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For an anharmonic oscillator, it follows from the number of zeros of the exact wave func-
tions as functions of the quantum number n that the matrix elements (n( x(n') and (n)p(n')
should be rapidly decreasing functions of ~n n'(. M-atrix elements of polynomials in x and

p should therefore be well approximated by a finite number of terms in their sum-rule de-
composition. From the matrix elements of the equations of motion for x and for p and of
the commutator [x,pl, one thereby obtains closed sets of nonlinear algebraic equations to
characterize subspaces of the Hilbert space of exact eigenfunctions. The approximations
are also derived from a novel variational principle, and numerous variant approximation
schemes are suggested. Essentially exact numerical results are obtained and compared
with previous work. The broad applicability of the techniques is emphasized.

I. INTRODUCTION [p, H]= ix i) x-', - (1.3)

For more than a decade, one of the authors
(A. K.) and his associates have been studying
problems of nuclear and other collective motion
utilizing, among other variants, a calculus de-
r ived from matrix ele ments of the Heisenberg
equations of motion and of the commutation rela-
tions. ' When tested on exactly soluble models,
these methods of matrix mechanics have proved
to be convenient and accurate means of computing
both eigenvalues and matrix elements of operators.

It has recently occurred to the authors that the
characteristic manner in which the concept of
collectivity defines a viable approximation scheme
may render the method more widely applicable
to problems in the quantum mechanics of particles
and fields than was originally contemplated. In
this paper we shall illustrate this thesis by
studying the anharmonic oscillator with quartic
interaction, defined by the Hamiltonian

H = -, (p'+ x') + -, Ax

This Hamiltonian has received a surprising
amount of attention in recent years directed to-
ward both theoretical and numerical aspects of
the problem. ' ' On the whole, our own efforts
have a. practical orientation. Our aim is to de-
velop a complete calculational scheme that is
neither the direct numerical integration of the
Schrodinger equation nor the diagonalization of
the Hamiltonian, in a definite preselected basis.
In Sec. II we describe a straightforward and sys-
tematic version of the method and the one we
have exploited numerically: From the equations
of motion

[x,H] = ip,

and from the commutation relation

[x,p]=i, (l 4}

we simply form matrix elements between the
exact eigenstates of II. By the use of sum rules
to evaluate the matrix elements of polynomials of
x and P and the assumption, which is the sine qua
non, that these sum rules saturate rapidly, we
derive a closed approximate set of nonlinear
algebraic equations for a finite set of matrix ele-
ments of x and p. The elementary argument for
anticipating convergence is given and the method
for solution is described (in the Appendix).

In Sec. IV we present the results of our calcula-
tion, which are seen to justify our previous opti-
mism; the results converge as anticipated for
any value of A. , clearly exhibiting the nonperturba-
tive character of our method. Some comparison
with previous work is presented.

In Sec. III we adjoin some theoretical considera-
tions. We show how the calculational scheme of
the previous section can be derived from a novel
variational principle. We also discuss briefly
a number of variants of our scheme. We conclude
in Sec. V with a brief discussion.

In this paper we have emphasized methods ap-
propriate to low-lying states; higher approxima-
tions proceed by adding states of higher energy.
The methods are, however, readily adapted to the
study of the semiclassical limit, and thus provide
a powerful alternative to the WKB approximation.
This remark forms the basis of the work of
Halpern, ' whose approach is closest in spirit to
our own. It is our intention to return to the semi-
classical limit in a separate publication.
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II. A COMPUTATIONAL SCHEME BASED

ON MATRIX MECHANICS

A. General equations

For numerical purposes it is convenient to ex-
press these restrictions by a change of notation.
With n=2I —2 and n'=2J —1, we set

Let
I n), with n =0, 1, 2, . . . , be the exact nor-

malized eigenstates of the Hamiltonian (1.1},

X(I,J)=&nlxln&=&n lxln&,

Y(I, J) = -i(n I pl n') = i(n'I p I n) .
(2.9)

and

IIln& =E„l n)

(nlHln')=0 if non'.

(2.1)

(2.2)

The first index of X(I,J) and Y(I,J) refers to the
Ith even-parity states and the second refers to
the Jth odd-parity state. In this new notation,
Eq. (2.6) becomes

In this representation, Eq. (1.4) becomes

Q (&nl xln")(n"
I pin') -(nl pin"&(n"

I
xln')) =f6..

n"

(2.3)

—Y( I, J)'+ X(I,J)'

+XX(I,J) g Q X(l, J')X(I', J')X(I', J)

=—E„(I,J) =0, (2.10)

Equations (1.2) and (1.3) become

(E„—E,)(nl xl n'& = i(nl Pl n'&,

(E„,—E„)(nlPln')

(2 4)

and Eq. (2.3) divides into two sets, one for each
parity, namely,

Q jX(I,J)Y(I', J)+ Y(I, J)X{I',J)]+5(I,I')

=-i(nl xfn'&

—iA. n xn" n" xn"' n" xn'.
= Cs(I, P) =0 (2.11)

(2.5)

We emphasize that the conditions (n I H
I
n') = E„b„„

expressing (2.1) and (2.2) have been used in de-
riving the equations above.

