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The Thirring model and the sine-Gordon theory in two dimensions have been shown to be equivalent. We
extend this result by demonstrating the equivalence between massive @ED (with self-interacting fermions) and

a vector generalization of the sine-Gordon theory. We demonstrate this equivalence by perturbation theory
and by constructing the appropriate transformation between the two sets of fields. Because the sine-Gordon

equation is known to have classical "kink" or soliton solutions, we are led to suspect that hadrons correspond
to extended solutions to the equations of motion in the strong-coupling region.

I. INTRODUCTION

Recent work in the theory of strings' and bags'
leads us to suspect that theories based on extend-
ed objects, rather than point systems, yield many
qualitative features of hadron theory, and the work
of Nielsen and Olesen' suggests to us that these
extended objects emerge naturally out of classical
solutions of spontaneously broken local field theo-
ry in the strong-coupling region. These qualita-
tive remarks have been partially realized in re-
cent work on the quantum dynamics of strong-
coupling theories, 4 which lends further support to
the conjecture that extended systems emerge as
bound states of field theories in the region of
strong coupling.

In two dimensions, the classical "kink" solu-
tions (solitons') of the sine-Gordon equation are
very suggestive of strong-coupling solutions of a
quantum field theory. The realization of this no-
tion comes from the work of Coleman, ' who used
perturbation theory to prove the equivalence of
the quantized sine-Gordon equation and the mas-
sive Thirring model. Mandelstam' has explicitly
constructed the operator equivalence relations
from which a "dictionary" can be constructed for
translating back and forth from either language.

In this work, we extend the results of Coleman
and Mandelstam to include massive QED. By us-
ing perturbation theory and by constructing expli-
cit solutions, we show that massive QED is equiv-
alent to a vector generalization of the sine-Gor-
don equation. We suspect, therefore, that this
vector sine-Gordon equation possesses classical
"kink" solutions (solitons).

We are currently investigating the correspond-
ing SU(n) generalization of this model, from which
information concerning bound states of confined
quarks may be derived.

II. GREEN'S FUNCTIONS

We first start with massive QED (with fermion
self-coupling), which is exactly solvable':

g = —j q(y q} +4 pp p

0+g 4r" 4& „,
Fifv ~ii+u ~uAif, goo

——1 = —g
(2.1)

—~ su =euu&

(2.3)

We wish to perturb this free field theory by adding
a modified vector generalization of the sine-Gor-
don interaction:

&( = —,o cos(I3 P +yf ) ——,o,

f =So&i — po.
(2.4)

Our goal is to prove that the Green's functions
generated by the perturbation term (2.2), when

expanded around the exact solutions of(2.1), are
equivalent to the Green's functions generated by
(2.4) when expanded around the solution of (2.3).
[ We notice that there are infrared divergences as-
sociated with the massless fermion. This is rem-
edied by multiplying (2.2) by a suitable support
function, which we will later set to be 1. Also,
since a massless scalar free field does not exist in
two dimensions, we will have to implicitly add in a
small mass term to the scalar particle in (2.3).] As-
suming, of course, that these theories actually exist,
we may prove their equivalence perturbatively by
comparing Green's functions for both theories.

It is a simple manner to first derive the equiv-
alence results for the current and vector matrix
elements and commutators. Following Sommer-
field, ' we find the Green's functions for massive
QED with self-interacting fermions:

Since the theory is exactly solvable, we can use
these exact solutions in order to calculate Green's
functions corresponding to an interaction term:

(2.2)

We wish to investigate the relationship between
this theory and the free field theory of a massless
scalar particle and a massive vector particle:
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i(0(Tj„(x)j,(y)(0} = " ', +X[2v(1+n)(1+a+X)] '(p''g „—a s„)a(x-y;}j.')
a „a,D(x y)

+ 5(x' —y')g„'g, '(2 X)[2v(l + n)(l a X)] ', (2.5)

i&OITA„(x}A„(y)10}= " +(1+a)p '(1+a+~) '(} g&, a„a, )~(x —y;&')
2xe„e,D(x —y)

