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The Melosh, Foldy-Wouthuysen, Cini-Touschek, and Majorana transformations of the Dirac Hamiltonian are

discussed in a parallel way as special cases of two general unitary transformations for spin —, , which

generalize to include all integer and half-integer spins for the Weaver-Hammer-Good class of massive-particle

wave equations. It is further shown how to construct a matrix a3 for all spins, the generalization of a, for spin

2, and a discussion of "good" and "bad" components of operators and wave functions is given.

SPIN 2

It is well known that one may transform the
Dirac Hamiltonian for a free particle and anti-
particle,

[where m and p are the mass and momentum, re-
lated to the energy F- = (m'+p' p) ', and n and P

are a set of 4&4 matrices], to the form FP with a
unitary transformation first studied by Pryce' and

later by Tani' and Foldy and Wouthuysen' and which

is commonly called the Foldy-Wouthuysen (FW}
transformation,

high-energy or massless Dirac particles because
H, g, becomes o. p when m/P goes to zero. Then the

two kinds of two-component spinors in the Dirac
wave function are not mixed. For this case one
has the Cini-Touschek (CT} transformation' given

by

(2b)

with

U~T=exp[ —2a Paten '(m/P}], (4b

where P is a unit vector. In this representation,
the matrix that has this form

Ul-„, H, /2U, ,-~ = F.P . (2a)

The motivation for the transformation is depen-
dent on the representation of Dirac matrices ap-
propriate for considering the nonrelativistic limit,
the Dirac-Pauli' representation, i.e. ,

U,:„=exp[&Pn @tan '(P/~)]. (4a)

Another standard choice of a representation of
Dirac matrices is the extreme relativistic or
spinor representation' given by

(3b)

This representation is appropriate for discussing

with a the usual Pauli matrices. One may imagine
diagonalizing H,g, or making a unitary transforma-
tion to the rest-frame representation of matrix
operators, or any other motivation to remove e
from the Hamiltonian so that the upper two com-
ponents of wave functions are decoupled from the

lower two components. The result for the unitary
operator is

is -y, = —i a, o, a, so that 2(1 +y', ) project out the

upper/lower two-components of wavefunctions just
as —,(1 +~3) does in the Dirac-Pauli representation.

Another aspect of the CT transformation is its
connection with the infinite-momentum frame limit
for evaluating certain sum rules, suggested by
Fubini and Furlan, ' and the related ideas of light-
like charges. ' In connection with these ideas one
is interested in operators A(O} having the form

A(O) = (d'xgt(x)O&(x)

d'x 5 (t)Pt (x)O q(x),

but Lorentz-transformed to a frame in which the

speed U approaches the speed of light. It turns out

that although the I orentz transformation matrix
that appears in

a~4(xyu~ '=exp[-,'n u tanh '(U)] p(x)

becomes infinite as c -1, the bi1.inear combination
appearing in Eq. (5) remains finite, becoming
(v =US)
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xk (x) '0 ' 0(x).
V2 v2

The fourth and final independent kind of repre-
sentation of Dirac matrices is the one in which the
role of P in Eq. (Sa) is interchanged with one of the
e's, taken here to be n, . One has

(6)

It is clear that by restricting p(x) to contain only
the positive eigenvalue solution of Eq. (1), the
operator form (1+n, )/V2 can be obtained from Eq.
(2c). The utility of this operator form will be
apparent in the representation of Dirac matrices
given below in Eq. (3d).

In general, there are two other distinct repre-
sentations of Dirac matrices in which the matrix
form of P in Eqs. (3a) and (3b) is interchanged with
one of the a' s. The first is a variant of the
Majorana representation' in which the role of P
and one of the o. s in Eq. (Sb) is interchanged. The
original purpose of this representation was to
simplify discussion of the charge conjugation prop-
erties of the Dirac equation and so n, was chosen
to interchange with p. In the present paper, how-
ever, it is more useful to single out a„so the
representation is

(3d)

Because of the analogy with Eq. (3a), one expects
this representation to be important in describing
physics with (m'+p, ')~'/p, «1, i.e. , when in-
f inite-momentum frame considerations are im-
portant and useful. Following the previous dis-
cussion, one would expect to be able to transform
H, i, to a form that commutes with

(in this case a,), i.e. , to a form proportional to
a, . In fact, it is not possible to formulate such a
unitary transformation in the simple manner of the
previous three transformations. It takes a more
complicated operator to perform the transforma-
tion, one example of which is

(Sc)

O'H, )2U' = En3,
where

U'= exp[a o',P(n/2)] U(~ .

