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In this paper we investigate some of the consequences of having the vertex functions in a field theory or a
model, that satisfy the Callan-Symanzik equation, also satisfy some analyticity and uniformity properties in
the coupling constant g. The solutions of the Callan-Symanzik equation in a complex neighborhood of the origin are
studied. The implications of analyticity in g to scaling, anomalous dimensions, and Borel summability for
large Euclidean momenta are pointed out. The input we start with, though not yet established in four-
dimensional field theories, has been proved for two-dimensional ¢* theories. It also happens to be true in many
“models” discussed in the literature in connection with Bjorken scaling.

I. INTRODUCTION

It is generally recognized that perturbation ex-
pansions in field theory are most probably diver-
gent. For certain superrenormalizable, self-
coupled, boson field theories this divergence has
actually been proved.! At best, the hope is that
in renormalizable field theories perturbation ex-
pansions are asymptotic expansions.

Asymptotic series are useful for calculating
physical quantities for small values of the cou-
pling constant. However, in many cases one wants
to use perturbation theory in a deeper way as a
guide to the full theory. Much hard work has been
done on proving properties of the Feynman per-
turbation series order by order. One would like
to have a mechanism that could make a perturba-
tive equation exact in an actual theory. In general
there is an infinite class of functions which lead
to the same asymptotic series, and perturbation
expansions may not define a unique function. Sev-
eral years ago, Simon? showed that summability
techniques could give us a mechanism which will
not only lead us in a unique way from perturbation
theory to the full answer, but will also allow us to
show that properties that were proved order by
order in perturbation theory are valid in the full
theory. Using a classical theorem by Watson and
Carleman,® he formulated what was called the
strong asymptotic condition, which leads to a form
of Borel summability that guarantees a unique way
of recovering the function from the perturbation
expansion. A basic ingredient of the strong as-
ymptotic condition is that the functions one is
dealing with have to be analytic in the coupling
constant in a sectorial region around the origin of
theform{g|0< |g|<7, |argg|< 37 +6, 6> 0}. Anoth-
er ingredient is the uniformity of the estimate of
the error one gets in taking the first N terms in
the perturbation expansion to approximate the
function in the sectorial region.

Recently, Glimm, Jaffe, and Spencer* proved
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that in a g¢* field theory in two dimensions the
Euclidean Green’s functions are analytic in g in
a sectorial domain defined as above but with

|arg g|< in. For g in that sector they also showed
that the Green’s functions remain tempered in

x space even for complex values of g. Eckmann,
Magnen, and Seneor® extended this sectorial do-
main to |arg g|< 47 +6, 6>0. They also were
able to establish all the estimates needed for the
strong asymptotic condition to hold and thus proved
the unique Borel summability of the Euclidean
Green’s function in this case. This much desired
relationship between perturbation theory and the
full theory is then true at least in one example in
two dimensions.

One important physical example of the use of
properties known only order by order in perturba-
tion theory as properties of the full theory is the
Callan-Symanzik procedure for calculating the
asymptotic behavior of one-particle-irreducible
Green’s functions in the deep Euclidean region.%’
In this procedure certain mass insertion terms
are ignored and assumed small even though one
has only been able to prove this fact order by
order in perturbation theory. Without the assump-
tion that the full mass insertion terms are also
negligible, one cannot get any useful results from
the Callan-Symanzik procedure. Although this is
rarely explicitly stated, the hope is presumably
that some kind of summability method will enable
us to prove this crucial assumption. If, for ex-
ample, the Borel summability established by Eck-
mann et al. in two dimensions can be also proved
in four dimensions, then one can actually prove
that ignoring the mass insertion terms in the
Callan-Symanzik (CS) equation can indeed be jus-
tified for the purpose of calculating asymptotic
behavior.

Very little is known yet about analyticity in the
coupling constant in four dimensions. However,
if the singularity structure of Euclidean Green’s
functions in the neighborhood of the origin is too
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complicated, that in itself will throw considerable
doubt on the validity of dropping the mass inser-
tion terms in the CS procedure. Guided by this
fact, and by the analogy with the two-dimensional
case, we shall make certain simple analyticity
assumptions in the coupling constant for the trun-
cated, one-particle-irreducible Green’s functions
at Euclidean, nonexceptional momenta. The as-
sumptions we make allow for the divergence of
perturbation expansions and they are only limited
to a small, finite sectorial neighborhood of the
origin whose size may depend on the momenta.

Given this type of analyticity in g, the purpose
of this paper is then to study the solution of the
Callan-Symanzik equation in a complex neighbor-
hood of the origin, g =0. We do this mainly for
g¢* theory in four dimensions, but the generaliza-
tion of our results to other cases is quite simple.

Our first result shows that even though g¢* is
not asymptotically free for real g>0, nevertheless
there exists a domain of complex initial values of
g inside the assumed analyticity domain for which
the vertex functions, (" (\p,, ..., Ap,;g, m), be-
have as A=~ o as they do in an asymptotically free
theory. This is perhaps not so surprising. But
what is surprising is that this domain of asymp-
totic freedom turns out to intersect with the region
Reg >0, and to have a boundary curve in that region
that starts from the origin with zero slope. Thus
for small enough |g|, initial values with
lg,/g,|>Csin%e, argg=e, will be shown to lie in
the asymptotically free domain for any small
€>0, as long as | g| /sine is small. In other
words, points arbitrarily close to the positive
real g axis have I{") (\p, ; g, m) with asymptotically
free behavior as A — «.

When oune couples this result with the tempered-
ness of I'™)(p,, ..., \p,;&,m) in momentum space
for complex g inside the analyticity domain, a
property that has been established in Ref. 4 in the
two-dimensional case, then one is led to severe
restrictions on ¢* field theory in four dimensions.
If the theory has a nontrivial ultraviolet-stable
fixed point at g =g, with g8(g,)=0and g’ (g.)<0,
then one is forced under our assumptions to choose
between one of the following two alternatives:

(I) The anomalous dimension at the first nontrivial
fixed point vanishes, i.e., y(g,)=0, andtheleading
power behavior of the IX"™ (\p, ; g, m) for large A
and small real g> 0 is canonical. (II) As A=,
the functions I (\p, ; &, m) must have a cut or a
line of dense singularities in the g plane that
approach the origin as A grows and get denser in
spacing. This line of singularities will be arbi-
trarily close to the positive real axis and will
start off with zero slope from the origin. Alter-
native I can only be valid if the fixed point is

sufficiently singular so that one cannot write a
CS equation at the point g =g_, but has to solve
the differential equation for g<g, and then take
the limit of the solution as g—~ g, . If the CS equa-
tion holds at g =g, then as has been shown by
Parisi,® and Callan and Gross,® y(g,,) =0 implies
8. =0 or a free-field theory. Alternative I means
that for large A one has not only to give up Borel
summability for <" (p;;&,m) except for very
small values of g that shrink as A =, but more
seriously the existence of a line of singularities
close to the positive real axis puts the Callan-
Symanzik assumption about the mass insertion
terms itself in doubt.