+g„'g, '5(x' —y')(1 —a}p '(1 —n —&) ', (2.6)

i (O~TA„( )xg,(y)~0}=, " ', —(1 +a+A) '(u''g„„—e„a„)~(x—y; p'}g -29 „a,D(x y)

+ g„"g„'5(x'—y')(1 —a —A) (2.7)

where

a =c/2v,

x =g'/2m p. ',
p' ' = Ij. '(1+@+A.)/(1+ n),

0 D(x —y) =i 5(x —y)

(Ci„+u ' ')D(x —y; p. ') =i 5(x —y},

)~ = —Q&~~~ Q +50[1,

Ap=-c~pv~ &+dav

(2.8)

(2.9)

The form of these matrix elements for massive
QED with self-interacting fermions leads one to
suspect that, with a suitable combination of free
fields [one massless scalar particle and one mas-
sive vector particle of mass p,

' =p, (1+a+X)'i'
x(1+n} 'i'], we might be able to reproduce these
relations. We are then led to try the free-field
representation (2.8) and (2.9).

On the left-hand sides of (2.8} and (2.9), we have
the exact operators of massive QED with self-in-
teracting fermions, and on the right we have op-
erators of a free scalar and vector theory. By in-
serting (2.8) and (2.9) into (2.5)-(2.7) we can show
that these Green's functions can be reproduced if
we set

a =[v[1 —(a + X)']}
5 = —p'(x)'i'[2v(1+a)(1+a +x)]

[.1,(x),A, (y)]„o,o
=i(1 —n)(1+a+X)[1 (a+a)'] 'p, 's, 5(x' y, '),

[Ao(x), ji(y)].o-,o=, (1 -a -&) '&.5(x'-y').
2'F p.

[j,(x},j,(y}]„0,0 = i(2v) '(2 —X)(1 —a) '(1 n y) '

xe 5(x~ &')

[no(x), sl(y)].'* 0 =is.5(x' -y')u' ',
[4(x},e(y)1: ;= -i.&.5(x' —y') .

(2.11)

= —,g„,(1 —a —X} '5(x' y')y(y), (2.12)

[j„(x),4(y)],o, p = ~[g»(l a x) '+e „,y, (1+a)-']

x5(x —y )g(y) . (2. 18)

If we take

o', = ~Zf(1 +y, )g,

Now that we have established the representation
of the exact operators P and A „ in terms of free-
field operators Q and a„, our next step is to dem-
onstrate the equivalence of the interaction terms
(2.2) and (2.4). We first need the commutator be-
tween vector fields and the spinor:

[A „(x), ('(y)].o=,o

2v(1+a) '

c =p '(2X)' '[1 —(n+&)']

d=1.

(2.10) cr+ =Z

0- —Z (Ij2 f&

then we find

(2.14)

Furthermore, we also easily verify that the solu-
tion given by (2.10), (2.8), and (2.9) satisfies Som-
merfield's equal-time commutation relations:

[A „(x),c, (y) ],o,o = 0,
(2.15)

[j„(x),c, (y)].o- = +2e .(1 + a) '5(x' -y')c, (y) .
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Z is a multiplicative renormalization constant
needed to define the limiting process of when two
spinor fields are defined at the same point. Now
we construct, out of free fields, the quantity A, :

A., = N exp [xi (t) Q +yf ) ] .

We easily find

(2.16)

[
—ac„„e'y(x}+ia„(x},A, (y)];. o

=+(a 8 —by)e»5( x' —y')A, (y), (2.17)

=0. (2.18)

Comparing (2.17) and (2.18) with {2.12) and (2.13),
we arrive at

[-ce„,&'g)(x)+da„(x},A, (y)]„o „o

= +(cI3 +dy)A, (y)~ „,6(x' —y')

P =2[x{1 a ~)) "(1+o.+~) "',
y=2p, ' '(2vA)' '[(1+a)(1+a+x}] ' '

[the cutoff parameter N is needed because D(0)
and &(0, p. ') need to be regularized].