It is convenient to eliminate the energies as
variables between the above two equations of
motion. Thus, we find

=-(nl xf n'&'

—a(nl xf n'& g P (nl xl n"&(n"
I
xln"'&&n"'I xl n'&.

n"

(2.6}
If we apply the assumption that sum rules are
saturated by a reasonable number of states, Eqs.
(2.2}, (2.3), and (2.6) then constitute a closed
set of nonlinear algebraic equations to be satisfied
by all the matrix elements (nl xl n') and (nl pl n')
between these states.

As in the case of the harmonic oscillator, the
energy eigenstates have definite parities which
alternate. Hence

&nl xln'&=(nf pin'& =0, ln-n'I even (2 7)

Q [X(I, )JY(I,J')+ Y(I,J)X(I,J')] —5(J,J')

—=Co( J, J') = 0 . (2.12)

B. Approximation scheme based on the ground state

We first describe an approximation scheme
which starts with the ground state and works up in
energy. Actually we can start at an excited state,
if we assume we know all the relevant matrix
elements to lower states. This idea will allow
us later to reach rather high states in the spec-
trum without having to consider at one time all
states below.

The basic physical idea behind the construction
of an approximation scheme is that the matrix
elements (nl xl n'& and (nl pl n'& decrease rapidly
with increasing

I
n —n'I . That this should be so

is intuitively clear from the standard considera-
tion of the number of zeros for different n of
the wave functions in coordinate space (or mo-
mentum space). By considering the matrix ele-
ment (0I x'll& which enters into E„{1,1), the
fi rst equation of motion considered, w e see that

&of x'I l) =- &Ol xl 1&( ll xl 0&&OI xi 1&

+ &of. f 1)& 1 f.l 2&&2l.
l »

In addition, time-reversal invariance allows us
to choose

+ ~ 4 ~ (2.13)

&nl xf n'&= (n'I xf n&, (2.8)
where ~ ~ ~ refers to smaller terms. Since
(Ol xl 1& is of the same order as ( ll xl 2), we con-
clude that the lowest order of approximation which
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makes physical sense in this Problem is to work
with three states 0, 1, 2.

Owing to the parity consideration, it is easy to
see that we must include two more states, one of
each parity, for each further step of approxima-
tion. Thus, in the vth order of approximation we
have 2v+1 states, v+1 of even parity and v of
odd parity. At this stage we have 2v(v+ 1) vari-
ables, namely X(I,J) and Y(I,J) with 1 ~ I ~ v+ 1,
1 ~J ~ v. Hence, to find the solutions for these
matrix elements, we also need 2v(v+1) indepen-
dent equations. In fact, for every possible order
of approximation, we always have more than
enough equations to be satisfied by the matrix
elements. This redundancy is a general feature
of the present algebraic method. It gives us
alternatives for selecting a closed set of equations
to determine the relevant variables and provides
us room for self-consistent checks.

Since the diagonalization of the Hamiltonian has
already been used in deriving the equations of
motion (2.10), we leave the conditions (2.2) as
the set of self-consistent checks to the final solu-
tions. Thus, Eqs. (2.10)-(2.12) are the remaining
equations available. Totally there are still v+ 1
equations more than necessary. To carry through
a general scheme, we omit those even commuta-
tor equations in (2.11) which most severely involve
the boundary I = v+ 1, I' = 1,2, . . . , v+ 1. This is
sensible since the main truncation errors come
from matrix elements involving boundary states.
However, as we shall note in the next section,
this was not the only possible course open to us.

In the vugh order of approximation, therefore,
we solve the following three sets of equations:

E„{I,J}=0, 1 &I &v+1, 1 &J +p,

Cz{I,I') =0, 1 &I' &I & v,

Co{J&J }=
~ 1 «J' ~J ~ v,

(2 14)

(2.15)

(2.16)

which comprise v(v+ 1), —,
'

v(v + 1), and —', v(v+ 1)
equations, respectively. The basic method
utilized in solving these nonlinear equations, which
has been described previously, ' is summarized
and extended in the Appendix. The technique de-
scribed therein allows us to write a program
suitable for every possible order of approxima-
tion. The results of our calculation are given in
Sec. IV.

Of course, v will have some uppe r limit for
the above program determined by computer ca-
pacity or economics, or both. The structure of
the problem allows us to overcome these limita-
tions to a considerable extent in seeking informa-
tion about high-lying states. To within the pre-
assigned accuracy of the solutions of (2.14)-
(2.16), we should and do find that there is a v,
such that for v & vo the matrix elements X(1, 1) and

Y(1, 1)are independent of v, i.e. , we have found their
exact value. For a still greater v„others of the
matrix elements relating to the lowest-lying
states will have converged to their exact values.
Treating these matrix elements as &noun con-
stants, we ean increase v commensurately without
thereby increasing the number of variables in
the problem defined by (2.14)-(2.16). If carried
out systematically, such a procedure ean carry
us as high into the spectrum as we have patience
to probe. The results of a specific procedure of
this type will also be described in Sec. V.

