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Path-integral formulation of scattering theory
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A new formulation of nonrelativistic scattering theory is developed which expresses the S matrix as a path
integral. This formulation appears to have at least two advantages: (1) A closed formula is obtained for the 8
matrix in terms of the potential, not involving a series expansion; (2) the energy-conserving 8 function can be

explicitly extracted using a technique analogous to that of Faddeev and Popov, thereby yielding a closed path-

integral expression for the T matrix. The introduction of the concept of the classical interaction picture

provides considerable physical insight into this formulation. This formulation also suggests a successionof

improvements to the eikonal approximation, the first of which is discussed explicitly.

I. INTRODUCTION

Feynman's path-integral formulation of quantum
mechanics' has been a subject of considerable in-
terest recently. 2 In this paper, we develop a path-
integral formulation of nonrela. tivistic scattering
theory. This work is an application of previous
results of a path-integral formulation for arbitrary
generator s.'

Starting from the quantum-mechanical interac-
tion picture, in Sec. II we derive an explicit path-
integral representation of the S matrix. In Sec.
III we discuss classical scattering processes in a
set of canonical variables which we call the classi-
cal interaction picture. Particular attention is
paid to the form that time translation inva, riance
takes in the classical interaction picture. The re-
lationship between the path-integral representation
of the S matrix and the classical interaction pic-
ture "action" is obtained. In Sec. IV, we derive
the Born series for the T matrix using our forma-
lism. In Sec. V, we use a technique similar to
that of Faddeev and Popov4 to extract the energy
conservation 5 function from the S matrix. We

thereby obtain an explicit path-integral expression
for the T matrix. The form of this expression is
suggestive of the eikonal approximation. In Sec.

VI, we discuss the eikonal approximation from the
point of view of our formalism and propose a sim-
ple improvement.

II. PATH-INTEGRAL REPRESENTATION
OF THE S MATRIX

We consider the sc atter ing of a partic le of mass
~ by a potential V(q) which approaches zero faster
than IqI ' at large distances. The S matrix is
given by

S(p', p) = Itm&p IU, (~, 7) I p),

where U, is the interaction-picture time-develop-
ment operator. It satisfies the integral equation

U~(t', t) =I —I dt "H~(t")U~(t", t ),

where

~
p' p2/

H, (t) = exp t —t V(q) exp
2m 2m

In order to derive a path-integral expression for
8, we imagine the time interval between —v and v

as being broken up into a large number of smaller
time intervals. The matrix element of U, can be
written as

(p I U, (r, —r) I p& = d'p, d'p, ,& p, I U, (tN, t~, ) I p~-, ) &p~-, I Ur(t~-„4-, ) lp~-a& "' &p I Uz(t to& lpa)

where

2 7
t; = —&+ —i, p =p, p =p. (IL 5)

For very large N, we may use Eq. (IL2) once-iterated and (II.S) to approximate &p,.„I Uz(t,. „,t, )I p,.)by.
12
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(p. ..)tt (t,„,t.,)lji)=(p... t- —exp i '" t)v(e)exp(-' ' t,) p)
3

(
",' exp[- iq, „(p,„-p, )]

(2v')s' }q exp -t q;.&'(P;.s-P() ——(p.s' p-)t; V(q;„).

In the second integral, we may change the variable of integration from q,„to q, „-(1/2m)(p, „+p,)t, . Com-
bining the two resulting integrals and reexponentiating, we obtain

We now combine Eqs. (II.1), (II.4), and (II.7) to obtain a path-integral representation for the S matrix
given by

S(p', p) = [d'P(t)] 2,, exp - j dp ~ p
dt

dI, q ~ —+P q+ —f
m

g-l
= lim lim II(f p; II "s' exP —i q ' (P, —P, -s) +

i)j
V 'q, +

i= 1 i=i j=l
(II.8)

where t, , p„and p„are given by Eq. (11.5). As we shall see in Sec. IV, the appearance of the combination
p& + p, , in Eq. (II.8) is crucial both for energy conservation and for the appearance of energy denominators
in perturbation theory.