We have now shown that the @ED commutators
of (2.14) and (2.15) are satisfied if we make the
correspondence

0, =—A, /2,

{)Q
m ~ a

P

(2.20)

The last thing we would like to demonstrate is the
equivalence of the Green's functions generated by
products of 0, and by A, . Following Coleman and
Sommerfield, we know that

n

II[(x -x,}'(y; -y, )'1' '"'""""'"
i=1 io] x-o(n+ X 1/rt+ a+ X)

II exp j (1 }() y)l +(& —x i I/ ) —+(yl —y/i P )]
(

X '"
j8mA.

(2.21)

On the other hand, it is a simple matter to construct the free-field Green's functions for 4,

IIexp[(p, "y')ia(x; —y;; p'})

n

II[(x, —x, )'(y; —y&)'] " IIexp((p. '
)y[ih( ; x—x/, i/. ')-ih. (y; —y„p, ')] [

{ 0 T II A. (;)A-(y )
4=1 II [(x )2)8 /47I

(2.22)

III. SOLITON DICTIONARY

i(0IT(f(x), f(y))I0) =i/ "&(x-y; V') . (2.23)

Again, on comparing these two expressions, we
rederive the correspondences given in (2.19) and
(2.20).

Since all Green's functions for one theory can
be written in terms of the Green's functions for
the other, we have shown that if these theories in-
deed exist then they must be the same.

From the relations between coupling constants
of the two theories, we again establish that the
weak coupling of one theory is the strong coup-
ling of the other, and hence the bound states of
one may be looked at as the "free" states of the
other.

Though the classical solutions of our vector
sine-Gordon equation are not known, there is a
strong possibility that they will be "kink" solitons.
At the quantum level, it is possible to make a dic-
tionary between operator functions in one language
in terms of operators in the other.

Following the work of Mandelstam, we have been
able to construct this dictionary in the case of
massless fermions and free scalar particles. Un-
fortunately, we have not been able to complete
this dictionary for the case of the fully interacting
scalar particles and the massive fermions, be-
cause the commutators involved in the calculation
are not well defined.

Our task is to find solutions of the following
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equations for $ and A, „:
-iP'g —m t) +ggg+&f / =0, (3.1)

[a,(x), II,(y)],oa,o = i-6(x' -y'), (3.6)

~„F"' +p, '4' -gj' =0, (3.2) ~1III.=+~ +p ~pH =++ Q (3 7)

[a,(x), go(y)] „o „o= —i 5(x' —y')p' (3.8)

&p+—' sin(PQ+yf) =0, (3.3)

f""+—'e"' sin P+y +Ij "a' =0. 3.4

The canonical quantization relations are given by

6(Z' + |,",)»xo
58pg I j3

=II, = —f +—'sin (&3@+yf)

These solutions must be in terms of the fields Q
and a„, which obey

Notice that the complexity of (3.6) prevents us
from evaluating all commutators needed in the
calculation of currents. Because of this difficulty,
we will not try to solve the model in terms of the
fully interacting case, but instead will construct
the dictionary between massless fermions and
free scalars.

We begin by postulating the form of the spinor
in terms of free scalar and vector fields (k, and

k, are mass-dependent factors which simply nor-
malize the anticommutation relations):

„1

tt, (x) k, :e=xp — p(xo, ()d $ ——p(»o, x') — f (x', x')—

P, (x) = k, :exp —-P(x', &)d$+ —P(x', x')+ f(x', x')—
EX)

(3.10')

In the case where Q and g„are free fields, there
is no ambiguity in forming the exponential function.