One is left with the possibility that ¢* field
theory has no nontrivial fixed points. In this case
the usual real g Callan-Symanzik approach does
not give us any information on the asymptotic be-
havior of T, Our present approach will in that
case lead to the result that for all g in the domain
of analyticity, including real positive values of g,
the asymptotic behavior of T™ (\ p,; g, m) has the
canonical powers in A as A=, i.e., A*"" times
terms which increase (or decrease) slower than
any power of A. This of course is true only if
the dense singularities of alternative II are not
present.

In Sec. II we review the results of two-dimen-
sional field theories and state our assumptions
precisely. The Callan-Symanzik equation with
complex g is then solved in Sec. III for g in a
neighborhood of the origin, A domain of asymptot-
ic freedom for g ¢* theory in four dimensions is
found and certain properties of the solutions for
g in this domain are derived. In Sec. IV we show
how the results of Sec. III lead to the above-men-
tioned restrictions on the theory. We then briefly
discuss the generalization of our results to gauge
type theories and to non-Abelian gauge theories
in Sec. V. In these cases one has to use the vari-
able & =g% and for non-Abelian gauge theories
the line of singularities of alternative II lies in the
second quadrant of the o plane and close to the
negative real axis, leading to no inconsistency
with Borel summability for Rea > 0.

In Appendix B we briefly comment on the impli-
cation of our results for Bjorken scaling.

II. ANALYTICITY IN COUPLING CONSTANT

The purpose of this paper is to investigate the
consequences of having the vertex functions in a
field theory or a model satisfy certain general
analyticity and uniformity properties in the cou-
pling constant g. In this section we shall briefly
state our analyticity assumptions and discuss the
motivation for making them.
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For simplicity, and for having a concrete exam-
ple, we shall consider a massive g¢* theory in
four dimensions, or a model based on summing a
certain subclass of graphs in ¢* theory. Following
the standard notation, we let IX" (,,...,p,;&,m)
denote the one-particle-irreducible, amputated
part, of the corresponding connected Green’s
function, with }3}%,,p,=0. We are only interested
in Euclidean, nonexceptional momenta, p;. Our
main assumptions are the following:

(A) For Euclidean, nonexceptional p,, <"

(p1s- - -» P38, m) are analytic functions of g in a
small cut circle domain D:

D={gl 0<|g| <7y(py), larggl<n}. 2.1)

A similar domain is assumed for the Callan-Sy-
manzik functions g(g) and y(g).
(B) The asymptotic properties, for small |g|,

B(g)=cg®+0(g%, ¢>0

v(8)=bg*+0(g%), @2)
hold uniformly for all g< D.

There are several reasons for starting with
such simple but perhaps strong assumptions and
investigating their consequences. We list some
of them here.

(1) Properties similar to (A) and (B) have been
proved for two-dimensional ¢* field theories.*®
Although everyone recognizes that the transition
from two dimensions to four is not easy, still (A)
and (B) have not been ruled out and give us simple
but admittedly strong starting points. In fact one
of the lessons of this paper, as we shall see be-
low, is that assuming too much analyticity will
lead to almost trivial theories, and even given (A)
and (B) one possibility we show is that singulari-
ties start approaching the origin as p; = « in the
Euclidean region.

(2) Analyticity and uniformity in a sector with
opening angle larger than 7 are necessary for
Borel summability. Borel summability is one way
one can prove the Callan-Symanzik assumption
about dropping the mass insertion term in the
Callan-Symanzik equation.

(3) Assumption (A) is the simplest one can make
even if it is strong. It allows for a singularity at
g =0 which forces perturbation expansions to di-
verge. We choose the cut related to this singular-
ity along the negative real axis. What we are
assuming is that the next singularity nearest the
origin is at least of modulus 7,(p, ). We have not
excluded the possibility that 7,(p;) might collapse
to zero as p; = « in the Euclidean region. No
uniformity in p; is assumed.

(4) Finally, even if (A) and (B) are not true in
a field theory, they are true in many models that

have been used extensively in the literature to
study the problem of Bjorken scaling. There are
even models in which the I¥")’s have a finite
radius of convergence in g, and which also satisfy
a Callan-Symanzik equation with a nontrivial
B(£).'° For such models our results point out that
it is the analyticity in g which is sufficient to ex-
plain the absense of power deviations from scaling,
and not the specific dynamical details of the mod-
els. The fact that renormalization-group type
equations are also being used in other areas such
as the Reggeon calculus, where one again has
sometimes relatively simple models, provides an
additional incentive for this investigation.

Following the standard procedure we define the
asymptotic forms at nonexceptional momenta which
are denoted by T (p,,..., p,,&,m). Formally,
these are obtained from I'‘™ (\p, ; g, m) by. first
using perturbation theory in g and then expanding
each order in a double power series in A~! and
Inx. The formal sum obtained by discarding all
but the leading terms in powers of A~ is I . It
was shown by Symanzik® that the I® are the ver-
tex functions of a theory with massless particles.

Even for nonasymptotic values of A, the
functions I (\p, ; g, m) satisfy the homogeneous
Callan-Symanzik equation%’

[ a4 -ty

XTP W pyy. .. Apy;8,m)=0.  (2.3)

The functions I (\p, ; £, m) satisfy an equation of
the form (2.3) with an additional term on the right.
Forlarge X that term has been shown to be negli-
gible only order by order in perturbation theory,
and it is an open question whether one can prove
that the sum is also negligible. If that is not so
then I'(Y willnot give the asymptotic form of I¥")
for large A even at nonexceptional Euclidean
momenta. One way to guarantee that the Callan-
Symanzik procedure is valid would be to prove
Borel summability in the sense of Ref. 2 for
r‘”, (") and the mass insertion terms.

We shall now further assume that " (p,, . ..
Pn;&»m) have similar analyticity properties to
those stated under assumption (A). We shall de-
note the cut circle domain for I'® also by D even
though in principle it might be different from the
domain for I™, Since one by dealing with ") is
effectively dealing with a zero mass theory, this
is an independent assumption which is excluding
the possibility that a dense set of singularities
collapse toward the origin as one goes to the
zero-mass limit. In two-dimensional g¢* theory,
£ has dimension of (mass)? and only the dimen-
sionless coupling constant(g, 1.”? has an analyti-

b
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city radius independent of some mass. However,
in four dimensions g is dimensionless.