Equation (IL8) is the basic result of this section. This form for the S matrix is particularly suitable for
the extraction of an energy-conserving 5 function; we shall exploit this fact in Sec. V. We remark that al-
ternative path-integral expressions for the S matrix can easily be derived. For example, if we did not
make the change of variables leading to Eq. (II.7), we would have obtained

(j j 3 N

s(jt', jt) = )'m)im d'p, . [ ', exp —t I jt,. (p,. —p, ,) ~ —exp(i(p, . ' —pt, )
' ' v(t)) . ()i 9)

t =l t =1 j=l
Alternatively, the change of variables q, - q, +[(p,„+p, )/2m]t( in Eq. (II.8} leads to the result

IR+ 2

S(p', p)=)'me p(
d'q(t}

[d P(t)l (2v)s exp
dp p
dt 2m

dt q —+ —+V(q)

-=lim exp i 7' lim II(t'p, ', exp ig -q; (p, —p, ,) +
& 2'—+ V(q, )

i=1 i =1 j—1

(IL 10)

III. CLASSICAL INTERACTION PICTURE

Considerable insight into Eq. (IL8) may be ob-
tained by a consideration of classical scattering
processes in a set of canonical variables which we
shall call the classical interaction picture. These
variables have the important feature that in a scat-
tering process all of them approach constants as
t approaches ~~, whereas the actual Cartesian
position variables diverge in this limit. The val-
ues of the interaction picture variables in the as-
ymptotic limit can thus be conveniently used to
specify unique scattering trajectories.

We consider a classical Hamiltonian given by

H(g 5) = —+ V(Q).

For this Hamiltonian, the momentum and position
satisfy the familiar equations of motion:

dt
= —& V(Q)

(IIL 2)

We define the classical interaction picture vari-
ables p(t) and q(t) in terms of P(t) and Q(t) by the
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equations

p(t) = %(t)

ancl

q(t) =@(t)— (t)

and

dq t p—= —VV q+ —t
dt m m

(III.4)

These equations imply that p(t) and q(t) satisfy a
modified Hamilton's principle for which the "ac-
tion*' is given by

I

dp ~ pA= — dt q —+V q+ —tdt m
(III.5}

where the variation of the end-point p's are con-
strained to zero.

Comparing Eq. (IL8}with Eq. (IIL5), we note
that the weighting factor for each phase-space
path in the path-integral expression for S(p', p} is
given by e'". This situation is analogous to that
for the path-integral expression of the position-
space Green's function, K(q&, lt, q, , t, ), for which
the weighting factor is given by e'", where the
a,ction A is given by

dqA= dt p &
-H(qp)

A quantum-mechanical scattering process is
completely described by the S matrix which is a
function of the initial and final momenta. In con-
trast, the initial and final momenta do not com-

In terms of p and q, the classical equations of mo-
tion are given by

dp ~ ~ p
dt

= —VV q+ —t
m

pletely determine a classical scattering process;
in particular, they do not determine the trajectory
of a particle (i.e., the position and momentum as
functions of time). The crucial point is that time
translational invariance implies that if Q(t) and

5(t) are solutions of Eq. (III.2) which satisfy the
boundaryconditionslim, „P(t)=P; andlim, +„P(t)
=Pz, so are Q(t+ T) and P(t+T) for any fixed T.
Alternatively, a classical trajectory is specified
by six independent boundary conditions. The con-
straint of energy conservation implies that P& and
Pf can supply only five of these; one additional
boundary condition must be specified in order to
uniquely determine the trajectory.

The classical interaction picture provides a par-
ticularly convenient framework for introducing this
additional boundary condition. To see this, we
first note that for potentials which fall off faster
than I/r, not only does p(t} approach a constant as
t- +~ rot- —~, but so does q(t). Furthermore,
time translational invariance assumes the form
that if q(t) and p(t} are solutions of Eq. (IIL4) which
satisfy the boundary conditions lim, „P(t)= 5,
and lim, ,„II(t)= 0&, so are q(t+T) +[p(t+T)/m]T
and p(t+T) for any fixed T. Thus, a finite time
translation also translates the initial (or final) q

by a vector which is parallel to the initial (or final)
momentum; this implies that different trajectories
which are related to each other by finite time
translations have different values of q(- ~) ~ p(- ~)
[or q(+ ~) ~ p(+ ~)j. The additional boundary con-
dition needed to specify the trajectory can there-
fore be chosen by specifying the value of
q(-") p(-") [» q(+ ") p(+ ")l.

The analog of the above considerations can be
used to explicitly extract the energy conservation
6 function from the S matrix. We shall discuss
this further in Sec. V and thereby find a path-inte-
gral representation of the scattering amplitude.

IV. BORN EXPANSION

The Born expansion can easily be obtained from Eq. (L.8). We begin by expanding Eq. (IL8) in a power
series in the potential:

p]p' p) = p ) f ( ]]d pp'dpp —)f dtp —f dl, p q(t ) + ' t, dt„p p)]f„)+ " t
OG ocn=p

(IV.1)

In the nth term, we interchange the order of integration over the times t„.. . , t„and the path. We further-
more change variables in the time integrals such that they are done in chronological sequence. These
manipulations yield