III. VARIATION AL CONSIDERATIONS

The starting point of such considerations was the thought that the matrix elements (n~ x~ n'& and
(n~ P~ n') might be useful as variational parameters for a Rayleigh-Ritz principle. " The stimulus for
such a suggestion comes from the application of sum rules to the evaluation of (»~H~ n&,

&»IHI»)=g (-'(»IPI»'&(»'If I»&+4(»l«l»'&(»'Ixl»&)+l& g ((»l«I»'&(n'[x(n")(n"[x[n"'&(n" [x(»)),
n'n "n "'

{3.1)

and the desire to study the condition that (» ~H ~
n&

be stationary.
One is, however, confronted with two obvious

dif fi cu1.ties:
{i) How many of the matrix elements are inde-

pendent variables ?

{ii) The same matrix elements recur in different
energy functionals. Thus (n~ «~ n'& occurs in both
(»~H~») and (n'~H~»') . This is to be expected

6 TrH=5 g (»~H~»&=0.
n

A solution to the first problem is to impose all

{3.2)

since this matrix element helps determine two
wave functions.

A symmetrical solution to the second problem
is to form the trace of H over the subspace con-
sidered and to require
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6 P a„(n~H~ n) =0.

A rationale for choosing a weighted average ex-
ists. It is that in any given order of approxima-

(3.7)

the kinematical constraints within the subspace,
namely

(3.3)

To exploit (3.3), we multiply by a Lagrange mul-
tiplier i(n'~h~n), sum over n, n', and subtract the
results from (3.2). (Note that the elements
(n'~ h

~
n) form a Hermitian matrix. ) We are thus

led to a master variational principle,

6 Tr/H —iP[h, x]I=5 Tr(H —ix[P, h]] =0. (3.4)

This yields the equations

(n[ p[n') —i(n( [h, x]( n') = 0, (3.5)

(n( x(n')+X(n)x'(n')+i(n([h, p](n')=0. (3.6)

Up to now the basis ~n) was arbitrary (because of
the invariance of the trace), but the most conven-
ient choice is the one in which h is diagonal.
Equivalently, identifying h with the Hamiltonian
certifies (3.5) and (3.6) as the equations of motion.

As we have asserted in the previous section,
this formulation provides a convenient basis for
a systematic numerical treatment of the problem.
There are, however, infinitely many variants,
several of which have been found useful in the
applications to the many-body problem. " It is
perhaps worth listing some of these variants in
order to emphasize the flexibility of the method.
In comparing this listing with the method described
in the previous section, we keep in mind that in
the latter we use all the equations derived from
the variational principle (3.4) and most but not all
of the commutation relations. The variants are
the following.

(i) Substitute conditions (n
~
H~ n') = 0, no n', for

the least accurate equations of motion. For in-
stance, for v=1, we normally use two equations
of motion (n, n') = (0, 1) and (1,2) and two com-
mutation relations (0, 0) and (1, 1}. For the equa-
tion of motion (1, 2) we would substitute the con-
dition (0~H~ 2) =0. As Halpern has noted, ' if we
use all the kinematical constraints the conditions
that the Hamiltonian be diagonal completely define
the dynamics. For the case v=1, we would adjoin
to the condition (O~H~ 2)=0 the three commuta-
tion relations (0, 0), (1,1), (0, 2}.

The following further possibilities arise.

(ii) There was no compulsion to form the trace
in (3.2). Thus we consider more generally, with
arbitrary z„,

tion the energies of the lower states are more
accurately determined and therefore should be
emphasized in the variational method. Proceeding
as before we see that there follow again "equa-
tions of motion" but these are no longer recog-
nized as the Heisenberg equations of motion.
Therefore, h 4H. If we insist that Jg be diagonal
we determine a representation of x and p, but
after all this we must take the further steps of
constructing the Hamiltonian matrix in our sub-
space and diagonalizing it, thus carrying out a
unitary transformation on x and p.

Again the double procedure just described may
be avoided by not insisting that h be diagonal,
and including the H diagonal conditions as part
of the nonlinear system, either in place of some
of the equations of motion or in place of some of
the off-diagonal commutation relations.

The variants just described subsume, except
for purely technical differences, all the cases
which have been considered by us in the past.

IV. CONVERGENCE AND APPLICATION

TO HIGHER-STATE CALCULATIONS

A. Convergence of the numerical results

In this subsection we present some of the com-
puter solutions of Eqs. (2.14)-(2.16) for various
orders of approximation to show the rapid con-
vergence of the method. From the wide range of
anharmonicity for which these results were cal-
culated, one can clearly see that our method
is nonperturbative in spirit.

In Table I some of the matrix elements relating
to the lowest states are given. For a given order
of approximation, it is clear that the least ac-
curate results are those matrix elements X(I,J)
and Y(I, J) for which I= v+1 and J—=—v. But when
they recur in the calculations of the next orders
of approximation, they also converge very rapidly.
Although we have only listed the results for
X = 1.0, the rapid convergence of the numerical
results is a general feature of our method for
the whole range of anharmonicity. This feature
can also be seen from the results of the energies
shown in Table II. The basic physical idea of the
method is thus well verified.