Our first t:ask will be to calculate the combina-
tion j(I and show that we rederive the identities of
the previous section. Then we will construct the
current j„-Py„P with a careful limiting process.
With the form of the current, we will verify that
the correct commutation relations between all
vector quantities with spinor fields are reestab-
lished. Finally, we will show that the proper
equations of motion (for massless fermions and
free scalar particles) are satisfied by (3.9) and
(3.10). We begin by defining the quantities

o, =Iimlx —yl "p,"(x)„~~,(y},
(3.11)

o = liml ~ —l I"p;(»)y, (y} .
x'~Y

where the path .v —y& is taken in a space-like di-
rection. We will use the useful identities

z, = --,' exp[*i(P g+yf)]
so that

(3.13')

g4-=o (P4+~f),

Py, » —= sin(PQ+yf ) .
(3.14)

Now, our task is to construct the current. We
must be particularly cautious because, as Johnson
has noted, the naive definition of the current yields
nonrelativistic or nonconserved results. The
proper relativistic version of the current must be
the average over different, perpendicular space-
time directions. If $ and $ are two orthogonal
vectors,

tain terms like Q which contribute in 0(x —y),
while the terms Q and f contribute in 0(1). There-
fore, the only terms in the exponent which survive
the reconstitution process are the Q and f fields.
We find

8 ~tA, 8] ~+~A

.e' -~ =et A+ ~-'-A+~.
~ ~ ~ ~

(3.12) (3.15)

where the commutator between A and 8 is a c
number, and the + and —refer to creation and
annihilation operators. First, we notice that the
presence of the f fields in (3.9} and (3.10) does
not change the basic anticommutation relations.
Second, we notice that combinations like PgP, con-

then we will adopt the definition of the current as

j„(x)=-,'- limp(x) y„b(x+nE)

y„k(x+n k)V(-x) + (f, $)}-
If we average over two points separated by a
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spaeelike separation then the commutators yield
no problem, but if we average over timelike sep-
arations we cannot use equal-time commutation
relations and must use the approximation

y(x'+ 6x', x') -
4 (x', x') +62 j(x', x') + ~ ~ .

(3.17)

~, . f ~
4n'

-p&+p& =to 2
——3 (4 —4 )

+ (&o —&i)~ ki~ ~

i

'YV

f2

2
5+gd,

(3.23)

(3.24}

4m
-4nj „= —+}3 e„,av P+yp "a„.

)

(3.18)

Is easy to show that this is equal to the expression
for the current found in the previous section, (2.8}
and (2.10).

Using this result, we can now also calculate 4„
in terms of Q and a„. Putting this result in the
wave equation (3.2), we find

If we were investigating the fully interacting the-
ory then the formula (3.13) would have to be modi-
fied, and instead the full Baker-Hausdorff theorem
would have to be invoked. (Because of the com-
pl.exity of the problem, we will only treat the case
of massless fermions. } Upon averaging in two
separate directions, we easily find

2v P———=gc +0'a .
P 2

(3.25)

(v[1 —(a+ x)']}"'
2w (1+n)

Rearranging terms, we find

0, = ([-g( (0-0')+d(, — .)(-1))

o(s-(4 —0') +&(o, —s.))]q,) .

This last expression is easily regrouped to give
the original wave equation. Thus, we find that
all the results of the previous section are satis-
fied, and that we ean construct the following dic-
tionary between the two sets of fields:

+A =-—e &'Q+ aga, g +gb
~2 Qv ~2 (3.19) ([1 (a. +~)'] (2~) '~'

Again, this expression can be shown to be identi-
cal to the expression found in the previous sec-
tion, (2.9) and (2.10).

As a further check on our results, we can now

calculate the commutator between vector quan-
tities and the spinor field. It is straightforward
to evaluate all commutators, and we find

g'Y /= sin(PQ+Yf},

4g = cos!I3g+y f),

2n p
g, , =k, ,: exp i, —-5(x', $}df.

LP

2' a aI3 by
[jo(x) 0(y)]"=p= —

8 &uo+'ooyo

x y(y)6(x' —y'), (3 2o)

V
Q =—

)2' '

27t' p.

[&„(x),4(y)],o= o = —
p

g'oo+eoo'Y

x g(y) 6(x' —y') . (3.21)

Again, we find exact correspondence with results
of the previous section, (2.12) and (2.13).

At this point, we wish to show that the wave
equations for g and A „are satisfied when they
are expressed in terms of Q and a„, which satis-
fy free field equations. In particular, we wish to
show that the quantized version of the following
equation is satisfied:

e

-(ti+4i +imp+i(-8'&o+g&& —~jo+oji)4 =0.

