainly the Pomeron propagator and the three-point function in the one-

loop approximation.

I. INTRODUCTION

Using renormalization-group methods, Abar-
banel and Bronzan' and Migdal, Polyakov, and
Ter-Martirosyan' have been able to elucidate the
nature of the high-energy limit in the Gribov Reg-
geon calculus. In this paper we gain more infor-
mation about the scaling limit and the approach to
that limit by utilizing a different method of inte-
grating the renormalization-group equations. The
method consists of deriving differential equations
for the Green's functions of the theory, in which
the differentiations are with respect to the dimen-
sionless parameters of the theory. These equa-
tions can be integrated to yield integral represen-
tations for the Green's functions. Integration of
these equations can be performed explicitly in

some approximations. We shall refer to this meth-
od as the integral-representation method.

The integral-representation method has some
advantages over the standard method. In the stand-
ard method one finds the critical exponents (e.g. ,
the power of lns in the asymptotic total cross sec-
tion), but is left with a "scaling function" of cer-
tain scaling variables. Some information can be
obtained about the scaling function from compari-
son with perturbation theory, but the integral-rep-
resentation method gives a more explicit answer.
Moreover, corrections to the scaling limit can be
investigated, the J-plane structure of amplitudes
can be determined, and the explicit t dependence
of the elastic scattering amplitude can be found.

For pedagogical simplicity we begin in Sec. II
with an analysis of the simplest example, the de-
rivation of a representation for the dressed Pome-
ron propagator at zero transverse momentum,
k' =0. The Sommerfeld-Watson transformation of
the representation can be taken explicitly, which

yields the asymptotic form of the total cross sec-
tion. Some information is also gained about the
approach to the asymptotic limit.

In Sec. III we present the general method at k'- = 0;
subsequently, we generalize in Sec. IV to k'w0.
An immediate application is the derivation of the l

dependence of elastic scattering amplitude in the

scaling limit. This is presented in Sec. V. Anoth-
er interesting application, which we shall present
in the following paper', is the investigation of the

triple -Pomeron process.
In Sec. VI we analyze the information given by

the integral-representation method concerning the

approach to the scaling limit. We find that the
corrections to the scaling limit take the form of
an expansion in powers of (lns), where A. is a
critical exponent which we discuss in detail. A

discussion of our results is given in Sec. VII.

iI' '( —E, 0) = —E (2.1)

instead of the conventional condition on the first de-
rivative, Our condition implies that the unrenor-
malized Green's function is given by

II. REPRESENTATION OF THE TOTAL CROSS SECTION

A. Representation of the single-Pomeron propagator

In this section we shall illustrate the general
method of this paper by a specific simple example:
the construction of a representation of the single-
Pomeron Green's function I"'(E, k'). We follow

the standard notation of Ref. 1. For simplicity we
shall first work out the case %' =0, and defer the
treatment of the k' dependence to Sec. IV. Our

goal is to obtain a representation of I"'(E, 0) which

is correct in two limits: It yields the correct per-
turbation expansion, and it yields the same singul-
arity at J = 1 as is given by the renormalization-
group method in the e =-4 —D expansion. Our meth-
od is a modification of that used by Sugar and
White' in their discussion of the infrared behavior
of the Reggeon field theory. We find it convenient,
however, to use a different normalization condi-
tion on I'~ ', namely,
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zr' '(-E„,0) = -E„/Z(- E„),

and therefore, for any value of E,

(2.2)

(E )
—z- + ~ D/ E4-—4/4 (2.4)

sionless quantity one can form from the parame-
ters of the theory, &;, n„and E„,

zI' '(E, 0) =E/Z(E). (2.3)

The next step, the evaluation of Z=—Z( —E„), fol-
lows Sugar and White. Since Z is dimensionless,
it can be expressed as a function of the only dimen-

Alternatively, one ca.n express Z as a function of re-
normalized para, meters, that is, boundary values
of the Green's functions at conveniently selected
points. We follow the conventions of Abarbanel and
Bronzan in defining

cz'(E„)= , zT-~ '(E, k')
E=-EN, K = 0

(2.5)

(2.6)

In terms of these quantities one can form the di-
m ensionless quantity

g —~~' -D/4E —z /4
N {2.t)

Moreover, we impose the usual condition that the
renormalized Pomeron intercept lies at J =1,

and proceed to derive a differential equation for
Z (g) by differentiation with respect to E„,

Bg
P=EN ~E

0 0

I"'(0 0) = 0. (2. 8)
=EN Z +EN go —g-, (2.13)

In order to evaluate Z we proceed to derive
equations for the dependence of Z ong, and in

turn, of g on g,. To this end we define the con-
ventional renormalization-group functions,

from which it follows that

d 1 c—lnZ =—+—,
dg ' g 4P

' (2.14)

N gE
Bg

N rorno
(2.9a)

~ lnz
N r, n'

(2.9b)

~Q
&=-&N

~EN ro, no'

Again, Z, y, P, and &/n' are dimensionless.
Therefore, when they are expressed in terms of
renormalized parameters &, o. ', and E„, it fol-
lows that they can depend only on the dimension-
less combination g. Therefore, Eqs. (2.9a) and

(2.9b) imply

(2.9c)

y =P lnZ. (2.10)

Since Z =1 at g = 0 this equation can be integrated
to yield

This equation can be integrated with the boundary
condition Z, (0) = 1 to yield the desired relation be-
tween g and g„

g =g,exp dg' —,+ (2.15)
0 g 4Pg

These equations [(2.12) and (2.15)] constitute the
desired relationship between Z and g, , but to pro-
ceed further we must have some knowledge of P(g)
and y(g). Following the usual line of argument, we
evaluate these functions in perturbation theory.
One then finds that if g, exists such that P(g, ) =0
and P'(g, )&0, and if g, is sufficiently small to per-
mit a valid perturbation expansion in powers of g„
one is able to obtain information about the limit of
I'" ' (E) as E-0. The perturbation calculation in
the one-loop approximation is very similar to that
performed by Abarbanel and Bronzan, but differs
slightly because of our normalization condition
(2.1). The result is