Once the most significant matrix elements have
been found we can actually calculate all other
physical. quantities of interest to us, especially
the energy eigenvalues. Usually the 2v+1 ener-
gies in the vth order of approximation can be cal-
culated from the expressions of the diagonal Ham-
iltonian matrix elements in terms of X(I,J) and
Y(I, J). However, in what follows the results
evaluated from (O~H~ 0) and the equations of mo-
tion (2.4) are much more accurate, especially
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TABLE I. Convergence of the results for the matrix elements X(I,J) and Y(I,4) calculated in the first six orders of
approximation; X = 1.0.

Matrix
elemen

X(1,1)
Y(1, 1)

X(2, 1)
Y(2, 1)

X(1,2)
Y(1, 2)

X(2, 2)
Y(2, 2)

X(3, 1)
Y(3, 1)

X(3, 2)
Y(3, 2)

0.591 0 79 49
-0.845 909 91

0.835 912 64
1.196297 26

0.595336 63
—0.836 529 38

0.771 09732
1.288 027 30

0.019981 37
-0.099263 45

0.888 31169
-1.680 935 21

0.030 205 06
0.159647 95

1.076 148 96
1.853 997 65

0.595343 89
—0.836 481 59

0.770 988 14
1.289 27535

0.020 13397
—0.099 396 90

0.894 473 22
—1.663 056 71

0.027 237 04
0.150 892 70

0, 992 766 90
1.993 718 39

0.595 343 90
—0.836 481 48

0.770 876 78
1.289 279 20

0.020 13422
—0.099 395 62

0.894 483 48
—1.662 958 52

0.027 228 59
0.150 91307

0.992 484 34
1.995 725 54

0.595 343 90
—0.836 481 48

0.770 876 78
1.289 279 20

0.020 134 22
—0.099 395 62

0.894 483 50
—1.662 958 27

0.027 228 57
0.150 913 19

0.992 483 87
1.995 731 95

0.585 343 90
-0.836 481 48

0.770 876 78
1.289 279 20

0.020 134 22
—0.099 395 62

0.894 483 50
—1.662 958 27

0.027 228 57
0.150 913 19

0.992 483 87
1.995 731 96

X(1,3)
Y(1, 3)

0.000 705 54
—0.006 437 72

0.000 71092 0.000 710 93
—0.006 461 12 —0.006 461 10

0.000 710 93
-0.006 461 10

X(2, 3)
Y(2, 3)

0.03231119 0.03255776 0.03255816
—0.195 387 66 —0.195699 75 —0.195697 29

0.032 558 17
—0.195697 29

X(3, 3)
Y(3, 3)

X(4, 1)
Y(4, 1)

X(4, 2)
Y(4, 2)

X(4, 3)
Y(4, 3)

1.067 431 37
—2.326 526 54

0.001 088 35
0.010 502 57

0.040 957 32
0.250 587 90

1.244 46923
2.402 409 88

1.074 935 58
—2.301 31193

0.000 981 54
0.009 752 30

0.036 939 74
0.236 566 09

1.147 155 00
2.583 836 12

1.074 948 04
—2.301 168 56

0.000 981 23
0.009 752 05

0.036 928 22
0.236 597 54

1.146 823 75
2.586 531 35

1.074 948 06
-2.301 168 18

0.000 981 23
0.009 752 06

0.036 928 20
0.236 597 73

1.146 823 20
2.586 540 15

E(2J —1) =E(0) — ', J =1, . . . , v
Y(l, J)
X

and the even-parity-state energies by

E(2I —2)=-E(1}+-- '—,I=2, . . . , v+1.V(S, 1)

(4.2)

{4 3)

In Table II we show the first eleven energy
eigenvalues evaluated with (4.1)-(4.3) in the first
six orders of approximation for four different
values of A. , i.e., A. =0.01, 0.10, 1.00, and 10.0.

for lower orders and the boundary states in a
given order. We thus write

E(0) =(0~II]0)
V

=
p Q [Y(1,J)'+X(1,J)']

J'= x

V V+1 V

+ —g g g X(l, J)X(I,J)X(I,J')X(l, J'}.
J=x I=1J'=y

{4.1)

The odd-parity-state energies are given by

It can be clearly seen that the energies of the
lower states converge very rapidly to their exact
values. The results for the upper states are less
accurate, as anticipated. In prinicple we can find
their exact values by successively increasing the
leve l of approximation. How eve r, in pr acti ce,
this has an upper limit set by computer capacity
or economy. In the next subsection, we shall
develop a general scheme which will enable us
to evaluate accurately the matrix elements and
energies of the upper states for large n. All
further results reported below were calculated
with this scheme.

As mentioned before, we use the off-diagonal
Hamiltonian equations {2.2) as self-consistency
checks of our results. For those not seriously
involving the boundary states, these checks are
always very good. They also improve as we in-
crease the order of approximation.