Thus we can consider Eq. (2.3) as holding for
all g D, assuming that differentiation with res-
pect to A does not destroy the analyticity in g.

In the next section we study the solutions of
Eq. (2.3) for complex g<D.

HI. SOLUTIONS OF THE CALLAN-SYMANZIK
EQUATION FOR gE€D

Our task in this section is to study the solution
of Eq. (2.3) for complex g< D. Before we proceed
we briefly review the method of solving Eq. (2.3)
for real g.

For real g, g> 0, the solution of the Callan-Sy-
manzik equation is well known,

I‘(a':) O\Pﬁ &, m)

—yd=n(n = Fo")y(x)
_)\4 r(as)(p{’g(t’g), m) exp[ —nf de} s

(4

(3.1)

where ¢ =1nx, and the effective coupling constant
Z(t,g) is defined as the solution of the differential
equation,

28 1,4)-8(2 (0, ), 3.2)
with initial value

£0,2)=¢g.

In Eq. (2.2), ¢ >0, and starting with a small g> 0,
Z(t,g) will grow as t — o, If we assume the exis-
tence of a fixed point, g,, with g(g_)=0, and
B’ (¢.)< 0, such that g(t,g)~ g, for ¢ = «, then if
% (p;;8,m) and y(g) are left continuous at g,
Eq. (3.1) gives us the asymptotic behavior for
large A, and nonexceptional momenta:

T2 by 8, m) = 2t~ 0or e (p s, m)
x exp[-nr(t, g)], (3.3)

where

~t
r(t,g)=J0 dt'[v(g(t",g) ~v(g.)]

=0 (Im\). (3.4)

Thus in this case the field ¢ has the anomalous
dimension d=1+y(g,). If 3(g) on the other hand
has no zero in the interval 0<g< «, then the CS
approach tells us nothing about the behavior of
" (\p, ; 8, m) for large X.

To extend the solution (3.1) to complex initial
values g < D, one has at first to find solutions of
the differential equation (3.2) with real ¢ and com-

plex initial values g< D such that

(a) Z(t,g) are analytic in g for g€ D for all ¢,
0<t <oy

() for all ¢, O0<t <, g(t,g)=D, i.e.,

0<|Z(t, &) <7o(py)

largg(t, )l < 7. (3.5)

Otherwise, if (b) is not satisfied, a g(¢,g) which
for some value of ¢ =¢, has a value outside D will
be useless since then the term on the right-hand
side of (3.1), exp{-n[f[y(x)/B(x)]dx}, will not
in general be defined if g is outside the domain of
analyticity of y(g). [We are assuming that g(z)
has no zeros for z& D other than at the origin;

&. is taken to be outside D.]

We shall concentrate our attention on a small
neighborhood of the origin in which the first term
of Eq. (2.2) gives a good approximation to 8( g).
Namely, we choose a value «,,

Ko<¥o(py), 3.6)
such that for all g =xe'® and k< k,,
Blke! D= ck?e®®, | ¢l <m. 3.7

Let us define the domain p,; in the second quad-
rant of the g plane as

D ={g| 0<|gl<k,, im<argg<n}. (3.8)

The following theorem can be proved if the prop-
erties (A) and (B) are valid:

Theorvem 1. For any gEDl there exists a unique
solution g(¢,g) of Eq. (3.2) which for any £ >0 is
(a) analytic in g, (b) satisfies |Z(t,g)| <k,
sm<argg(t,g)<m, and (c)

]il_{?o |§(tyg)| =0,
. _ (3.9)
lim(argg(t,g) 7, <D,

where the last limit is approached from above the
negative real axis, i.e., for any finite ¢ > 0,
argg(t,g)< m.

Hence, if we choose our initial g to be complex
and to lie in D, then g(t,g), the effective coupling
constant, shrinks in modulus as { =~ « and
I (\p, ; &, m) behave as in an asymptotically free
field theory for all g< D,.

Proof of theovem 1. We shall leave the proof
of the analyticity of g(t,g) in g for Appendix A.

It consists of a simple extension of Picard’s clas-
sical theorem for the existence of solutions to
differential equations to the case of complex initial
conditions.

The proof of assertions (b) and (c) is quite simple.
Equation (3.2) is equivalent to the integral equation

1
) =g+ [ at'B(ZE,g). (3.10)
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We take ¢ =A¢, then for g =ke'?, k<«k,,

FAt,g)=ke*®+ckZeP At +0 (K°). (3.11)
But sinceg:’iql, then 7/2< ¢ <m, and hence
|5@t, 8| 2xl1-cket®at]| <k,
and we see that the modulus shrinks,
lg@at, )<l 20). (3.12)

Similarly, one can show that the phase increases,

[argg(at,g)-argg|=ckAt sin¢p +O(k?), 57< p<T.
(3.13)
In general if g(¢,g)< D, then

g +at, )l <8¢, 8, 3.14)

and
argg(t +at,g)-argg(t,8)=c| Z(¢t, )l at singl(t,g),
3.15)

where ¢(t,g)=argg(t,g). By induction one sees
that as t =, | g(t,g)| = 0. Furthermore, the
argument of g(t, g) for ¢€ D increases with ¢ and
approaches 7. It is clear from Eq. (3.15) that the
increase inthe phase of g for eachinterval ¢ — ¢ +A¢
gets smaller and smaller as ¢(t,g) gets closer to
7 since the right-hand side in (3.15) is proportional
to sing(t,g). Thus the flow Z(¢,g) approaches zero
as t —« along a curve above the negative real axis
whose tangent at the origin is zero.

For large ¢, one can easily show that g(¢, g)
approaches the solution of the differential equa-

Ko
a

DF:”;gI 0<|gl< ‘ ‘

with

a=1+71/2,

Thus in the second quadrant the domain D is
bounded by the quarter circle with radius |g|=k,/
a; and inthe fir st quadrant the boundary is given by
|gl = (k,/a)sing where ¢ =argg. The domain Dy
is shown in Fig. 1,
We now prove the following theorem again ac-
cepting the assumptions (A) and (B) for g(g):
Theovem 2. For any g = D, there exists a
unique solution of Eq. (3.2), git,g), which for any
t >0 is (a) analytic in g, (b) has the property
g < Dg, and (c) for large ¢, lim,, Z(,£)=0 and
lim,_, ,argg(t,g) =m as in theorem 1.