(2d)

(4d)

where or = (o„&x„0). Because of its analogy with
the extreme relativistic representation, the roles
of m and P, should be interchanged, and one ex-
pects this representation to be appropriate for
discussing p, /(m'+pi'} 2«1 particles, i.e. , those
particles with large transverse momenta, although
it has not been used so far for such a discussion.
In this representation the matrix &QlQ2p has the
form

In fact, the representation given in Eq. (Sd) has
seen much activity in the past two years in the con-
text of the Melosh transformation. ' This is the
unitary transformation that is proposed to relate
the constituent-quark and current-quark pictures
of elementary-particle symmetries and inter-
actions, "at least in the context of free quarks.
In detail, the Melosh transformation is

UMHg, UM=n, p, +(m'+p ') 'P, (7)

with

U„=exp[2Pn P tan '(P, /m}]. (8)

just as in the previous two representations. In
detail, one has

U., &u2UM. , =oipi+n2p2+( '+ps'} '&

where the unitary operator has the matrix form

UM„= exp & P Q., tan ' (4c)

and one expects to find a unitary operator that
eliminates n, from Eq. (1) so that the transformed
H, y, commutes with

The right-hand sides of Eq. (7} and Eq. (2d) are
identical in the limit of large p, /(m'+ p, ')' ', but
Eq. (8) has the advantage over Eq. (4d) of con-
taining only matrices that commute with 0, This
means that UM transforms "good" operators into
"good" operators. " The unitary operator UM also
has the interesting property that when the Dirac
Hamiltonian is generalized to include the effect
of a constant, external magnetic field in the z di-
rection and a Pauli-type anomalous-magnetic-mo-
ment interaction, the unitary transformation equiv-
alent to Eq. (8}brings H, i, into a form whose square
is diagonal. "

Some aspects of the constituent-quark and cur-
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rent-quark transforms have been studied by Pal-
mer and Rabl, " in particular their Foek-space
realizations. They found no overlap between cur-
rent- and constituent-quark states in the free
quark in the absence of a momentum cutoff. Bell
and Buegg" have investigated the null-plane dy-
namics of hydrogenlike atoms in a nonrelativistic
approximation. Through second order in U/c they
find an SU(2)2, symmetry which is broken in third
order. The symmetry-breaking term can, how-
ever, be transformed away by the Melosh trans-
formation. Their investigation is important be-
cause it involves transforming between representa-
tions in the presence of an interaction. Of course,

(9)

where i is a unit vector and 0 is a number, both
to be specified by the particular transformation.
In general, one has

as mentioned above, an exact transformation can
be carried out with a constant field and anomalous
moment.

It should be pointed out that the unitary trans-
formations of H,y, may be defined and discussed in
a general way" by defining the unitary operator
U,g2(e, 8) according to

U, i, (e, 8) =exp(-,'n eP8)

= cos(2 8)+ n ep sin(-2'8),

exp(2& et}8)(o'p m+p)exp(-2n pp8}=n ~ p+(m sin8+e pcos8-e p)12 e+(mcos8 —e psin8)tl . (10)

Not all the wanted unitary transformations of Hg,
can be generated by Eq. (11) [see, for example,
Eqs. (2d) and (4d)]. One, in fact, needs two forms
of Hg, to reach all the unitary transformations,
i.e., one has also

exp(2c2 ep8)Epexp( 2n ep8) =E sinn8e+Ecos8ll.

t

and spin s, is 2(2s+1)-dimensional and satisfies
the wave equation

H, g(x, t) = i (8 /6 t)1'(x, t),
where H~2 depends on E, m, p, and the 2(2s+1)-
dimensional matrices n and j3 which have the form,
in the spinor representation,