B. Application to the calculations of higher states

As asserted at the end of Sec. II and justified by
the numerical results in the previous subsection,
the most significant matrix elements relating to
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TABLE II. Convergence of the results for the energies calculated in the first six orders of
approximation; A, =0.01, 0.10, 1.00, 10.0.

A, = 0.01

0
1
2
3
4
5
6
7
8
9

10

0.501 861 14
1.509 278 42
2.516 695 69

0.501 858 91
1.509 249 77
2.523 912 82
3.545 787 73
4.563 823 17

0.501 858 91
1.509 249 77
2.523 913 12
3.545 705 52
4.574489 71
5.610300 64
6.636 628 70

0.501 858 91
1.509249 77
2.523 913 12
3.545 705 51
4.574 490 63
5.610 138 73
6.652 524 08
7.701 795 78
8.737216 53

0.501 858 91
1.509 249 77
2.523 913 12
3.545 705 51
4.574 490 63
5.610 138 72
6.652 526 08
7.701 534 68
8.757 048 04
9.819345 37

10.863 576 56

0.501 858 91
1.509 249 77
2.523 913 12
3.545 705 51
4.574490 63
5.610 138 72
6.652 526 08
7.701 534 66
8.757 051 62
9.818 969 10

10.887 177 61

A. = 0.10

0
1
2

3
4
5
6
7
8
9

10

0.517 520 77
1.585 443 7S
2.653 366 79

0.517364 89
1.583 613 97
2.708 542 86
3.888 753 14
5.030 360 34

0.517364 85
1.583 612 68
2.708 630 65
3.885 13947
5.107657 44
6.378 161 14
7.581 662 64

0.517364 85
1.583 612 68
2.708 630 71
3.885 135 64
5.107834 92
6.372 669 65
7.676 096 04
9.023 536 49

10.281 182 41

0.517 364 S5
1 ~ 583 612 68
2.708 630 71
3.885 13564
5.107 835 08
6.372 662 36
7.676 369 91
9.016 302 43

10.389 814 24
11.805 000 65
13.111195 96

0.517 364 85
1.5S3 612 68
2.708 630 71
3.885 135 64
5.107 835 08
6.372 662 35
7.676 370 19
9.016 291 21

10.390 185 53
11.796 156 89
13.232 032 33

A, = 1.00

0
1
2

3
4
5
6
7
8
9

10

0.624 016 42
2.055 143 57
3.486 270 71

0.620 932 21
2.026 068 96
3.696 451 23
5.588 732 08
7.311539 57

0.620 927 04
2.025 966 40
3.698 444 77
5.557 703 02
7.565 947 15
9.745 503 22

11.675 972 04

0.620 927 03
2.025 966 16
3.698 450 31
5.557 577 44
7.568415 77
9.709299 35

11.961 685 58
14.363 953 09
16.461 447 00

0.620 927 03
2.025 966 16
3.698 450 32
5 557 577 14
7.568422 86
9.709 148 25

11.964 535 24
14.323 438 33
16.773 268 33
19.361 378 43
21.600 952 68

0.620 927 03
2.025 966 16
3.698 450 32
5 5575771
7.568 422 87
9.709 147 88

11.964 543 60
14.323 265 64
16.776 443 29
19.317146 36
21.935 378 04

A, --10.00

0
1
2
3
4
5
6
7
8
9

10

1.023 520 50 1.00920933 1.009170 42
3.624 76468 3.507370 35 "i.506 741 63
6.226 008 87 6.725 769 8" ~~. 733 833 30

10.503 964 29 10.407 532 41
13.830 874 63 14.428 932 S3

18.873 384 74
22.696 179 57

1.009 170 32
3.506 739 60
6.733 865 11

10.406 985 25
14.437 465 33
18.769 981 36
23.355 780 38
28.307 008 70
32.520 186 47

1.009170 32
3.506 739 59
6.733 865 21

10.406 983 48
14.437498 08
18.769409 ~6

23.364 818 23
28.196 686 78
33.232 154 32
38.602 019 36
43.143 035 43

1.009 170 32
3.506 739 59
6.733 865 21

10.406 983 47
W.437 498 18
18.760.K)7 (~",~

23.364 852 35
28.196086 71
33.241 685 92
38.485 308 31
43.900 897 78
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the lowest states converge very rapidly and, to
within the preassigned accuracy, become inde-
pendent of further levels of approximation. By
treating them as known constants we can enlarge
the level of approximation without at the same
time increasing the number of equations to be
solved. This feature then enables us to evaluate
the matr ~ elements, and thereby the energies of
the upper states, essentially with the same ease
as before.

Suppose that we have found the matrix elements
of the lowest states by the vth-order approximation
and consider the most significant matrix elements
relating to the lowest two states as essentially
exact. In the next step of calculation we include
two more upper states, one for each parity. This
time we are going to solve for the 2v(v+1) matrix
elements X(I,J) and Y(I,J) with I=2, . . . , v+2
and J =2, . . . , v+1 from the following equations:

E„(I,J) = —1'(I,J)'+X(I,J)'
V+2 V+ 1

+l X(I, j) g g X(I, j'}X(I',j')X(I', J)
E'=j. 7 =1

results for X(I,J), Y(I, j) with I,j~ 2 are to be
used as starting values for the solution of Eqs.
(4.4)-(4.6). For those matrix elements relating
to the two upper states which have just been
added to the set of variables, the method of
assigning proper initial values described in (A5}
was used.