Z=exp dg'r g'P ' g') . (2.1 1)
(2.16)

Now we require a relation between g and g, . To
this end we define

y(g')= y/g'g,

&/~' =4'/g, ',
(2.1V)

(2.18)

g =goZ, (g), (2.12) where g„y, P depend only on D; namely,
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(Ss) D)'2

2 J(D)I'(3 —D/2} '

y = —ex/4Z(D),

(2.19a)

(2.19b)

(2.19c)

where x ' D=/2 —1 and

J(D) =8x(l —2' D)'} ——,
' x+—(2x —1). (2.20)

(2.21)

Substituting similarly in (2.15) yields

g=g.(I+g.'/g, ') ", (2.22)

or

Substituting (2.16) and (2.17} in (2.11) then yields

Z = (1 —g'/g ')

as the renormalized ones. We associate the un-
renormalized parameters with a "bare" Pomeron,
which we assume describes scattering at medium
(Fermilab-CERN- ISR} energies. The renormal-
ized parameters, and the renormalized Green's
functions, are convenient auxiliary quantities
which are of value in the formal development of
the theory and which are somewhat more closely
related to the renormalized Pomeron, which de-
scribes scattering at infinite energies.

It is doubtful whether g, is sufficiently small in
the real world to permit accurate perturbation
calculations. Abarbanel and Bronzan, ' as well as
Migdal, Polyakov, and Ter-Martirosyan, 2 noticed
that g, =0 at D =4 (e =0). They therefore proposed
to expand in powers of e. The one-loop perturba-
tion calculation gives the leading behavior in e;
namely

g.=g(1 -g'/g;)-'",
and therefore

(2.23) g, '/(Sw)' =e/6+0(e'),

y =-e/12+0(e').
(2.27)

(2.28)

Z=(1+g.'/g, ') '"'. (2.24)

Returning now to Eqs. (2.3) and (2.4), we see that
this implies that

(2.25)

The above equation is the representation we have
been working toward. It is very similar to Eq.
(63) of Sugar and White, but is improved in the
following respect: No expansion in powers of e

has been made in its derivation. It therefore cor-
rectly reproduces perturbation theory in the one-
loop approximation. We shall return to this point
at the end of this section.

The representation of F' '(E, 0) also has the im-
portant property that if g, is sufficiently small it
tells us about the behavior in the limit E-0. To
see this, let us rewrite (2.25) in the form

fr" (E, 0) =Etl+g, '(- E)/g, ']'y ' (2.26)

where g, (-E) is defined according to (2.4). At
and in the vicinity of the physical point (e =2) e is
positive; therefore, as E-0 for fixed &p and Qp',

g, ( —E)-~. It then follows from (2.22) that as
gp-~, g-g, . If g, is sufficiently small, we may
then be justified a posteriori in our use of a per-
turbation expansion in powers of g in Eqs. (2.16)-
(2.18).

We emphasize that we are considering the limit
E -0 for fixed r, and np'. The experienced prac-
titioner of field theory might question our reliance
on unrenormalized parameters. We believe that
in the physical problem under consideration the
unrenormalized parameters are just as physical

(2.29a}

+p(r, ). (2.29b)

Note the infinity at D=2. At this point our the-iry
has both infrared and ultraviolet difficulties. In
principle the ultraviolet difficulties are not seri-
ous, because we know that the physics of high-en-
ergy scattering suggests that the momentum-
transfer integrals which cause the divergence
should really have exponential cutoffs. We have
neglected the cutoff in the interest of simplicity,

These results are independent of the renormaliza-
tion procedure; they are implied by our Eqs.
(2.19a}and (2.19b) as well as by the method of Ref.
1. We shall often make use of the e expansion in
the following. Baker and Bronzan and Dash' have
calculated higher-order terms in (2.27) and (2.2S)
and found them to be comparable to the lowest-
order term at the physical point c =2. We there-
fore do not expect that those portions of our work
which take only lowest-order terms in the c ex-
pansion should yield quantitative results. We ex-
pect, however, that the method gives at least qual-
itative insight into the nature of the infinite-energy
limit.

Next, we shall discuss the perturbation expan-
sion of Eq. (2.25}. Since it conte, ins the perturba-
tion expansion of F' ' correct to second order,
Eq. (2.25) of course reproduces this result when
expanded in powers of r,',

r2
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because the introduction of a cutoff would allow us
to form a second dimensionless parameter, there-
by invalidating the simple representation used in
Eq. (2.25).

It would be highly desirable to repeat our entire
treatment in the presence of a cutoff. One can
formally generalize the representations of the
Green's functions, but at a cost of greatly increas-
ed complexity. We therefore defer this program,
and instead give only a, description of the sort of
result one finds in cutoff theories.

We have been investigating several cutoff theo-
ries of the type which make the integrals finite by
means of a factor exp(-bo, 'k ), which will be dis-
cussed in detail in a subsequent publication. Such
theories involve incomplete gamma functions
r(1 —D/2, —Eb) rather than I'(1 —D/2). That is,
Eq. (2.29) can be interpreted through the replace-
ment

where

(s) ~ 2 d] -Krc(q-i(I () n

0

(2.33)

1
7l =—

and where

(2.34)

(2.35)

g+joo
cr (s)= —~ Iir" '(E 0)] 'e»dE2' c -j~

(2.32)

where the contour runs to the left of all singulari-
ties in the E plane, N, is a Pomeron-particle ver-
tex factor, and where Y= lns. At the physical
point D= 2 the integral simplifies. Deforming the
contour to encircle the branch points of I" '(E, 0)
one finds

D
( E)& &I2r ] dte $

DI2
2

which then yields the result
2

ir (E 0) E
( ) D'~2( )D~2

(2.30)

a r(s ) = N, '4 (q, 1; —x Y) . (2.38)

The integral in Eq. (2.33) is an integral represen-
tation of the confluent hypergeometric function
C(q, 1; —xY), for which the notations, F, and M are
also used, ' so that we can write

+ 0(r,') . (2.31)

B. The Pomeron propagator in the s plane

Having arrived in Eq. (2.25) at an explicit repre-
sentation of I"'(E, 0}which incorporates the per-
turbation expansion correct to order &0' as well as
the correct limit at E = 0 as implied by the renor-
malization group, we shall in this section take the
Sommerfeld-Watson transformation of Eq. (2.25)
and discuss its properties. Its contribution to the
total cross section is given by

Although the cutoff has removed the ultraviolet
divergence at D=2, the perturbation series in Eq.
(2.31) still has infrared difficulties, which have
been analyzed by Sugar and White. ' In particular,
the second-order perturbation term fails to satisfy
Eq. (2.8), which implies I" '(0, 0)=0. It is, in
fact, impossible to enforce this condition order-
by -order in perturbation theory.