S(p', p) = P (-i)"
n=p

t2 dt q(t)dft„&t„, &t, [d't)(t)], exp —i dtq ~—
OO d)0 IKl /

xV q(t, )+ ' t, V q(t„)+ "t„. (IV.2)
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Recalling tha, t in the discrete notation

dp
q; (p;-p;, ),

we see that the integrals over the q(t)'s for t between t„and. t, , yield 5 functions which equate all of the
p(t)'s for t between t, and t, , Remembering that in the discrete notation

we utilize these 6 functions to do some of the p integrations to obtain

5(p', P)=6'(P-P')+ P(-t)" «„f dt„,
n=1

t2d d qld3 d q2 ~ ~ ~ d3
d q

(2ii}~ ~~ (2p)3 ~" ~ (2p)~

n

Ii;-i, , I & q, + ~2''t, )"
&V q„+ (IV.3)

where p, =p and p„=p' in the nth term. By changing the variables of integration from q,. to q~+I(p, . + p, ,)/
2m] t, , we obtain

OO QG tn
3(p', p}=5'(p'-p'}+ g (-i)"

9=1 OO OO

t2
d$,

d3q d3q d3q n
p 2 g 2

x dp dp "exp
(2&)' ' (27i)' " ' (2w)' Z 2m

j=1
n

«&P -t gq, '(P, -P, —,} V(q, ) "&(q ). (IV.4)
j= 1

The t integrations can now be done in the usual manner. Defining the T matrix by

&2 2

S(P', P) = ~'(O'-P) -»« ——T(P', p),2pn 2m (IV.5)

we express our final result as
n- I 2 2 —1 n n

T(p', P) = I' g II d p,. 2——
2

' + II (2 I, v(q, ) p — p q,. ~ (p,. —,,)
n=l I= 1 j=l

(IV.6)

where, in the nth term, p, =p and pn =p'. Equa-
tion (IV.6) is precisely the Born expansion for the
T matrix. %e note that the appea, rances of the
factor of 5(p"/2m -p'/2m) in Eq. (IV.5) and of the
energy denominators in Eq. (IV.6) are conse-
quences of the correspondence

V qt)+ t -V q+

when going from the continuous to the discrete no-
tation.

V. PATH-I'NTECRAL CALCULATION OF THE I' MATRIX

As a consequence of the energy-conserving 6

function which appears in Eq. (IV.5), for given p

and p', S(p', p) is either equal to zero or it is in-
finite. This fact implies that Eq. (11.8) is not di-
rectly applicable to practical calculations. In or-
der to perform calculations, one must first ex-
tract the 6 function from the S matrix and then
calculate the T matrix; this was in fact done in the
calculation of the previous section.

The manner in which the 6 function arises in
Eq. (11.8) can be understood in the following heuris-
tic way. To calculate S(p', p), we integrate over
all phase-space paths for which p(t = —~) = p a.nd

p(i =+ ~) =p'; the "integrand" is given by e'",
where A. is defined by Eo. (III.5). The time trans-
lation properties of the classical interaction pic-
ture variables (see Sec. III} imply that any path
can be specified by the path with p(t = —~) q(t = -~)
=0 to which it is related by a time translation and
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by the parameter T of that time translation. The
path integral can be written therefore as a double
integral; one a path integral over all paths for
which q(t = —~) p(t = —~) =0, the other an integral
over T. We note that

P/2 p2A-A — ——T
, 2m 2m

when a time translation by an amount T is per-
formed; therefore, we expect that the integral
over T contains the energy conservation 5 func-
tion. Therefore, in order to remove the 5 func-
tion from the S matrix, we integrate not over all
phase-space paths, but rather only over those
paths for which q(t = —~) p(t = —~) = 0.

These considerations are reminiscent of those

of Faddeev and Popov4 for the path-integral formu-
lation of gauge-invariant field theories. In order
to implement our idea, we shall use a technique
which is similar to theirs.

We begin by writing "one" in the following way:

1= —lp+p, l
dT5 q, +T

(V.1)

We may insert the right-hand side of Eq. (V.l) into
the integrand of Eq. (ILB) without changing any-
thing. By interchanging the order of integra-
tion and changing variables from q, to

q, + T(p, + p, ,)/2~, we obtain

~(p', P) =
pI2 p2 N-1

N

xexp —i P q, (p, —p, ,)+ —V q, + ' ' '(t, , —T) . (V.2)
j=&

When the N and 7 limits are taken, the term proportional to T which appears in the potential may be set
equal to zero with impunity. The T integration can be done trivially; the result is given by

I2 2

x exp -i qj pj -pj, )+ —V q + ' ' 't, ,
j= I

(V.3)

In the case that V=O, the right-hand side of Eq. (V.3) must be equal to 6'(p' —p). We may therefore com-
bine Eqs. (IV.5) and (V.3) to obtain the following path-integral expression for the T matrix:

T(p', P) = i [d'P(t)j
d q(t) lp+p(-")l~ - „). p+p(-")
(»)' 2m

I
p+ p(- ")

I

dp
&& exp —i dtq ' — exp —i

cf $
dtV q+ —t -1

m

i =1 i=1

"exp -i P q, '(p;-p, ,)
2~ pj+pj,exp -i —V q +

2m
j= 1

(v.4)

VI. EIKONAL APPROXIMATION

The form of Eq. (V.4) suggests that the eikonal approximation can be obtained very easily from our for-
malism. In this section, we indicate how this comes about.