The procedure described above can be succes-
sively applied to calculate the matrix elements for
more and more higher states. However, because
of the rapidly decreasing nature of the matrix
elements, it is not necessary that the intermediate
summations always start from the lowest even-
parity or odd-parity state. Therefore, at the lth

step of such a calculation we solve for
X(I, j), 1'(I, J'} with I = l, . . . , v+ l, j= l, . . . , v+ / —1

from

E„(I,J}= —Y'(I, J)'+ X( I,J)'

V+I V+/ j

E'=Eo s'= zo

where

=0

(4 4)

with

l «I »v+ l; l »J» v+ l —1,
(4-7)

I=2, . . . , v+2,

J=2, . . . , v+1,
V+ l -j.

Cs(I, I') = Q [X(I,j}Y(I',J) + Y(I, J)X(I', j)]+5(I, I'
J= J'p

V+ ].

C~(I, I') = Q [X(I,J)Y(I', j)+ Y(I,J)X(I', J}]+5(I,I') with (4 8)

=0 l- I' »I » v+ / —1,

where

I=2, . . . , v+1,

I 2
y

~ ~ o

(4.5)

Co(j,J ') = Q [X(I,j) Y(I,J ') + Y(I,j)X(I,J')]
E =Ep

Co( j,j') = Q [X(I,J)Y(I,J')+ Y(I, j)X(I,J')] —5(j,J')

=0

with

I»J'»J» v+l —1,
(4.9)

where

J=2, . . . , v+1,
J'=2

(4.6}

The matrix elements X(1,J), Y(1,J) and

X(I, 1), Y(I, 1) with j=1, . . . , v, I= 1, . . . , v+1 are
included in all the above intermediate summations
but are regarded as known constants.
X(l, v+ 1), Y(1, v+ 1) and X(v+2, 1), Y(v+ 2, 1) occur
in the sums but are set to zero because they are
not in the range of the previous vth-order calcula-
tion and are usually very small. The previous

where I, =J,=maximum (1, l —v). At each step
we include at most v possible lower states for all
the dummy indices I and J. This is sufficient to
take the lower boundary effects properly into ac-
count. Since at each step we are primarily inter-
ested in results relating to the 1 th even-parity and
odd-parity states, which are already nested in the
center of all the states included in the intermed-
iate sums in this way, it appears that there is no
need to sum over more lower states.

The energies for the 2 v+1 states at the l th-step
calculation are evaluated from the formulas
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v+ l -1
[Y(l,J)'+X(l, J)']

v+l-1

E=Ep

where

I,=J,=Max(l, l —v),

E(2J—1)
' = &g, — ' for J = l, . . . , v+ l —1;1'(l, J)

X(f,J)

and

values of all the states up to very large n. Be-
sides, we have found that if the third energy of
the (/ —1)st step is the same as the first one of
the l th step to some decimal digit, then, to a
very good approximation, the first two energies

X ( 1 J)X(I J)X(I J' )X(1 J )
calculated at the l th step are also accurate to
that digit.

In Table III the results for some of the energies
(4.10) calculated with this step-by-step procedure are

given. In Table IV we compare our results with
the previous work done by Chan, Stelman, and
Thompson. ' To be consistent we transform the
operators x and p into the operators X and P used
in their work. Besides, we include another para-

(4.&&) meter p, before the harmonic interaction term.
This requires a trivial modification of our meth-
od. Hence the Hamiltonian becomes

e, =E(2l —1), (4.12) (4.14)

E(2I —2) =&@2+ ' for I = / +1, . . . , v+ l.Y(I, /)
X(I, /)

(4.13)

By setting

x = (n/N)X,

P = (lie&2)I,
(4.15}

For any two successive steps of such a calcula-
tion there are always 2v —1 energies in common
being evaluated from (4.10)-(4.13}. This provides
us consistency checks on the results of the two
steps. By picking up the first two energies cal-
culated at each step, we can find the energy eigen-

we have the correct commutation rule for X and
P, i.e.,

[X,p]=2f.
Also, this brings our Hamiltonian (4.14) into the
form

TABLE IIE. Results of the first 22 energies calculated by the step-by-step procedure with
v=5; A, =0.01, 0.10, 1.00, 10.0.