,%<¢<n ( U }gl 0<|gl<—2—gsin(p, O<gps<

tion dg,/dt =cg;? (t,g), which is given by

=5

?gT:T' (3016)

golt,g)=
At the end of Appendix A we show that for large ¢

— — 1 ;

Z(t,8)-80(t,8)=0 <F) £5D, 3.17)

where the error on the right is real and the imagi-
nary part of the error is O (¢ ~®). This gives

— 1 1
Reg(t,g),’:;—a +O<t_2>: (3-18)
mZ,g) o —E 0%, 2=D
EU,8) 3% FWIEE + (t3>’ 8= ne
3.19)

So far our results are not surprising since had
we had analyticity in a full circle around the origin,
then it is obvious that we would get g(t,g)~ 0 as
t = if g is real and g< 0. The domain we have
considered up till now has Reg< 0.

For g=-D , we have Zt,g)=~0 ast—~w, Onthe
other hand, for real g,g>0, the flow is such that
gZ(t,g) increases with g and if a fixed point exists,
g(t,g)~g, as t = . The question is: What hap-
pens to g(t, g) for initial values g that lie in the
part of D in the first quadrant? In other words,
can the domain of asymptotic freedom, D , be
extended into the first quadrant? The surprising
answer is that not only can D” be extended, but the
extension includes points which for small enough
|g| have a phase that can come as close as we
want to zero, The domain we get is given by, for
g=lglexpio),

o

‘( , (3.20)

Prooj of theovem 2. Obviously, we do not have
to prove the theorem if 7>argg > 7/2. This was
already done in theorem 1. We consider an initial

I'mg
\\
Df /

FIG. 1. The domain of asymptotic freedom, Dp.

Reg




12 SOLUTIONS OF THE CALLAN-SYMANZIK EQUATION IN A..

g in the first quadrant with g =|g|e*® such that

Kooy =1+F T
Igl<asm¢, a 1+2, 0<p=<3, (3.21)
where ¢ can be as small as we please as long as
the inequality (3.21) is satisfied. We define the

sequence {g,} as

&1 =g +clgl*e®at,
(3.22)

8n =8 n-1 +c|g"-1lzeﬂ Pn=1Af )

where Af is small and argg, = ¢,. Aslong as
Ig,,l <k, the above sequence gives a good approxi-
mation to g(¢,g), namely:

Znat,g)=g, +0mlgl®) (3.23)

This can be checked by approximately solving the
integral equation (3.10) in discrete steps ¢, =nAt¢.

Starting with any ¢ such that 0< ¢ <7/2, we note
that as long as ¢,.,<n/2,

lgl <lg,l <o+ <lg,l, (3.24)
<Pyt <, (3.25)

One can also show by repeatedly using the triangle
inequality that

lg,| <lgl @ +nclglat cosgp)+Omlgl®). (3.26)

Hence if n is not too large, Ig,,l remains small.
In fact if we define an N

max

m

Now® 3cTg1al sing’ ®.27)
then for all k<N,
7 _lgl s
lgw| <lgl + 2 Sing +O(N,, |&l®)
and using Eq. (3.21) we get
|| <Ko+O(K?), k<N, (3.28)

The increase in phase at each step is given by

k-1
Ok = Pn —Pae1= €l &y | AL SIN <¢+261>
j=1

+0 (1g1?). (3.29)

We claim that there must exist an integer N, < N,
such that

(pNO:% +e, €>0
(3.30)

m
brg-1<3>

for if no such N, exist then g . will have a phase
less than or equal to 7/2, as w111 all the g,’s for
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k <N,,.. But this gives a contradiction since as
long as all the g,’s lie in the first quadrant, §,

will have a minimum which follows from Eq. (3.29):

5, =clglat sing +0(lg]?), (3.31)

where we have used the inequalities | g| < |g,| and
sing < sin(¢ +235216,), both of which are true as
long as ¢, <n/2 for all k<N,,. The lower bound

(3.31) leads to a lower bound on ¢, |,

max

-¢+Z o, =

max mm
>p+T, (3.32)
2
This contradicts the statement that argg Fmax < /2,

and proves our assertion about the existence of N,.
Thus starting with g in the first quadrant with
any positive phase ¢ but satisfying Eq. (3.21), the
sequence gy, £ay-+ -5 Lkr- -8, will increase in

phase and modulus until finally the phase of &ny 1
bigger than 7/2. However, even though the modu-
lus increases it remains bounded for all £ < N, <N,

max

such that | g,| <k, and we never get to a value of
| g,,| where our approximation for 8(g,)= cg,, is
not good. Once the phase passes 7/2, i.e., for
Eng> Eng etc. then we are in the domain of
theorem 1, and from then on the modulus starts
shrinking and we approach the origin in the same
way as in theorem 1. Namely, we have for
k>N, lim,  |g,|~ 0 and lim,, argg,=7. It is
obvious that the asymptotic properties for large
t of g(t,g) given by Eqgs. (3.17), (3.18), and (3.19)
also hold in this case. This completes the proof
of assertion (c) of theorem 2. Assertion (@) on the
analyticity of g(,¢) in g will also be proved in
Appendix A.

We are left with the task of proving that if
g< Dy theng(t,g)<E D, i.e., assertion (b). To do
this we first show that if g = D, then g(At,g)< Dy.
We are only interested in the case O<argg< /2,
since those values of g in the second quadrant part
of D, have already been dealt with in theorem 1.
We have then for g< D, and argg<n/2

|gl<5jsin¢, (3.33)
and from the integral equation (3.10),
gt g)=lgle!?(+clglatet®)+0( gl®)
(3.34)

which gives

[Z@t,8)l =lgl (1+clglat cosg) +0(lgl®),
(3.35)
argg(at,g)= ¢p(at,g)=¢ +clglat sing
+0(lgl?) (3.36)
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Using the above four equations, we get
—Kfsin¢(At,g)z —Ka&sin(cp +clglat cosg)
Ko . Ko o .
=—sing+— sinpciglat cose

> | gl +clgl’at cos¢ = |g(at,g)l,
3.37)

where in the above inequalities we have ignored
terms of higher order in |g|. It is clear from
(3.37) that (at,g)< Dp. In a similar way one can
show that if for any ¢

gt,g)E Dy,
then

gt +At,g)ED, .

This completes the proof of our theorem.