Our representation (2.25) gives the correct E-0
behavior only in an e expansion. To obtain the
representation one must at each order in pertur-
bation theory take e small enough so that no in-
finites appear at E =0.'' In second order one
sees from (2.30} that this means e &2. In order
&'o'" the infinity is encountered' at e =2/n, so that
one is required to work arbitrarily close to e = 0.
Finally, one continues the resulting representation
back to the physical point e =2.

Notice that the variable on which o~ depends is
xY—= (r, /o, , 'g, )Y. The dependence on (r,'/oo')Y
has been observed in Ref. 2, but it is interesting
that the factor g, 2 is present also. For small
g, —that is, for theories which are nearly asymp-
totically free —the renormalization-group limit is
achieved at smaller Y. We shall discuss the ap-
proach to scaling in more detail in Sec. VI.

The asymptotic expansion of the cross section
for large z Y can be obtained by expansion of the
last factor in the integral representation (2.33).
The leading term, ' evaluated using the c expansion
of Eqs. (2.27} and (2.28), is

3y 2 1/6 Yl/6
0

,'(8 ) r(—;)
(2.3

vr(s) =X,' I-q~ Y+q(@+1), , + . . (2.38}

Thus the zeroth order term is v( (s0)=N, ', the con-

The power of Y agrees, of course, with the results
of Abarbanel and Bronzan. ' The coefficient may
also be of interest, although it is model-depen-
dent —that is, it does not have the universality
property of being independent of the Pomeron in-
teraction chosen. We shall return to this point
after discussing the perturbation expansion.

The perturbation expansion of Eq. (2.33) can be
found by expanding the exponential to obtain the
usual confluent hypergeometric series. The first
few terms are
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3y 2 l/8 Yl /6
(0)timor(s) =or, (~),0

(2.40)

where 0&~~ is the contribution to the total cross sec-
tion arising from bare Pomeron exchange. If the
bare Pomeron can be isolated by phenomenologi-
cal studies at Fermilab-CERN-ISR energies (as
well as the magnitude y, of the bare triple-Pome-
ron coupling) then (2.40) can be used to predict the
asymptotic cross section. Such an isolation would,
however, be model-dependent.

tribution of bare Pomeron exchange.
The first two terms in (2.38) are just the F-plane

version of (2.29). Again, the series is meaningless
at D=2, because K=~ at that point. If, however,
we introduce a cutoff and thereby replace (2.29) by
(2.31), we can transform to the Fplane and obtain
for Y»b

Yor(s)= Ni 1+, Fln ——Y + ~ ~

16@'n0'

(2.39)
This gives us an interpretation of our representa-
tion, Eq. (2.25), in the region where a low-energy
perturbation series is valid. We have already ex-
hibited above expressions which are valid for large
Y. Although divergence difficulties prevent us
from exhibiting a representation which interpol-
ates smoothly between small and large Y, we have
found a relation between the magnitude of the cross
section at the two extremes; namely,

III. GENERAL METHOD, k' =0

In Sec. II we have illustrated the method for ob-
taining a representation of the two-point Green's
function at R'=0. We shall present in this section
the general method for obtaining the representa-
tion of any N-point Green's function at P =0. In
particular the representation of the inclusive cross
section in the triple-Pomeron region will be dis-
cussed in the following paper. '

The renormalization-group analysis exploits the
fact that the energy scale is set in the theory by
the arbitrarily chosen renormalization point E„.
Since the variation of the location of the renormal-
ization point -E„-gEN is a symmetry transfor-
mation, the variation of the parameters of the
theory due to this transformation are correlated in
such a way that no change is introduced in the
physical content. The detailed functional varia-
tions of the renormalization constant Z, the re-
normalized slope, and the coupling constant can
be found in this way. Using this information, one
can investigate the infrared behavior of the renor-
malized and unrenormalized Green's functions of
the theory, which in turn determines the asymp-
totic behavior of scattering amplitudes at infinite
energy.

The renormalization conditions which we will
use are (2.1) and (2.5), but we shall generalize
(2.(j) to'

(E,E&, E&) =(2's) + I' ' (E k')ls =-s, E =-s, s =-s (3.1)

Since g is no longer the only dimensionless quan-
tity we must look now more carefully at the rest of
the results in Sec. II. In second-order perturbation
theory we now find

a'=go 1-2go
(8 )ug2 ~(» ~2 Is) ~

where

(3.2)

J(D, /2, 13)= 4 I(D, I2, I ~) —3x/2+(2x —1)D/8,

(3.3a)

l D/2-l
y l D/2-l—I(, I„I,) =x

2( )
+

2(1 )
—, (3.3b)

and where

9
y =EN lnZ

Bg & ln Z
~lN EM, E ~ N EM, E~ 2

l, ~ln Z
(3.4)

where all derivatives are taken with r„a0', and D
held fixed. We can simplify this expression by ob-
serving that

EM lnZ =08
M gEM EN, E~

~E
3

N
(3.3 c)

Bg 8
=EM —lnZ

EN, E

In calculating y we have to take into account the
fact that not only g but also l, and l, are dimen-
sionless. The generalization of (2.9b) is as follows:

8
+l2 lnZ,

2

and similarly for E~ to obtain

(3.5)
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BlnZ
X

Bg

Introducing the notation

Bg Bg
P=EN +E~

N E~ 2EL Af EN2 EL

(3.6a)

Bg. BE E E
(3.Va}

we can write (3.6a) in the same form as (2.10),

B
y =P —lnZ.