0.01 0.10 1.0 10.0

0
1
2
3

5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21

0.501 858 91
1.509 249 77
2.523 913 12
3.545 705 51
4.574 490 63
5.610 138 72
6.652 526 08
7.701 534 66
8.757 051 62
9.818 968 97

10.887 183 27

11.961 595 30
13.042 109 79
14.128 635 18
15.221 083 39
16.319369 61
17.423 412 12
18.533 132 09
19.648 453 42
20.769 302 62
21.895 608 63
23.027 302 72

0.517364 S5
1.583 612 68
2.708630 71
3.885 13564
5.107 835 08
6.372 662 35
7.676 370 19
9.016 291 20

10.390 185 96
11.796 14146
13.232 500 16

14.697 808 87
16.190780 74
17.710 266 47
19.255231 93
20.824 740 57
22.417 939 35
24.034 047 29
25,672 346 12
27.332 172 53
29.012 91167
30.713 991 67

0.620 927 03
2.025 966 16
3.698 450 32
5.557 577 14
7.568 422 87
9.709 147 88

11.964 543 62
14.323 265 20
16.776 452 79
19.316 954 30
21.938 849 36

24.63 7 13938
27.407 536 16
30.246 312 16
33.150 19114
36.116266 23
39.14193724
42.224861 72
45.362 91626
48.554 16532
51.796 835 85
55.089 296 47

1.009 170 32
3.506 739 59
6.733 865 21

10.406 983 47
14.437 498 18
18.769 407 62
23.364 852 45
28.196084 80
33.241 721 60
38.484 678 62
43.910 930 43

49.508 715 76
55.268 002 41
61.180 11230
67.237 450 19
73.433 302 00
79.761 681 63
86.217212 03
92.795031 69
99.490 719 62

106.300 234 78
113.219 866 21
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TABLE IV. Comparison of Chan-Stelman-Thompson (CSTj method with present work for the
ener gy eigenvalues.

= 0.0
CST

e =0.1
Present work CST

e =0.5
Present work CST

G. =1.0
Present work

2
6

10
14
18
22
26
30
34
38

1.99199
6.141 95

10.5953
15.3050
20.2396
25.3761
30.6969
36.1878
41.8376
47.6367

1.991 98528
6.141 947 51

10.595 27401
15~ 304 96743
20.239 5759
25.376 1336
30.696 941 8
36.187 839 8
41.837 1790
47.635 1699

2.273 41
7.743 93

14.6492
22.4645
31.0097
40.1725
49.8766
60.0657
70.6963
81.7337

2.273 406 71
7.743 928 76

14.649 249 0
22.464 510 9
31.009 695 8
40.172 543 9
49.876 622 7

60.065 7100
70.696 355 9
81.733 7686

2.671 95
9.574 58

18.7872
29.3429
40.9773
53.5174
66.8476
80.8835
95.5600

110.8256

2.671 945 0
9.574 576 1

18.787 182
29.342 920
40.977 234
53.517 346
66.847 558
80.883 398
95.559 974

110.825 57

H= 4„,(P'+ p, k'X'+-,' Xk'X') .

With

3/o

p, =l, x=4, and k=(1 —n)'I'
1 —~

or

1 —Q x=4, and u=n'",

(4.16}becomes

(4.16)

(4.17)

(4.18)

In Fig. 1 the most significant matrix elements
X(I,J) withe=I, I —1 and relating to the lowest
14 states are plotted against the anharmonicity
parameter A. . It can be seen that these matrix
elements decrease rapidly for small anharmon-
icity and behave as A.

' ' for large anharmonicity.
The asymptotic behavior can be easily shown to
be so from Eqs. (2.10)-(2.12) by considering only
those matrix elements X(I, j), Y(I, Z) with 2 = I
and I —1, namely the lowest order of approxima-
tion. From the diagonal commutator equations of
(2.11) and (2.12), we have

4k H = P' + (1 —o.)X' + n'I'X' (4.19) X(I, I) Y(I, I) +X(I, I - 1) Y(I, I - 1) —= —~, (4.20)
which is just the reduced Hamiltonian used in Ref.
3. In our method (4.17) and (4.18) are equivalent
within a canonical transformation, and exactly the
same results are obtained for (4.19), for ex l.
Because of the singularity of A, in (4.17) at a = 1,
for this pure quartic interaction case we can only
use (4.18). From Table IV it can be seen that the
numerical results obtained for the energy eigen-
values by the present approach are in very good

agreement with those obtained by the Chan-Stel-
man-Thompson method. The technique of directly
diagonalizing the Hamiltonian matrix of finite di-
mension in some selected representation was used
by these authors. The results thereby obtained
are usually representation-dependent and less ac-
curate for higher eigenvalues, as can be seen
from the slight discrepancies (especially for
o. =0.1, because the harmonic-oscillator repre-
sentation was used in this case, instead of the
quartic-oscillator representation in other cases).
The present approach works directly with matrix
elements in the exact energy eigenstate represen-
tation and, because of the good behavior of the
matrix elements, should give more accurate re-
sults.

and

X(1, 1) Y(1, 1) =———,'.

(4.21)

(4.22)

Knowing (4.22) we can successively determine
X(I, I —1) Y(I, I —1) and X(I, I}Y(I, I) for I
=2, 3, . . . from the recursion relations (4.20) and
(4.21). Thus,

X(I, I —1) Y(I, I —1)=—I —1,
X(I, I ) Y(I, I) = —(I — )

(4.23)

(4.24)

The off-diagonal commutator equations yield less
accurate information about the products of the
leading matrix elements because of the cancella-
tions between them, and in fact there is no need
to use these equations in the following proof.