Perhaps we should here stress the fact that the
Dg we have found in theorem 2 is not necessarily
the maximal domain for asymptotic freedom. The
boundary in the first quadrant, |g| = (k,/a)sing, is
not, in the neighborhood of the origin, the “sepa-
ratrix” or “critical line”!! of the differential
equation (3.2) but gives just an upper bound to it.
However, for the purposes of this paper the do-
main D is sufficient.

For any complex g D, we can at this stage
write the solution of the Callan-Symanzik equation
as in Eq. (3.1), namely

" 0p, s, m)
(x)

™

g(t,e)
=x" 0 (p, B (t, 8), m) exp [""f‘ ’ Y(x) x} °

@3.17)

The integral on the right-hand side in (3.1’) is a
contour integral along a curve lying fully in D,.
We assume g(z) has no zeros for z = Dp, and it is
then clear that the exponential term in Eq. (3.1')
is analytic in g for all g< D, since g(¢,g) is ana-
lytic. The size of the domain D for this term
depends only on the size of the domain for g(g)
and is independent of ¢=1Inx and of the p,”s. We
recali that |Z(t, g)|l< k,/a for all ¢ and shrinks to
zero for large ¢. The term I'(p, ;5(t, ), m),
being an analytic function of an analytic function,
is analytic in g for all g= D,. Again in getting
the radial size of D, here we only have to satisfy
the inequality |g|< (k,/a)sing , with k,<7, (p,),
and k, does not depend on X for fixed p,;, i.e., we
do not need an inequality of the form k,< ,(Ap,).
For fixed Euclidean p,;, the whole right-hand side
of Eq. (3.1’) is analytic in a domain D, whose size
is determined by k, and does not shrink as X - .

‘The following properties of the solution
' (\p, ; £, m) can be stated:

() i (\py; &, m) is analytic in g for all g = Dj.
The size of this domain, for fixed p;, is indepen-
dent of A and does not shrink as A = «. The param-
eter k, which determines the size of D, in (3.20)
is determined by the behavior of g(g) near the
origin and by the condition k,<7,(p; ). Thus if
'y (\p; ; &, m) has any singularities in the upper
half g plane that approach the origin as A=,
these singularities must approach the origin along
a path in the first quadrant that lies between the
positive real axis and the curve | g| = (x,/a)sing.
This last curve starts out at the origin with a
zero slope.

(ii) From Eq. (3.1’) one can read off the asymp-
totic behavior of I¢? Ap;;8,m)as x=w, g Dp:

-1 .
2 \py 38, m) = AR (p.- s il ),m>

X exp [— n jot HEE,2) dt’] -

(3.38)

The integral in the exponential is convergent for
large t. The imaginary part of g(¢, g) for large
t,e(t), is positive and vanishes like O ((~%). For
Eq. (3.38) to be useful the limit as g~ 0 of

i (p; ;8, m) must exist along any curve that lies
in the domain D. Furthermore, if we want to use
perturbation theory to calculate I¥" for g~ - 1/ct
+i€e(t), then we have to extend assumption (B) on
the uniformity of the perturbation expansion for
any g < D to include T (p; ;8,m) in addition to
p(g) and y(g). For any g Dy, ‘Y (\p; 58, m) be-
have for large X as if the theory was asymptot-
ically free.

(iii) For large enough A the vertex functions
P(a';)(p,. ;&,m) have no zeros for g D,. Suppose,
for fixed p,, we have a zero atg=z(t), z(t)~ D,
i.e.,

r'?(e'p;;2(t),m)=0. (3.39)

Since the p,’s are fixed and arbitrary the position
of the zero will in general depend on ¢ = Inx. But
using Eq. (3.1’) we get then

2 (p; ;8,2 (t)),m) = 0. (3.40)

But g(t,z(t)) either defines a curve in D, as ¢
varies, or g(t,z(t)) =const= b. The first possi-
bility is clearly ruled out since it would imply that
‘P (p; ;8,m)=0 for all g~ Dp. The second possi-
bility can also be ruled out. We write

&(t,z(t)) =b. (3.41)

As noted earlier for all g- D and large ¢, g(t,g)
is well approximated by the solution g, as in Eqgs.
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(3.16) and (3.17). We then have, ignoring terms
of order 1/¢2,

-z(t)
cz(t)t-1

I

b. (3.42)

Solving this equation for z (¢) we get

b

at)=r 1

(3.43)

But for large enough ¢, this gives z(¢)=1/ct which
lies definitely outside the domain D,. Thus for
Eq. (3.41) to hold, z(¢)#£D for large values of ¢.
This last argument is somewhat heuristic. It
does not treat the situation where z (¢ )¢ does not
grow as t — «. But for such zeros z(¢) will
approach the origin as ¢ — «and will present no
problem to our later argument. Again a sequence
of zeros, z;(t), all of which satisfy z;(¢)—~0 as
t =, is not ruled out by the above argument.
However, all we need is to have a part of D, in
the first quadrant free of zeros. Thus in the next
section we shall assume that I*? has no zeros in
Dg. Our arguments can be easily modified to take
care of the above exceptions leaving the main con-
clusions unchanged.

IV. RESTRICTIONS ON ¢* FIELD THEORY
AND MODELS

So far the results we have established, though
potentially useful, do not seem to be directly
relevant to physical field theories or models with
real positive g. In order to show how these results
restrict physical ¢* field theory, we need to use a
third assumption again taken from the analogy with
the two-dimensional case. This has to do with the
fact that in Ref. 4, it was not only shown that the
Euclidean Green’s functions are analytic in a small
half circle with Reg > 0, but it was also established
that for g in this domain the Green’s functions are
tempered in x space even for complex g.

For the purposes of this section it suffices to
consider the inverse propagator, r \p; g, m).
For real g> 0, the propagator and the inverse
propagator are tempered for large p2. Our third
assumption states that temperedness is not lost
for complex g in a domain in the right half plane.
We shall assume, in addition to (A) and (B), the
following:

(C) For any g in the domain {g| | g| <&, ,
| arggl|<n/2}, and fixed p, the following upper
and lower bounds hold for large A:

CA™™ <T@ (p; g, m)| <C M, @.1)

where M’ and M’’ might depend on g but are
finite and positive. For real g> 0 this is not an
assumption since it follows from positivity and

the Kallén-Lehmann representation for the prop-
agator. Furthermore, for g< Dy, the results of
the last section tell us that the power behavior
of TX? (\p; g, m) is canonical and given by A\%. Thus
we only need assumption (C) in the wedge between
the positive real g axis and the curve |g| = (ko/a)
sing.