Bg
(3.6b)

y= E„+EBg B +E, B
N

N' N'

was calculated to second order in perturbation
theory.

Define y„by

yx 4 2
1

(3.13)

(3.14a)

where g, is the zero of P(g), and is given by Eq.
(2.19a}with the change J(D)- J(D, I„l3}. Then

g( g, l 2l 3D) is evaluated as in Sec. II and is given
by Eq. (2.22) with g, (D) -g, (D, I„I 3) [and —g, (D)
as D-4]. From Eq. (3.12) we see that the rest of
the parameters of the theory are proportional to
powers of (1+g '/g ') '/':

-1/2 4y /6

Z, = 1+ ~g,

The quantity P is just the total derivative E„dg/
dE„with /2 and l3 held fixed,

y 2 E -6/2 -27 /6
0 N

0 (oI l)D/2 2 (3.14b)

d
p=E» dE g(E», E„=I2E»,Ez =l3E„)

N l22 t3

(3.7b)

Using this formula one easily finds from (3.2) that

In particular, we are interested in n' and r. If
we define

BQ~l y
IN r02a 2E 2E

N L

e g I'(3 —D/2)
P 4g 2 (8 }D/2 ( 1 21 I3)1 (3 8)

then from (3.14) it follows that

(3.15)

X Z X0 (3.9)

and y remains unchanged.
Note that as e -0, J(D, l2, I3)-3+O(e). The gen-

eral procedure works as follows: Take Z, to be
any renormalization constant in the theory, either
the wave-function renormalization Z or a constant
Z„defined by

-2g /6
n'=n ' 1+g~

0 g 2

Moreover, one finds

g 2 -2y /

r=r 1+~0 g 2 0
1

2 -1 /2 -g D/2&

gj

(3.16)

(3.17)

where x is ~, a', etc. , and x, is the unrenormali-
zed x.

We find

From (3.14a) Z is found to be

Z= 1+~2 = 1+~2 (3.18}

r. = P(g)
B lnZ„

where

' (E» E =I'E»)din Z,

&In Z,

j&i

(3.10) Returning now to our previously mentioned pro-
gram, we vary —EN -gEN in order to investigate
the response of &, n', g, and Z to this change.
Define X(3)) as the value taken on by the parameter
X after the transformation —EN -gEN. It follows
that n'(3I = —1) =o.', &(-I)= &, g(-1) =g, and Z(-1)=Z.

Using Eqs. (2.22), (3.16), (3.17}, and (3.18) we
find

{3.1.1)
2

g(3)) =g, I+( n}'"- (3.19a)

Integrating Eq. (3.10) one finds

x=».exp r.(g')P '(g')~g' .
0

(3.12)

g2 -27/&
Z(3i) =Z(-3))"

g(3i)'
(3.19b}

The interesting case occurs of course when P(g}
has a zero We will continu. e to use Eq. (3.8) which

2 -2g /6

o/(3I ) = o'(-3})'
g(n)' {3.19c)
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g2 -2/ /I

r(n) = r( nP-. g(n)'

n'(n) ( n)'n'-f ~ —,I

$~0
(3.20)

(n) ( n)'"'""'-~ f'0~0

Equations (3.19a)-(3.19d) can be used to calcu-

[where y, = e /4 + (D/4)E j .

(3.19d)

The existence of a zero in P(g} at g=g, is re-
sponsible for the limit lim„, g(n) g, in (3.19a).
We see therefore that Eqs. (3.19a)-(3.19d) give
the exponents of Z, a', & as the scale of the renor-
malization point is varied, in the limit g -O:

z(n) ~ ( n)&zf-2 g
'g ~ 0

late the infrared asymptotic behavior of any renor-
malized Green's function. For simplicity we first
consider k, =O. From dimensional considerations,
we have

iI'" (E,= —li.E„,k, =0, n', r, E„)—
—rlI +III 2( E )3 Iz II

y ( I )

(3.21)

The —E„ in I'~™denotes the fact that the theory
was renormalized in the sense of Eqs. (2.1}, (2.5),
and (3.1). The powers of r in Eq. (3.21}were
chosen by power counting in any zero-loop diagram
which contributes to I'„"', but any other form is
also appropriate for the discussion.

The following relation enables us to find the in-
frared asymptotic behavior of any Green's function
by using the exponential behavior of the parame-
ters as -E„-gE~ is varied:

irs' (E, =l,E, k,. =0, n', r, —E„)=Z(g)l '" 'lI"' (E', =l,E, k,. =-0, n,', r, )

=Z(g} '" ' Z(g(n)) '" ' iT"„(E;'=l,nE„, k, =0, n', r, nz„)i„

Using Eq. (3.21) one then finds

(nt+ n)/2

iI „" ~ (E=, i,.z, k,. =0, n.', r, —Z„)=, , r(n} " (nz„~ "4}, (gZ(R) q = E/EN

Using (3.19a)-(3.19d) one finally obtains

-(na+ n)7/2 -Dz(m+ n-2)/4 E D(2-fn -n)/4
ir" (Z;= l;E, k, =o, n', r, E„)=E ——-

N

(3.22)

(3.23)

2 - E & /2 2 — 7(fn+ n)/6- t D(1-z)/2e+1/2](nt + n-2)x' —, 1+ —1
g1' E~ g'

x(-g) '"-'4 „(g, l,. ), (3.24)

where z =1 —(.This result gives the E-O asymptotic behavior in agreement with that found by Abarbanel and

Bronzan. ' In addition, it: gives for I"' and I"' ' representations which contain the perturbation expansion
in powers of r2 (correct to second order} as well as the asymptotic behavior.

It is possible, of course, to obtain from Eq. (3.24) the representations for any unrenormalized Green's
functions r"' (E;k, ) as well.