(3.22)

By taking the derivatives of the spinor field, we
find

2g
p'(1+a+X) '

Notice that this dictionary is constructed between
massless fermions and free scalar and vector
fields. The complete dictionary, with massive
fermions and interacting scalar and vector fields,
has not yet been found because of the complexity
of the commutator (3.6). But does this mean that
there does not exist a correspondence between
massive QED (with massive fermions) and some
interacting theory'P Probably not. For example,
it is known that a vector field ean be represented
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by two spinless fields in the following way:

a„=c„„8'@+8„X, A. =0

where the v field has two poles, one at the mass
of the vector field and the other a massless pole
(which is canceled by the zero-mass pole coming
from the A. field). By analogy, we are tempted to
represent the f field by a spinless field f = p.

' 'v

because of Eq. (2.23). If we now replace the free
Lagrangian for the a„ field by the corresponding
term for a spinless field with the same mass, then
the canonical quantization relations (3.5)—(3.8)
lose their dependence on the sine term. Thus, by
replacing the vector field a„by a spinless field,
me greatly simplify the canonical commutation
relations, which in turn make it possible to con-
struct simple expressions for the current. The
net effect of this is to replace the f appearing in

(3.9} and (3.10} with a spinless field with the ca-
nonical relations of a free field.

IV. CONCLUSION

In much the same may that the weak coupling of
the Thirring model corresponds to the strong
coupling of the sine-Gordon equation, and vice
versa, we found that the weak and strong couplings
of the two models studied here also have the same
relationship. In particular, the Green's functions
found when perturbing both models are exactly
equivalent. We mere also able to show that, in

the massless fermion and free scalar case, we

could give the explicit construction of one set of
fields in terms of the other. In the case of the
fully interacting model (massive fermions) we
were not able to construct the dictionary, given
the complexity of the commutators arising from
the limiting process of defining two spinors at the
same space-time point.

If me set X =0, then we reproduce the results of
Coleman, as the vector fields decouple from the
system. (If we set n =0, then we find that all four
fields still remain, so that pure massive QED
still has a representation in terms of vectors and
scalars. )

Notice that the combination n +X occurs in the
coupling constant relations, so the net effect of

introducing a vector interaction is to make
o.- ++A. in the expression for P. In particular, if
v/2n =g'/2vp, ' =0 then the free fermion field cor-
responds to the interacting sine-Gordon equation
with P'=4m. As ++X gets larger P' gets smaller
until, at a+A. =1, P =0 (Sommerfield finds one
more restriction on the coupling constants arising
from considerations of the definition of the cutoff:
1& ~o. +X~, I+a &0). (Notice also that the coupling-
constant convention chosen by Coleman and Man-
delstam differs from that chosen by Sommerfield. )

It seems like that the vector sine-Gordon equa-
tion possesses solitonlike static solutions, which
correspond to the fermion states in the other lan-
guage. This is currently being investigated.

Also, though we have not been able to represent
the massive fermion theory in terms of interacting
scalar fields, there is the possibility that the mas-
sive fermion theory may be represented by two
spinless fields if we make the replacement for
f = p.

' 'o in (3.9) and (3.10). Because the canonical
commutation relations no longer are dependent on
the sine term, there is the possibility that all cur-
rents and products of spinor fields can be rigor-
ously defined and that a new equivalence to mas-
sive QED (with massive fermions) may be found.

The power of establishing the equivalence be-
tween the weak coupling of one field theory and
the strong coupling of another is, of course, that
we may gain further insight into the strong-cou-
pling bound states of four-dimensional field the-
ories, and that conjectures of quark confinement
(such as those advanced by Kogut and Susskind')
may be realized in a more complete theory. One

physically relevant procedure is to extend the
Abeiian model studied here to the case of SU(n),
where properties such as quark confinement may
emerge. This is currently under investigation.

Yet another approach is to examine the field
theory of strings" and see whether a correspon-
dence exists to a four-dimensional Higgs theory.
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