We define two domains D, and D,, as follows:

D, ={g| 0<lgl<ky/a, O<argg<n}, (4.2)

and
D, =D, UDy, 4.3)

where Dy is the domain defined in Eq. (3.20) of the
preceding section. D, is then the wedge bounded
by the curve |g| = (k,/a)sing in the first quadrant,
the real interval O<g<k,/a, and part of the
circle |g|=k,/a, as shown in Fig. 2.

From the results of Sec. III, we know that
‘2 (\p; g, m) for large X has no zeros or singular-
ities for any gc D,. However, for g< D, singu-
larities in g for I¥2 (\p; g, m) might begin to appear
in D, as A~ for fixed p. There are two cases to
consider separately:

Case 1. T'2 (\p;g, m) has no zeros or singular-
ities for g— D,,. We ignore the trivial zero at
£=0. We consider a crescent-shaped finite,
closed domain, =, as shown in Fig. 3, such that
D,NZ is not empty and D,NZ is not empty and
such that £ includes a piece of the positive real
axis in the interval 0<g<«,/a.'® The origin is
taken to be outside Z.

We take a sequence {A;}, A;~» as j ~«, and
with A, large enough. A sequence of functions,
a;(g), is defined as follows:

_ [ @ o,p;8, M, 2]
21m; ’

a;(g)= g5z, (4.4)

By hypothesis this sequence is analytic in g for all
g %. Furthermore, for all g« = the bounds (4.1)
gives us a uniform bound

la;(@) <M, gz 4.5)
where M=Max, ,(M’,M’). The limit asj—~w

Dw

Reg

FIG. 2. The domains Dy and D,,, D, =DzU D,,.



2306 N. N. KHURI 12

Reg

FIG. 3. A sketch of the domain Z.

exists for all g< (END;). Hence using Vitali’s
theorem,?

lima,(g)=9(g), g=2 (4.6)

where ¢(g) is analytic for g=>. But from Eq.
(3.38) we already know that

#(g)=0, gc (DLNZ). (4.7)
Hence we must have
$(g)=0, gez. 4.8)

But T includes a segment of the positive real axis,
(ZNR,), and this result must then hold for real
g, &= (ZNR,). If B(g) has no nontrivial fixed
points, then Eq. (4.8) tells us that the power be-
havior of I? (\p; g, m) for g in some interval in
0<g< k,/a must be canonical. Namely as A~ o,
In(I? (\p; g, m)A~2) /Inn must tend to zero.

However, if 8(g) has an ultraviolet-stable fixed
point at g =g, then Eq. (4.8) cannot be consistent
with Eq. (3.3) unless

y(8,)=0. 4.9)

This conclusion is true even if g, is outside the
domain D, as it most probably is.

There are well-known arguments by Parisi® and
Callan and Gross® which show that if the anomalous
dimension, y(g,), is zero then this can only happen
if g,=0. The argument assumes that one can write
the CS equation at the point g =g,. With g(g,)
=y(g.) =0, this equation for I? becomes trivial
and will give a solution T2 (\p; g.., m) = const (\p 2.
Thus the zero-mass theory, by the Federbush-
Johnson theorem,'* is free and g, =0.

This argument is not a proof that excludes Eq.
(4.9) for g, +#0. For example, all one needs to get
around it is to have g(g) or its derivatives singu-
lar at g =g,.. In such a case one solves the CS
equation for g<g, and obtains an answer for
‘2 (\p; g, m) which in the limit g~g, will not
necessarily lead to the free-field result.

The only way to get around our conclusion that
the asymptotic power behavior in momentum
space for I is canonical is thus to allow zeros

or singularities in the g plane for g<D,. This
leads us to Case 2.

Case 2. As A=, T® (Ap;g,m) will begin to have
zeros or singularities in the g plane in the domain
gceD,,. One zero or a finite number of zeros
clearly will not be enough to avoid the conclusion
of Case 1. In that case we can always find a se-
quence {);} and a domain = such that T2(\;p;g, m)
has no zeros for g . One way to destroy
the argument of Case 1 is to have a line of zeros
(or singularities) in D, that get more densely
spaced as A— « and approach the origin as A grows.
This will cut the domain D, (or T) in two parts as
A;~, and the functions a;(g) as j—«, will be-
have as the pressure does in the thermodynamic
limit when we have a phase transition. The limit
as j—w of @;(g) will not then be an analytic func-
tion for all g =,

Another way to avoid the results of Case 1 would
be to have a branch cut in D,, whose end point tends
to the origin as A+« . This could be caused by
even a finite number of branch points moving into
D, as X grows in such a way that one cannot choose
the cut structure so as to allow for a regular =
that connects D, with a segment of the positive
real g axis which lies on the physical sheet of the
g plane. The effect of such a cut on Borel sum-
mability will be the same as that of a line of zeros
or singularities.

This cut or curve of zeros (or singularities) will
have to lie in D, and be between the real axis and
the line | g| = (k,/a)sing. It will thus start with a
zero slope, and for small |g| and small ¢ will be
at a distance less than 0 (| g|sin?¢) from the real
axis.

Under Case 2 then, I*2 (\p;g, m) cannot be
Borel-summable for large A except for very small
values of g that tend to zero as A=,

For large A, these singularities of ) 4 (p; g,m)
or the propagator A((A\p)? g) are so close to the
positive real g axis as to cast doubt on the validity
of the Callan-Symanzik assumption about dropping
the mass insertion terms. It is possible that this
line of dense singularities for r®is present for
large A and is exactly canceled by singularities
in T® (\p;g,m) so that the difference
[F®0p, g, m)- T®(\p, g, m)] has no singularities
near the positive real axis and no inconsistency
with Borel summability exists for it. However,
we know of no argument for such a cancellation to
occur. Why should the vertex functions '™ have
singularities in g for deep Euclidean momenta and
then have these singularities suddenly disappear
in the mass insertion terms AT™? 1t is hard to
understand why adding the mass insertions will
lead after resumming perturbation theory to a
function in which the above-mentioned singular-
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ities disappear.