The functions Q„are, at this point, unknown. For the special cases I'~' ' and I'„' ' these functions are
determinedbytherenormalizationconditionstobe p»(g, I;)=1 and&)»(g, l ) =(21r) t~ il/2. If we were inte
rested in higher Green' s functions we could choose appropriate renor malization conditions to determine their

P functions, thus changing our definitions of the parameters.
Turning now to our simple special cases, we find from {3.24) that the unrenormalized F' ' is given by

( E)- / 2YI/I2

iI' '(E, 0, n, ', r, ) = E 1+, (3.25)

which was discussed in Sec. II. We also find

r 2
( E}-z/2 37/z +zD/2z-2/3

iI"'(E, l E, l,E, 0, n ', r2)=(„,&ii', », l, 1+,
4Kj «0 i

(3.26)
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Equation (3.26) [as shown for (3.25)] when expanded in power series gives the correct second o-rder per-
turbation expression for 1"'. It also gives the asymptotic infrared behavior of I"' calculated to the one-
loop approximation through P, y, f.

IV. GENERAL METHOD, k2%0

Is=-s, %=X = E» o' h»
N

(4.1a)

goal, 1
R (4. lb)

l, 2' y
»i= s»»o=-s»»o= »z, : (2x)v'"~' '

(4.1c)

The method that we have used in the preceding
sections gave us representations for the various
Green's functions at zero momentum transfer. It
will be extended now to include also nonforward
amplitudes. The only additional step required is
the introduction of a momentum scale k„' into the
analysis, which is accomplished by the use of re-
normalization points at k'10.

We define the parameters of the theory by the
fo llowing conditions:

and where

e [r+(1-&)4
0

who{ v,'+) v,' ——,'(v2' —r. v, ')) ]

+[2-3]'"-' I

i' (4.2e)

h, = o.,'h»'/E».

Since a new momentum scale has been introduced
into the discussion, the derivation which led to
(3.14) has to be slightly modified.

We shall generalize the discussion here to in-
clude in the theory any number of parameters in
addition to & and n'. In general the new parame-
ters can be chosen to be dimensionless. We denote
the set of dimensionless parameters (excluding l&

and v, , which we treat separately) in the theory by

For each parameter x= x+„ in the set (x=g, h, or
y;) define f„»:

The set of dimensionless parameters now contains
the v, l, =—E»/E», /, =E~/E»,

~X
g„E ——Ei

i B, E,A.1&i'
(4.3)

, r(2 —D/2) ~hZ =1+ago (8»)v/o 1+

o/2 —
2) ~l

(

(4.2a)

, r(2 -D/2) ~h
Q Qo 1+ogo

( )vy2 1+

1 D/2 —2

2 D/2 —1
+~ [. (4.2b)

h

2.

-6/4 n 'kN2
g =, qqDy4 and also A =

(Q J N

From (4.1a)-(4.1c) one finds the following ex-
pressions to second order in g0: ~ln Z„

&xE= ~ i ~E
2 B, E

(4.4a}

=E» (4.4b)
N B, l

We shall find that it is only the total derivative in
Eq. (4.4b) which we require in forming integral
representations. This is fortunate in that the total
derivative turns out to be a much simpler quantity
to calculate than the individual terms in Eq. (4.4a).

Now it follows from the fact that Z„ is dimen-
sionless, and is therefore a function of dimension-
less quantities only, that

where B denotes &0, n0, and any additional dimen-
sional or dimensionless unrenormalized parame-
ters. Let us also define

, r(2-D/2)
g —go 1 —zgo (8 }v

where

D 3J =4F+ ——— 1+~
8 2 2

(4.2c)
&lnZ,

~xE ~ yE

where

dy
~ME 2 ~ys; El» di N B, l o~.

(4.5)

(4.6}

D-4 3 D 1+~
D —2 2 4 2

(4.2d) The same can be done now by using derivatives
with respect to the k, 's. One finds
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sin Z,'"=, '" ey ~

where

, ~lnZ„
~xy ~ i gk 2

5 i B, E~, A ~ ~i

2 dlnZ»

N B, E~, v~

(4.

(4.8)

and

dg
~E A +N dE N iB, l. , v. , hi

We will return now to our specific problem.
From (4.2c}one finds

(4.16b)

I3(g}= —4g+-,'g' (" )D~'2' J(D, I, , v, , h). (4.1'I)

and

i B, Ego 4~&i

= kN' (4.9)
EE j

In our nonrelativistic theory, Eqs. (4.5) and (4.7)
are independent and therefore we can get rid of
one of the derivatives with respect to any one of
the dimensionless parameters of ( y ) =( g, h, y; j.
Eliminating h, for example, one gets from (4.5)
and (4.'I)

[The only difference between Eqs. (4.1'I } and (3.8)
is that now J is given by (4.2d). ]

In the use of Eq. (4.10) with renormalization-
group functions calculated in perturbation theory,
only terms up to order g' and eg' are kept in the
lowest order in the e expansion. To this order
Eq. (4.15) simplifies to the form

(4.18)

We also see that to lowest order in the e expansion
P has no dependence on k, v, , h and we have

~ln Z„[ .y, ~.].,=[V, ~.].. . * P(g) = gl —-—-,g
4 g 2 (4.19)

~ln Z
+ Q [&„&a]Ea 8$

(4.10)

Z» 1 (4.20)

and, again, as in the preceding section we find

Here we use the notation P= g, and

[&.&,]..=c..r., —&.,&. . (4.11}

In a theory with the dimensionless parameters g
and h only we have

Yg 4 (4.21a)

where y, is defined from y, =y„g'/g, '. Note that if
x, is independent of E, and 0, , we have y, = g, /x.