Many of the same transformations of H,~, can be
obtained, both by the form (10) and the form (11),
but, for example, the form

Hg2=12 p (m'+p 2)~2~ n, p, (12)

obtained from Eq. (10) with e P~ and 8=tan '(m/P1)
cannot be reached by Eq. (11). The transformed
Hamiltonian in Eq. (12) is a kind of Melosh-trans-
formed H~2 in that the operator U0 ~, tan '(m/p, ))
commutes with e„although the operations under
which Hg, are invariant require commutation with

e, and a P„rather than n, and P.
As a final point on the spin-& transformations,

it is worth noting that, in general, when one trans-
forms Hg2 according to Eq. (10) to another form,
the simplification or modification that one gains
in the Hamiltonian is paid for by the more com-
plicated Lorentz-transformation properties of the
modif ied wave functions.

SPIN 1

To generalize these results to higher spin, one
requires a massive-particle description that has
a well-defined Hamiltonian operator and a wave
function with simple Lorentz-transformation prop-
erties that is not subject to auxiliary conditions.
Such a description has been investigated in detail
by%'eaver, Hammer, and Good" and will be used
here. Following Ref. 1'7, the wave function g, rep-
resenting a particle and antiparticle of mass ~

(14}

with s being the Hermitian spin-s spin matrices.
There is a well-defined prescription for finding
H, , and the spin-1 specialization is

2Ec2 p 2(n. p}'ll
1 E2 +p2 E2 +p2

In analogy with Eq. (9), define the unitary operator
U, (e, P) by

U, (e, y) =exp(n ePP)

=1 —(n e)'+cosp o e+ sing c2 equi .
(16)

Then

U, (e, p)pU1t = p+ sin(2$) a e

+[cos(2&) —1](12 e)'tl

Choosing e P and tang P/E defines the unitary
spin-1 FW transformation" relating tl and H, /E.
Choosing e =z and tan2$ =P2/(m2+P~2)~2 defines
the operator that transforms P to

(18}
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If the restriction to eigenstates of n3 with eigen-
values +I is made, Eq. (18}becomes identical in
form to Eq. (7), the Melosh Hamiltonian. Finally,
the parameters e=P, P =4m give the high-energy
(P/E-1) limit of H, /E In. detail,

U, (p, .")=1—-(np)" (n p)"

contains U~2 and U, as the simplest cases.
For spin 2 the specialization of Eq. (25) is

Uy, (, 4„10,)= pl-' ' P0. +(-' ' ) P4, 1

and the transformation between Ep and H y2 is
effected with the parameters

e=P,

(28)

U, (P, '&)PU-,'=n &+I[I —(n P)'l.
(19)

(20)
P =—tan '———tan, 'P 1 — P(3E +P )

0 8 m 24 m

Equation (20} is identical to Eq. (2b) if the restric-
tion to helicity +1 states is made.

The form of Eq. (20) suggests a generalization
of the matrix n3 to cv3 given by

ns-=n, +P(1 —n, ') . (21)

(22)

The matrix 63 reduces to a3 when @3=+1 eigen-
states are considered, and it is nonsingular with
eigenvalue +1, so that it may be put in the diagonal
form

and

(t) =--, tan ' —+—' tan '—, P 1,P (3E'+P')
m

Letting P -~ gives one the high-energy limit,
e =p, Q0 = —,4 r, and p, =-—', n, resulting in

U~. (p, ',.'&, ——', —&)&Up, = n'pl ", —l (n.—'p)'j,

the massless limit of Hgs/E, as expected, and
suggesting the form for 63 to be for spin 23

ns=ns(4 s ns) (28)

In detail, if s3 is diagonal, then in the spinor rep-
resentation

+diag V+ Vt
3 3 (23}

SPIN 2

where V is a unitary matrix having nonzero ele-
ments V» --V« = V,s = Vs, = 1, V» -- V» = V» ---V»--I/v 2 .
One may speak of "good" and "bad" components
with respect to 6„just as one does for n3 in spin-
& problems.