To summarize we are faced with three alter-
natives, none of which are without problems.
Perhaps the simplest possibility consistent with
(A), (B), and (C) is to let 8(g) have no zero ex-
cept at g=0. In this case, for 0<g <k, our re-
sults give a I‘(Z)(kp;g, m) which has canonical
power behavior in A, but allows for additional
powers of In\ or even terms such as exp(ln)x)"é,
etc. The second possibility is to assume an ultra-
violet (UV) fixed point at g =g, with y(g,)#0, and
accept the line of dense singularities (zeros) in
the g plane for T'?(\p; g,m) with large A. We then
have to give up Borel summability except for very
small values of g that approach zero as A = «,

The relation between I'® and I'® will in this case
be speculative. The third possibility is to take
the option y(g,)=0. This will give us scaling.
But the arguments of Refs. 8 and 9 show that this
cannot hold with g, +0, unless 8(g) is singular at
878w

On the other hand, one of our assumptions, (A),
(B), or (C), might be wrong. The analogy with two
dimensions might fail. However, for simple
“models” that satisfy (A), (B), (C), and the CS
equation, the above results show that scaling can-
not be broken by a power if the model has a finite
radius of convergence in g whose size is indepen-
dent of p, with 8(g) nontrivial.

Finally, it is important to stress the point that
the arguments of this section could have been ap-
plied to any 1"(3';) and not just '@, In that case one
needs again both sides of the inequality (4.1).
Namely, we have to assume not only that T in-
creases slower than some power of A, but also
that it does not decrease faster than some power
of A, For I'® and for real g this is obvious since

2 is an inverse propagator. For general I“(a"s) the
latter part of this assumption, though reasonable,
does not follow immediately from temperedness
even for real g.

Before ending this section we would like to point
to a possible mechanism that could be the cause of

the line of singularities we are talking about above.

Let us assume that there is a “critical curve” in
D, starting at the origin, and separating those
values of g D, for which g(t,g)—~0 as t = «, from
the values of g for which g(t,g)—~g, as t = «. This
curve will by definition lie below the spiral
gi=(k,/a)sing, which forms the boundary of D,
and it will also have to start at g =0 with zero
slope. A “critical curve” or “separatrix” will

for large enough ¢ have closely spaced singular-
ities. To prove this let us take two points g, and
g_, & =D,, £_=D, one above the separatrix and
one below it such that | g,—g_| <€, with € arbi-
trarily small. We can always find a value of { =T

large enough such that g(7,g,)= 0 and g(T,g_)~g,.
For this value of T=1nm\, we then have

Ig-(T9g+) "'E(T,g-)l >&o
. —5.] >3 (4.10)

Thus derivatives at the separatrix for large enough
A become singular, andif we take any point near the
separatrix then for large enough A it must be near
a singularity or a cut.

This gives us singularities in g(T, g) for g on the
separatrix. However, the solution (3.1’) only holds
for g= Dy and for real g. We do not know if we can
write such a solution for g = D,, nontheless for
g on the separatrix. But even if we were able to
do that due to larger analyticity domains for 3(g),
y(g), and T®( p,; g, m) than previously assumed,
it still does not follow that a singularity in (7T, g)
will lead to a singularity in T®(eTp,; g, m). It is
quite possible, for example, for g(7,g) to be sin-
gular at g =g,< D,, but y(x) will be such that
Y(£(T, g,)) is not singular at g =g,. But if y has no
such singularity-eliminating mechanism then the sin-
gularities of g(7,g) could just be the source of our
line of singularities.

In closing this section we should clarify what we
mean by assumption (C) when singularities (or
zeros) are allowed in D, as in Case 2. Obviously,
if (C) holds everywhere for gc D, then there could
be no zeros or poles in D,,. Under Case 2, we
take the temperedness bounds (4.1) to hold for all
g<=D,, except for small neighborhoods of the sin-
gularities or zeros. As mentioned above the argu-
ments of this section could fail because (C) is not
true in four dimensions though it is true in two.
This failure will have to occur at least along a
line (or strip) in D, along which I®\p; g, m) will
either grow faster than any power of X or decrease
faster than any power of A.

V. REMARKS ABOUT GAUGE THEORIES AND TWO-
DIMENSIONAL THEORIES

We shall make a few remarks about theories
other than ¢'. Our analysis becomes more com-
plicated for Yukawa type theories since there we
will have more than one coupling constant and have
to deal with coupled differential equations. We
limit our remarks here to theories with one cou-
pling constant.

a. Abelian gauge theovies (quantum electro-
dynamics). Under similar assumptions the same
results hold except one has to use the variable
a =e?%, and take analyticity in a cut circle in the
a plane. Here again 3(a)=ca?®+0(a®) with ¢ > 0.
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Theorems such as 1 and 2 hold for & (¢, a) given
the same analyticity assumptions.

b. Non-Abelian gauge theories.'®'® For example,
in the Yang-Mills case we again use the variable
a=g% Here, B(g)=-cg®+0(g%, with ¢>0. Using
B=2gB, we study the differential equation

8 -B@e, ). (5.1)

This theory is of course asymptotically free for
a> 0. Making the same assumptions as before
gives an enlarged domain of asymptotic freedom,
EF, which is a reflection about the imaginary axis
of the domain D;. Namely, the spiral part is now
in the second quadrant. The line of singularities
discussed in the preceding section will be in the
proximity of the negative real o axis. This leads
to no inconsistency with Borel summability for
I‘(;.)()\p,; a,m) even for large A. The analyticity one
needs for Borel summability is just a sectorial
domain with | arga|< #/2 +6. This is yet another
attractive feature of non-Abelian gauge theories.

c. Two dimensional theories (ov n<4). Inthese
theories as in theories with dimension less than 4,
the expansion of g(g) has the form

B(g) =~ cg +0 (&%), (5.2)

where ¢ >0, and c is proportional to (4-r). These
theories are not only asymptotically free but also
because of the term of first order in g, the equa-
tion

ag _ .=

will in the neighborhood of g =0 always give a flow
that is directed radially toward the origin:

dg/dt = —cg. Thus there could be 7o separatrix

in this case in the neighborhood of g =0, nor will
the line of singularities discussed earlier appear.
The whole domain D will be a domain of asymptotic
freedom.
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APPENDIX A

In this appendix we give the proof of the ana-
lyticity of §(¢,£) in g for all g= Dy and any ¢ in
the interval, 0 <t <. We also prove the asymp-

totic estimates for large ¢ given in Egs. (3.17),
(3.18), and (3.19).

The first proof is a simple generalization to
complex initial values of the proof of the Picard -
Lindeldf theorem!” on the existence of solutions
to differential equations. Given any §,>0 we con-
sider a domain D (6,)C D, which consists of all
those points whose minimum distance to the bound-
ary of D is greater than 6,. Let us take any
point g, Dg(6,). Then we define the domain
U,C Dy,

Uo={g| lg-g,l<56q. A1)

We chose 6, such that U, does not reach the bound-
ary of Dp. For all g< D,, B(g) is approximately
given by B(g) =cg? +0(g®). Therefore, we can
easily find a constant C, C>c¢, such that

Max|B(g)| <C(lg,l +6)2. A2)
EQUO

But for all g,= D, we have | g | < x,/a, hence

Max | 5(g)] <C (";@ +o>2. (a3)

At this point we consider the interval O <t <71,
with

5

To= FF——3 -
°" Cky/a+6)?