To lowest order inc one finds

g l l. yx ~ h]Ek

I II, ~.]..
0

(4.12)
(4.21b)

Using

and

1=h —1+ —,( (4.13)

E

12 '

Note that y, = (1/g)P+e/4, thus

g=g. 1+

(4.21c}

(4.22)

&„=h 1+ —,( (4.14)
and in terms of the renormalized g we have

one finds

where

1 1 alnZ„
~ Ek

(4.15)

2 -g 2/6 2 &2/6

j. 1

(4.23a}

(4.23b)

+X ~ XE ~X/

d ln Z,
N EN B, l

din Z,
dEN

, d lnZ„
dkN

(4.16a)

These simple expressions, which embody the
results of our renormalization-group analysis, en-
able one to write down representations for any
Reggeon-calculus Green's function. In the next
section we write down and analyze the represen-
tation for I ' ', thereby obtaining the I, dependence
of asymptotic elastic scattering.
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V. THE SHAPE OF THE DIFFRACTION PEAK

The simplest, and one of the most interesting,
applications of the formalism we have developed
is the calculation of the shape of the diffraction
peak in elastic scattering at asymptotic energies.
The leading contribution comes from G' '(Z, k').
Combining the same reasoning which led to Eq.
(2.3) with our renormalization condition given in
Eq. (4.la), one finds

This simple result indicates an approximately ex-
ponential diffraction peak, with a rate of shrinkage
faster than that of a Regge pole.

The above approximate result is useful only for
small t, such tha, t the argument of the exponential
is not large. To be more quantitative, we return
to Eq. (5.2) and perform the Mellin transform di-
rectly, after expanding the first factor as before.
At the physical point c =2 the transform can be
expressed in terms of confluent hypergeometric
functions, as in Eq. (2.33),-z(-z, k)

z — '(- z k)k
(5.1)

A(s, t) = sN, (t)N6(t)

Now Z and a' can be evaluated by means of Eq.
(4.20} to yield the result

2G"(Z k')={-Z+u 'k'[1+K(-Z)-'/']-" 4}-'

x [I+K( z) /'] ~/-- (5 2)

where K =-r02/(ot0'} /2gt2, and where y and p are de-
fined in Eqs. (2.17) and (2.18). Note that to this
order in the e expansion the k dependence is rel-
atively simple, and there is no dependence on L;

or v,-. Moreover, to this order

~ (ot0'tins)" 1 n
@ ————,n+l, -vins .

n& 6 12'
(5.8)

Using the asymptotic approximation for 4 leads
again to Eq. (5.8).' We have, moreover, evalu-
ated Eq. (5.8) numerically, and in Fig. 1 we com-
pare the results with the approximate form (5.7).

The contribution of the forward diffractive peak,
in the e expansion, to the ela, stic cross section is
given, according to Eq. (5.7), by

E
y = ——and f =-—.

12 24 (5.3 )

Our next task is to take the Mellin transform of
Eq. (5.2) to obtain the scattering amplitude in the
s plane. An approximate result for sma, ll t = —A,

"
can be obtained by first replacing Eq. (5.2) by an
approximate form valid for small Z (and there-
fore large energy),

2 (K Ins)

N, '(t)N, 2(t) exp[2K' 24ct0'f (lns)'"/ "]dDk

(5.9)

2Gl, 1 (z k2) [ z + ot tk2Kl /12
( z}-4/24]-1

ltKl/6( Z)-6/12

Then expanding the first factor one obtains

(5 4)

If we take N(t) =N(0)e ' we have or =N, (0)N, (0)
(K lns)'/" and

o tot [4fl+ 2K4/24t2 t(lns }1+4/24] D/2-
16m

zG1' 1(Z k2) Kl 6(—Z) 1 4 12

xQ [t2 fK1 12(- Z) 1 4/24] (5 5)
@=0

[t2 'tKt "(lns)'"/ "]"
~0 I'(1+n+e(1/12+ /2422))

' (5.6)

where the N 's are the usual Pomeron-particle
vertex functions. Now if we make the further ap-
proximation of neglecting terms of order e in the
argument of the gamma. function we find'

A(s, t) = N(t) N(t6)K' 's(lns)'/"

x exp [420
'tK'/" (Ins }"' /" ].

Performing the Mellin transform one then finds
for the absorptive part A(s, f) of the elastic scat-
tering amplitude

A(s, t) =N (t)N6(t)K' (lns)' "

N(0) Kl /6(h s)-6/6
„64m (5.10)

It is interesting to examine the J-plane singu-
larity structure of the amplitudes we have derived,
although one should regard the results with proper
caution. An approximation to a scattering ampli-
tude could give a useful approximation to the I; de-
pendence over a range of t and yet have a very dif-
ferent singularity structure from the exact ampli-
tude. After that word of caution, we proceed to
examine Eq. (5.2). One sees that the singularities
of G'' in the complex J plane consist of a branch
point at 4 =1 and a pole whose position is a func-
tion of f Turning to Eq.. (5.4), which is valid near
J = 1, one sees that for positive t there is one pole
on the physical sheet, which occurs for real J & 1.
For t negative, there is a pair of complex conju-
gate poles on the physical sheet at
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&pg. = 1 —(tw, '~t~K" /")' '/'4(I~ twas/24). (5.11) E =0 contributes

These poles make the following contribution to the
imaginary part of the elastic amplitude:

2N (t)N4(t)K' e "' we
( ) 1 /24 /l2 cos

24 (T ill 2)

(5.12)

A,„,(s, t) = —N, (t)N, (t)K'/'—

where

e —x ln s(T + 2&l+ 4/24)dx, /24, , 44/, 4), , (5.14)
x (T+x

where T =- n, ')t (K'/l2 (5.15)

(5.13)

Note, however, that the oscilhtory cosine term is
equal to unity to first order in e, and is therefore
not significant in our order of approximation.

In addition to the pole contribution, the cut at

I.O

0.5

Note that as t-0 both pole and cut contributions
are singular. It is easy to see that the singular
part of the cut contribution cancels the pole in this
limit.