a nonsingular matrix with eigenvalues +1, which
may be put in the diagonal form of Eqs. (3d) and
(22) using the 8X 8 unitary matrix V, which for s,
diagonal has the nonzero elements

11 =
22

= 37= 48
= 55=Vee =V73 —-V84 =1

Finally, with the choice of parameters

e =2,'

=- tan-'PO 12 (m2 ~P 2)l/2 )

The complications of higher spin become clear
when one considers s =&, as shown below. One has
the Hamiltonian

and

tn'
(m2 +P 2)1/2

H+, = [(2E2+ 7P2)mP+ (6E'+20P')n p

—9m (n ~ p)2(3- 18(n ~ p)'j/2(E' + 3P') (24)

but there is no unitary matrix with the form
exp(sn P(3(P) that transforms between EP and K~s.
Instead, one requires the more general form
U, (e, P„P„.. .}given by

one transforms EP for spin & to the form

EUy, (&, 0„4),)PU@, = (m'+P ') 'P+P, n, (29)

in complete parallel to Eq. (7). A further parallel
for the half-integer spins is the form of the high-
energy limit of Ups which may be written (for
e =z}

U. (, (.. )(= r& 0( )""s(. , (ss) U~, (2,—'„' n, ——', w) = (1 + n, p},2 ~24 ~ 8 (30)

with N=s —1 for integer spin and s —2 for half-
integer spin. This form is the most general uni-
tary matrix constructed from the matrices n e, P,
and multiples, since the spin matrices satisfy
their characteristic equation and so limit the maxi-
mum power of n e for a given spin. For spin &

(n e)'=1 and for spin 1 (n e)'=n e, so Eq. (25)

again in complete parallel with Eq. (4b) special-
ized to p =z, &=2m. One expects this kind of paral-
lel construction to hold in general for half-integer
spin, whereas for integer spin the parallel with
Dirac theory will be less complete, as shown for
spin 1.

For general spin, one solves the equation
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for the parameters P„P„.. . , using the prescrip-
tion of Ref. 17 to find 0, . This gives the unitary
FW transformation for spin s. Letting P -~ in

U, (p, $0, Q„.. .) gives the unitary CT transforma-
tion for spin s, and the massless limit of H, /E
defines the structure of 6, appropriate for spin s.
One then constructs the parallel of Eqs. (7) and (29)
for half-integer spin and the more limited parallel
of Eq. (18) for the integer spine which are limited
because of the zero eigenvalue in the spin ma-
trices.

DISCUSSION

This paper has shown how the various kinds of
unitary transformations of the Dirac equation are
related to the ways of representing Dirac matrices.
In the particular case of the "good" representa-
tion, it is seen that the conventional kind of trans-
formation to En, is not possible using only the
simplest form of the unitary operator. In fact,
this representation has been extensively used in
quark systematics in the context of the Melosh
transformation, ' where one transforms with a

simple unitary operator to the form P(m'+P ') 2

+Q3P3 rather than En, . The formal considera-
tions leading to the Melosh transformation have
been extended to higher spin for a particular class
of massive-particle wave equations, " and the re-
sult is to identify matrices that could play the role
of n, in the "good" representation, and Hamil-
tonians that have formal similarity to the Melosh
Hamiltonian. Of course, one important question
to be eventually answered is: "What happens to
the unitary transformations and any associated
physical content in the presence of interactions~"
Very preliminary answers have been made in this
paper for spin ~ when the interaction takes the
form of a constant external magnetic field, in-
cluding an anomalous Pauli moment term, and by
Bell and Ruegg. " Perhaps the next step to con-
sider is a quark-vector-gluon model in which the
interactions cannot be described simply as ex-
ternal fields. For example, one might have an
interaction term of the form go»P(u~»+&G»)
or gy„gA„, where ~», G», and A„are Proca-
type descriptions of massive spin-1 fields. The
present paper sets the framework and gives the
free-particle discussion and leaves the interac-
tion considerations to a future publication.
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