We first write the T matrix as a sum of two terms:

T(p', p) = T, (p', p) + T,(p', p), (VI. 1)
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where

p(p', p)=t (d p(t)'], e t)(— ) e p —t dt t) —p(e ~ t)—
d q t)~ lp+p -")I - p+p -) . 0 dp
(2v)' 2m Ip+ p(- ~}l „dt m

and

(VI.2)

z ( ) Idp(t)] t() Ip p( ) Ie ( )
p p( )

((»)' 2m
I p+ P(- ")

I

oc Qp
dtq

dt (VL2)

In the above equations for T, and T, we evaluate the q(- ~) integral (i.e. , the q „ integral in the discrete
notation) last. The remaining integrals in Eq. (VI.S) can be evaluated easily; the result is given by

T,(p', p) = —
2 2,'5 q, - -, exp[-iq, (p'-p)l.sip+ p'I d'q, p+p' )
2m 2p 3 1 p+p' (VL4)

Stationary-phase arguments show that for fixed q, the major contribution to the remaining path integral
in Eq. (VI.2) comes from a region centered around the classical path for which lim, . „q(t) =q, and

lim, ,„p(t) =p'. For large energy and small momentum transfer, we expect that the potential term var-
ies slowly over this region.

We therefore approximate V(q+ pt/m) by V(q I+ p ]t/m) in Eq. (VI.2). By q„and p„we mean the solu-
tions of Eq. (III.4) which satisfy the boundary conditions lim, „q (t) =q, and lim, ,„p (t) =p'. The re-
maining integrals in Eq. (VI.2) can be evaluated instantaneously. Combining the result with Eq. (VI.4} we

obtain

T(P', P) =t l5 q, - -, exP[-tq, (p'-P)1 exP —tIp + p'I d'4, - p + p'

2m 27)')3 1
p + p'

()Q

dtV q l+ &ci t
2m J

(VL 5)

Investigation of Eq. (III.4} shows that for large energy q(t) q, -=O(1/p") and p„(t) -p'=O(1/Ip'I}. Further-
more, energy conservation implies that lp„(t) I

—lpl=0(1/P'~}. We may therefore make the further approx-
imation: q„(t) =q, and p„(t}=Ip In, where n is a suitably chosen unit vector, in Eq. (VI.5). We may evalu-
ate the integration over the component of q, parallel to p+ p' to obtain

T(p', p)=i,exp[-ib ~ (p'-p)j exp —i dtV b+ t
lp+p'I d'b - -, - " - Ipln

2m (2)()~ m
(VI.6}

In Eq. (VI.6) b ranges over the plane perpendicular to p+ p' with q ~ (p+ p') =0. Equation (VI.6) is essential-
ly the eikonal approximation'; various forms for the eikonal approximation are obtained by suitable choices
for n.

Higher-order approximations may be obtained by expanding V(q+ ptym) in a Taylor series around the

point J (q„+ p„t/m) and retaining a finite number of terms. The first correction in Eq. (VI.5) can be ob-
tained very simply. In the discrete form of Eq. (VI.2) we approximate V(q, +(p, + p, ,)t, , /m ) by

Equation (VI.2) is thereby approximated by

d'q; lp+p, l5 - . p+p,II"' II(., 'i=1 i=1

gexp i t p2 p2 1 pcl p V q + Rl2T + - —2
2m m ~-1

&exP —i dt V q„+ —'t -q'l ' V V q.l
+—' t (VI.7)
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The q,. integral yieMs a factor of

p —p, , + —V'V q, , + —t

for j=2, . . . &; in the limit N-~, this factor becomes o (dp+ dtV(q+(p„lm)t)). Therefore, when the p,.

integral is carried out, p, is to be set equal to p„(t,). We can therefore reduce Eq. (VI.7) to the form

d ii& IP+ Pci(- ) I -, P+ Pci( ')
T,(p, p)=,'

2
~ q, I-, -

( „)I P[ A;(q„p')I P(-'q, 'I.p. (-")-P]).p+ pci
(VI.8)

In deriving Eq. (VI.8) we have used the classical equations of motion Eq. (III.4) and the definition of A,
Eq. (III.5). In Eq. (VI.8) A (q„p') is the value of the "action" for the classical path specified by the bound-
ary conditions q(- ) =q, and p(+ ~}=p'.
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