Note that when G' '(E, k) in Eq. (5.2) is expanded
in powers of rc, without expanding in e, it correctly
reproduces the first two terms in perturbation
theory. This happens in the same way as was dis-
cussed in Sec. II for the case of G''(E, 0). There-
fore, G' '(E, 0) will contain explicitly the input
moving cut. The absence of a moving cut in the
first-order e expansion [namely, using Eq. (5.3)
for y and P and g, = (e /6)(6w) ] may be seen there-
fore as a special property of this order of the cal-
culation and may change when higher-order terms
in e are included. "

VI. THE APPROACH TO THE SCALING LIMIT

O. l

0.05

In the preceding sections we have derived rep-
resentations of Reggeon Green's functions which
exhibit the asymptotic, or scaling, limit implied
by the renormalization-group approach. More-
over, these representations [such as given in Eqs.
(2.25) and (5.2)] imply nonasymptotic corrections
to the scaling limit. In this section we investigate
the generality and reliability of these nonscaling
corrections.

A. Approach to scaling at k = 0

Let us first consider the simpler case of k'=0.
Our representation, given by Eqs. (2.25) and (2.29),
1s

0.0I I.O 2.0
I i

3.0 4.0
g +too

v (s) = N, ' E -'[I+K(-E) ' 'J '"/'2'
FIG. 1. Numerical comparison of the expression of

the diffractive peak in the elastic amplitude calculated
to the one-loop approximation in Eq. (5.8) with a pure
exponential e in the scaling variable (the graph was
drawn taking K lns =10). The solid line represents

where

K = y' ~/(R ~ )D/'4g 2

x e ~~dE,

(6.2)

(K lns) ~ 4 ————n +1 —x lnst/6~ (~0' t lns)" 1 n

n! 6 12' w

a=0

and the dashed line represents e ", x=-uo'tt(. " ~ (lns)~+

Expanding the term in brackets in Eq. (6.1) for
small E and performing the Mellin transform one
obtains the asymptotic expansion
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2- 2- 2-+- . + --y ——y —1 ——y —k+1 g
-~ (Ins)- ~ ' /2

k!I'(1 -y —ke/2} (6.3)

As we discussed at the end of Sec. IIA, the divergences of the simple Reggeon calculus prevent us from
applying our results directly at the physical point D=2. Instead one performs an e expansion, which is
then continued to & =2. The calculations to this point were within the one-loop approximation for the re-
normalization-group functions P, y, &; therefore, the critical exponents as well as the scaling functions
can be calculated in an e expansion to order e. Expanding Eq. (6.3) one finds for cr(s)

E
or(s) =N, e' (lns)' ' 1+—Lny, +K '(lns) '/

(+6 —~ e Iny, )+O(K (lns) '},
L

(6.4)

where y, is the Euler-Mascheroni constant.
We kept in Eq. (6.4} only the leading correction to the asymptotic form, although the rest af these terms

of order v "Ins '/" are easily calculated to the desired order from Eq. (6.1).
Note that for fixed &, and a, ', &

' is proportional to c. To get better insight into the significance of this
expansion, it is interesting to reformulate it in terms of renormalized quantities. Making use of Eq. (2.23}
one finds that

x-1 + 2(+ t)D/2/r 2 + 2E -&/2/+ 2 E -&/2(+ 2 p)/g
Expressing the total cross section in terms of renormalized quantities according to the relations

Gl, 1 Z-1Gl, 1
R

N~~ =Z' N, ,

we can then write
2

ar(s) =N, sm(E„lns}'/" 1+—Iny, + ' (E„lns) '/'( —', 72e l-ny, )+ ~ .

(6.5)

(6.6a)

(6.6b)

(6.

Both Eqs. (6.3) and (6.7) are valid forms of the
asymptotic expansion of the cross section, which
exhibit the lowest-order corrections to the scaling
limit. Note that the asymptotic expansion is an ex-
pansion in powers of (lns), where X =e/2. We
shall discuss the significance of this exponent" in
detail in Sec. VIB.

Note also that the expansion parameter is pro-
portional to & '. In terms of bare parameters, ~ '
is given in Eq. (6.2}. If one holds r, and n, ' fixed,
then it is the size of g, (which depends on the par-
ticular model and method of renormalization cho-
sen} which determines the scale of the nonscaling
terms. On the other hand, one can focus on the
renormalized parameters g and F-„. Then we see
from Eqs. (6.4) and (6.7} that it is the proximity of

g to g, which determines the scale of the nonscal-
ing terms.

B. General discussion of the approach to scaling

The approach to the scaling limit presented in

Eqs. (6.3) and (6.4) was calculated in the one-loop
approximation. From Eqs. (3.6b) and (3.10) one
can see the general form of the term which gov-

erns the approach to the scaling limit. Consider
a theory in which the dimensionless coupling con-
stant has the form go= QE„, where Q is a func-
tion of the bare parameters and P is some power
of E„(in our case P= e/4) -Defini. ng g =gg,
we have

9
r, (g) =&(g) e InZ„ (6.8a)

where

1
~, (a) = —&(a) —P (6.8b)

If P(g) has a zero at g, and if the renormalized

g is close to g„we have

A. = ~P(g)
W, (g, ) = -P.

dg

For the wave-function renormalization constant
one finds

-)
~, =exp ' dg =(1-g/g )" "~"', (6 ~).0 &(S)

where
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2 =(1 -g/g )y' " find K= e/2. The higher orders in e can be found

by using the calculations of Refs. 5. One finds

A = ——e2 (~+~2~ in~2).
2

(6.12)

(6.11a)

x 1
gl g

( / ))/P y(gl)
( E/E )).

gy

+ 0 ~ ~

(6.11b)

Comparing Eqs. (6.11) and (6.3)-(6.7) one sees
the origin of the various expressions containing an
e dependence in Eqs. (6.3)-(6.7). The infrared-
stability condition (X &0) will ensure the decrease
of the nonleading terms as we approach the scal-
ing limit as lns- ~. The region in which the non-
leading terms may be neglected depends on the
exponent A, and the "nonuniversal" constant in front
of (-&) in Eqs. (6.11).