(A4)
For ¢ in this interval we define the sequence
gk (t’go), k =07 1’ 2" ey

t
Bra1lt80) =80+ f B(E, t',g0)dt, O<t<rT,
0
(A5)
where

Eo(t)go)sgo" (A6)

Following Ref. 17 one shows by induction that for
all &

|8, t,80)- 8ol <8y, O<t<7,. A7)

The functions g, (¢,g,) are analytic functions of
analytic functions in g, for any g,= D (5,). For ¢
such that O0<t < 7,,8, < U, for all k. Using iden-
tical methods as those in Ref. 17 we can show that
the sequence g, (¢,g,) converges uniformly as
k— « to a function g(¢, g,) for any g, < Dy (5,) and
O0<t <1, Thusg(t,g)for 0<t <1, is analytic
for all g =Dp(6,). We recall that the choice of
8, is arbitrary; any 6,> 0 will do. Thus we have
analyticity in a domain D, (5,) with Dg(6,)= Dp
as §6,~ 0.

We need of course to get to values of ¢t>7,. To
do this we repeat the process again with an initial



point taken at g(r,,g,). The arguments is essen-
tially the same and we get analyticity for ¢ in an
interval 7,< £ <7,. The process can be repeated

for larger and larger values of {. The main in-

gredient that allows us to do this is that |Z(¢, )]
remains bounded as ¢ — « and g flows away from
the boundary of Dg.

Finally, we would like to prove the estimates
(3.17), (3.18), and (3.19). To do this we consider
the integral equation (3.10) for ¢t =T and ¢ =aT,
where T is large and a>> 1. By subtracting we
get

aT
E(T;g) _g:(aT’g):_f dt'ﬁ(?(t',g)), gQDF-
T

(A8)

For large T we know that |g(aT,2)|<|g(T,g)|,
a>1. Hence for any a>1,

aT
li arpgEe’,g)| <21g(1,8)l, & Dp.

(A9)

Since ¢ is arbitrary this gives us convergence of
the integral [, dt' B(Z(¢',g)) for any 7. We can
then take @~ « in (A8), and using the fact that
Z(aT,g) vanishes in that limit we get

B(1,g)=- | arpEW,&), & Dy (A10)
T

To get our estimates, we write an iteration
scheme for (A10) which starts with g,(¢,g) the
solution of the equation dg,/dt=cg,2. We write

Zn(T,8)=— | arp(z, @,8), & Dy B1D)
T
with

Zolt,8) =g - (A12)

It is a trivial matter to check now that

3

= = ® g
-2(T = - L - S—
gl(T:g) go( yg) b -JT dt (cgt' _1)3

-b 1
N RIT)

(A13)

Here b is real and is given by g(g) =cg? + bg® +O(g*).

Thus the error between g, and g, is O(1/7T?) and is
real in that order. Complex contributions start
at order 1/7%. Repeating the iteration we get

g,(T,g)-8,(T,g)=0 <—113>+i0 <—T1—3) (A14)
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Since we have convergence in n this proves our
assertion.

APPENDIX B

We briefly discuss the consequences of analyt -
icity in g to the problem of Bjorken scaling. We
limit ourselves to g ¢* theory, and use the nota-
tion of Ref. 15. As is well known Bjorken scaling
is related to the asymptotic behavior of the ¢ -
number functions in the Wilson operator-product
expansion, C(,") (g%, £). The scaling structure func-
tions are related to C{” through

1
f dx X" (x, ¢°)gnCY (g% )0 1),
(0]

(B1)
with x = —¢%/2y. The Wilson functions satisfy a
CS type equation,
r ]

o) o —r) | e Gg) = 0. 82)

Even in two dimensions analyticity of C{(¢2/ /2, &)
in g has not yet been established. But if we assume-
(A) and (B) for the CE"”S in four dimensions, then
certainly the results of Sec. III will follow. How-
ever, to proceed further we need upper and lower
bounds for large(-g¢°) and complex g similar to
those of assumption (C), i.e.,

(- < | (2, 8) < (-¢>*", g=D,, Reg>O0.

B3)

The right-hand side of this inequality is easy to
understand in terms of temperedness of C? in ¢2.
But we also need the left-hand side, the lower
bound, to carry through the arguments of Sec. IV.
Unfortunately, here we do not have the Kallén-
Lehmann representation to guide us as in the case
of T in Sec. IV.

Just for the sake of discussion let us assume the
validity of (B3) anyway. The same results as those
in Sec. IV will follow. Namely, either

; InC{"(g%/ 12, 4) ] K
lim |:_J__— = 9,
_jim, Ing? 0, O<g< » (B4)

or we have a dense line of singularities as before
for g= D, and large (-g?).

The alternative (B4) has some interesting con-
sequences if the theory has a UV -stable fixed
point at g =g.. As we mentioned earlier,

v, (£,) =0 in this case can only hold if the point
g =g, is singular and thus g, #D. For g< D, one
gets

2

c (%g) 52,00 (1, 00~ e) (B5)
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where
)= [ v B, g0, g=Ds. (B6)
0

The function f*(g ) is analytic for gc Dp. But if
| ¢ (g?/u?,g)| is uniformly bounded for all g= D,
then the limit as (-g¢%)~ « must give us an analyt-
ic function for all g= D, > Hence, the functions
f® (g) are analytic for all g= I, .

On the other hand, we can directly calculate the
limit (- g®)=~« for real g, g>0,

2 (n),
o (% §) 200, 2)e70, g0 (B

with

19@= [ g, g>0.  @9)

0

This last integral converges since we are assum-
ing v,(g,)=0. However, f% (g) is not an analytic
function, since in the above integral g(¢,g) for
large t gets out of the domain of analyticity of
¥, ).

Comparing the result (B5) continued for real
g with (B7) we get for real g, g>0

(1,0
79(g)-19(e) = 1n | Eoe2h . (®9)
One can see that if we had analyticity of g =g,
and if f"(g) was the analytic continuation of

7% (g), then the left-hand side of (B9) would
vanish and we would get C{ (1,0)=Cc¥(1,g.). This
is another indication of the results of Refs. 8 and
9. Namely, 7,(g,)=0 cannot hold with g,#0 un-
less the point g =g, is a singular point.
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