In the lowest order of approximation we consider
only Ith and (I +1)st even-parity states and Ith
odd-parity states at one time. Therefore, by
neglecting the harmonic term and using (4.23),
(4.24), the equations of motion become

X(I, I —1) Y(I, I —1) +X(I'—1, I —1)Y(I —1, I - 1) = —, ,
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ield the results thatThese readily yie
1 3 1/6{I —,)(' "=

(.(2» ——;)»]
and

I'
X(I +1, I}—= (,)

Thus, as A. -~
x(I, I),x(I+,1 I)-X-'/',

(4.26)

{4.27)

(4.28)

(4.29)

)'[X(I + 1, I)'+X(,2 I I)2] 0+XX(I +1, I
X(I +1, I)'

(4.30)
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APPENDIX
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drance to arbitrarily large A. . If one is primarily
interested in large A. , it is more efficient to start
from an approximate large-A. solution which can be
readily obtained from our equations by omitting the
harmonic interaction and using the lowest (equiva-
lently v = 1) level of approximation. Then one en-
larges the level of approximation to v'= v+1 by
using the results of the previous order as part of
the initial values for the variables. For those most
significant matrix elements not previously covered,
one sets

X(I, v') —= X(I —1, v' —1),

(A5)

Y(I, v') = Y(I —1, v' —1) for I= v' and v'+1.

Other less important matrix elements can be con-
veniently assigned some small numbers of correct
signs. Note that under the usual phase convention

E (I, J, 1)=—E„(I,J)= 0,

E(I",I', 2)=—Cs(I', I")=0,

E (J + 1,J', 2) =—Co (J, J') = 0,

with (A8)

and

B(I, J, K) = E(I,J, —K) (A9)

A(I, J, K, M, N, L) =BE(I,J, K)/B V(M, N, L),

1 «I «v+1,

1 «J' «J«v,
1 «I" «I'«v.

Hence the 2v(v+ 1}equations E(I,J, K) =0 are what
we have to solve for the 2v(v+1) matrix elements
V(I, J', K). The matrices 8, and A;& then take the
following forms:

X(I,J)&0 for all I and J, with (A10)

but

Y(I, J)& 0 if I &J,
Y(I, J}& 0 if I ~ J. (A6)

and

V(l, J, 1)= X(I,J),
V(I, J, 2) =—Y(I, J) (A i)

This procedure can then carry one successively to
the desired order of approximation for this partic-
ular A. .

ln the method described by (Al)-(A4) to solve a
set of nonlinear equations, before we really de-
fine x&' in each iteration we have to determine the
correct change Bx~' from(A3). This is usually
achieved by using the routine based on the normal
Gauss elimination method. Of course, the deriva-
tives A.;, and the functions 8; should be evaluated
beforehand. For the anharmonic-oscillator prob-
lem, the following is the most efficient way to do

it:
Because of the linear storage nature of computer

memory for matrices, the variables and the equa-
tions in (Al}-(A4) can be labeled equivalently well
by a set of indices instead of just a single sub-
scripti or j, provided that the total number of the
variables (or equations) specified by the multiple
indices is the same as that originally specified.
This feature allows us to redefine the matrix ele-
ments X(I,J) and Y(I, J), and similarly the three
types of equations, into a compact set by using an
additional index, and thereby the procedure (Al)-
(A4) applies more readily. Thus we set

1«I, M«v+1,

1 «J, N «v, 1&K, L, «2.

When written out explicitly by using the definitions
(A'l), (A8) and the fact that BX(I,J)/BX(M, N)
= BY(I,J)/BY(M, N) = 5(I, M}5(J,N) etc. the resulting
expressions for (A9) and (A10) in X(l, J), Y(I,J) and

appropriate Kronecker 6's can be directly pro-
grammed for every order of approximation. Note
that when the previously mentioned routine is
called, the matrices A(I, J, K, M, N, L) and B(IJ, K)
a.re automatically viewed as a 2v(v+1)x2v(v+1)
two-dimensional matrix and a 2v(u+1) x1 column
matrix, respectively, by the computer. Equations
(AV) —(A10} can readily be applied to the step-by-
step procedure described in Sec. IVB if at each
step of calculation we properly take care that the
ranges of those indices in A and 8 of (A9) and (A10)
do not increase. For instance, at the 3th step,
with other things unchanged, A and 8 can be set
to be A(I- l+1,J —1+1,K, M —1+1,N l+1, L}and-
B(I —I+1,J —l+1, K), respectively.

In more general cases it might be difficult to re-
define the variables or the equations in such fash-
ions as described in (A'i) and (A8). When this hap-
pens, after performing the necessary intermediate
summations and derivatives by the help of two-sub-
script variables, we can then transform these sub-
scripts into a single one at each appropriate step.
This can be carried out as K=v(I —1)+J for
X(I, J') and K' = v(v+ 1)+ v(I —1}+J for Y(I,J) and
similar transformations for the equations. The
resulting matrices A, B are then two-subscript and
one-subscript, respectively, as usual.
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