The new critical exponent ~ can be calculated
within the c expansion, and to first order in e we

(6.10)

Therefore, we find for the case in whichg is close
tog,
I) 1(E 0) ( E)1-y(&))(y/g )-y(2))/&

This is a poorly convergent expression. It is in-
teresting to note that in solid-state physics" the
analogous critical exponent (which was calculated
there to order c ) is also one of the worst-con-
verging critical exponents and is evaluated by
using Pads approximants. Here we have K(e =2,
&0, and Pads approximants suggest h. (e =2) =0.37.
Higher-order terms in ~ might change this value
consider ably.

The corrections to the scaling contribution of
G" to the elastic amplitude are in principle com-
peting with the contributions of graphs in which
several Pomerons couple to the external parti-
cles." The determination of the leading correc-
tions to the scaling contribution depends on the
power behavior in lns and in practice, at finite s,
it depends as wel. l on the so-called "nonuniversal"
coefficients which stand in front of the Ins power.
The power of the leading correction to sealing
which comes from G" is lns y (to second order
in e one finds'-y= 2/12+0. 05e'=0.38); this term
is competing with the leading contribution of
G' -lns '. The bad convergence properties of
1).(e) preclude making any definite conclusions as
to the dominant corrections. It is highly desirable
at this point to calculate the exponent K(e) using
other methods in the Reggeon field theory.

C. Approach to scaling at k240

The representation of G"(E, t) given in Eq. (5.2) results in the form (5.8) for A(s, t) Equation (.5.2) can
be written in the form

iG 1,) ~ (t o ~ )2 K-(2 /6) y -(2/2 )Cn / E)-le+ y oi [I +
- ) / E) e/2]-(2 /e ) y +2 /e )Xn

Q J 5 /

n=Q

(6.13)

Again the asymptotic expansion in powers of K
' introduces the nonleading terms which govern the approach

to scaling:

tG ' (s, t) = Q (e2 t) K ""y" '""s(lns) y

n=Q

x ——(y+ gn)g '(lns)" t" 2, (lns)" t" ' '
+O(K '(lns)"-2 n- fn-

I'(1 +n r„n —y) —e I'(1 +n —y —in —e/2) (6.14)

The ~ expansion to order e gives

iG"(s t) =sK' '(lns)' "e* 1 ——@(x)+—K '(lns) '' 1+———x—@(x) +x)t)(x) —10$(x)x e. d
(6.15)

where
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and

(2 IE )t (1 os )
I . o i

f s 1 I 12 (los )
I+ 6/24'

x t "dz, ] 1 —e"
Q(x) = 1+— -lny, + /

—(1 —e ') + (6.16)

The function Q(x) is "universal" and will not be changed when higher orders in e will be computed. The
approach to the scaling limit is governed by lns and a "nonuniversal" coupling x '. Again we may write
(6.15) in terms of renormalized parameters using Eqs. (6.4)-(6.6); in addition we have

Finally

(2/E') g ~I+ ~ f 2 / 2)(2f&) 0

1

if~1 /12(lns)1+E/24 o tElE/2
(4l n)s1+E/2 4

(6.17a)

(6.17b)

2 2 xiG"(s l) = s(E lns}' "e" 1 ——. Q(x) +—','E lns) ' ' 1+———x—p(x) +xQ(x) —10$(x)

{6.18)

VII. DISCUSSION

As the onset of scaling in Beggeon field theory is probably beyond present laboratory energies, it seems
highly desirable to study the transition from the perturbative scheme applicable at present energies to the
critical phenomena approach presented in Refs. 1 and 2. In this study of Reggeon field theory we have pre-
sented a method of integration of the renormalization-group equations and then used it to discuss the prob-
lem of the approach to the scaling limit and the detailed functional form of this limit. As the energy in-
creases, a transition region is reached in which the perturbative scheme is not very useful in the sense
that one must add many terms, while the energy is not high enough for the asymptotic form to emerge.
At these energies it seems very useful to have a description of the structure of the terms which govern the
approach to the scaling limit. For example, according to Eq. (2.26) the total cross section is given by

=iV's'(E„lns)'' 1+piny, + ', (E„lns) '(&-~6lny, )+O((g -g, )'(lns) '} (7.1)

If one expands 4' in powers of rp lns one obtains
the perturbative scheme for the Pomeron propa-
gator contribution to the total cross section. At

high energies one would prefer the asymptotic ex-
pansion written out in Eq. (7.1); namely, a lead-
ing (lns) ' "term multiplied by an expansion in
decreasing powers of (lns) ''. Written in terms
of renormalized parameters, the above expres-
sion presents us with a very appealing description
of the total cross section in the preasymptotic re-
gion.

Similar expressions to (7.1} can be easily ob-
tained from the analysis described in Sec. III for
any I "' . We further extend our method of inte-
gration of the renormalization-group equation to
include the A,.

2 dependence. Including any number
of additional dimensionless parameters, a dif-
ferential equation (4.10) has been obtained for
each of the renormalization constants Z„ in the

theory. We integrate this general equation in the
one-loop approximation for the Q' Reggeon field
theory under consideration. We choose the re-
normalization condition

(7.2)

[a natural generalization for k,. '&0 of the condi-
tion of Eq. (2.1)j, which proves to be a great tech-
nical improvement since the need for a two-dimen-
sional integration is avoided. The shape of the
diffractive peak and the scaling functions at t +0
were easily obtained in our method. The absorp-
tive elastic amplitude is given by Eqs. (5.7}, (5.8),
and {6.15). Its ~-plane structure is discussed in
Sec. V.

We present in Sec. VI B the general form of the
approach to scaling {up to this point it was only
discussed in the one-loop approximation for the
renormalization-group functions). The general
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form is characterized by an exponent ~ governing
the approach to the scaling limit. Since the ex-
ponent A. (e) has a poorly convergent e expansion
[Eq. (6.12)j it precludes drawing any definite con-
clusion, at second order in the e expansion, as to
the dominance of the nonleading terms in G" on
contributions from the leading terms in the "non-
enhanced" graphs. It would be desirable to cal-
culate the exponent ~ and to study the approach

to scaling by using methods in the Reggeon field
theory which avoid the need of an ~ expansion.
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