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An O(N)-symmetric scalar field theory with fII)
4 and Q6 coupling is considered to leading

order in the 1/N expansion for one, two, and three space-time dimensions. The effective
potential is derived and conditions for spontaneous symmetry breaking studied. In one and
two dimensions symmetry breaking is impossible. In three dimensions symmetry breaking
can occur, and the vacuum expectation values of the fields are given by the tree-approxima-
tion result for an appropriate choice of renormalized parameters. There are possible first-
and second-order transitions to an 0(Ã)-asymmetric vacuum and a tricritical point. Criti-
cal behavior is not discussed in detail in this paper, however. A technique is introduced
which allows the derivation of all the Green's functions of the theory to leading order in 1/¹
The propagators in the asymmetric vacuum are derived and found to be well behaved and, in
three dimensions, qualOatively similar to &Q theory. These conclusions are checked by in-
dependent methods, verifying to leading order the consistency of the 1/N expansion for this
model.

I. INTRODUCTION

The model we consider, p' theory, is a field
theory with N real scalar fields and an O(N)-sym-
metric Lagrangian density,

g(y) = ,'(s„4,.)—(s"y.) ,' ~; (4—,.y.)

4)N(~ ~ '-
) SN(~ ~ '

[The Minkowski metric has the signature
(+, —,—,-), and summation over repeated indices
is assumed throughout. ]

Many authors' ' have studied a similar model,
A.P' theory, where the Lagrangian density is as
above but without the Q' coupling. Interest has
centered on the spontaneous breaking of the O(N)
symmetry to a residual O(N —1) symmetry. This
happens when one of the fields develops a nonzero
vacuum expectation value (VEV), and in practice
we always take this to be the Nth field. There are
then N —1 generators of the O(N) symmetry which
do not annihilate the vacuum, so that the particle
spectrum contains N —1 massless Goldstone bo-
sons and one remaining massive boson, in a new
vacuum found by shifting the fields such that all
VEV's vanish. The Lagrangian in the shifted
fields governs the O(N —1)-symmetric theory.
The same considerations apply to P' theory.

Typically, for various ranges of the parameters
either the O(N) or O(N —1)-sy-mmetric theory
will have a stable vacuum. Varying these parame-
ters from one range to another will produce a
transition from one vacuum to another. This
transition may be first or second order (we do
not encounter higher orders), depending on wheth-

er the VEV's undergo a continuous or discontinu-
ous change at the critical value of the parameters
for which the transition occurs.

Let us make some remarks relevant to the tree
approximation before considering quantum effects.
(In this approximation the bare parameters are
finite and we may drop the subscripts on them. )
Spontaneous symmetry breaking occurs when the
classical potential, U(&jP/N), develops an abso-
lute minimum for P'c0, ' where,

(We have used the notation P,P, = P'. ) The values
of p, for which this minimum occurs are the
VEV's of the fields. These values are real, and
so we must restrict our study of U(Q'/N) to posi-
tive Q'.

A necessary condition for an absolute minimum
ls

sU/sy. = 0

or

6 N 5l N
g q (1.4)

The nonzero solution of this equation, which leads
to an absolute minimum, is

—10k, 10k ' 51m' "~'
q q

(1.5)

where we argue for the plus sign below.
Note that fI)' is proportional to N. This motivates

the choice of the factors of N in the Lagrangian,
since when the O(N) symmetry is broken each
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term is proportional to N. We will say that the
X agrangian is of order ¹

In Fig. 1 we plot the function, U(x), for various
ranges of parameters. A perusal of this figure
shows that we must choose the positive square
root in Eq. (1.5) for a minimum of U(P'/N}. We
also require that P' be positive and real, or the

O(N} symmetry will be unbroken, and that q&0,
otherwise there will be no absolute minimum to
U(p'/N) even in the O(N)-symmetric theory. Thus,
Eq. (1.5) provides three possibilities for symme-
try breaking. These are

A. ~O, m'& 0

2. X&0, m'&0

g&0 m2 &0.

(1.6)

However, Fig. 1 shows that in region 3, jaj must
be sufficiently large. Precise1y, U(x) must have
two real positive zeros. We deduce from Eq. (1.2)
that this restricts the parameters in region 3 to

5z' &m'.
Bg

(The reality of P' imposes the condition, 5X'/6q
&rn', which is less restrictive. )

In Ap' theory where q =0, a necessary condition
for an absolute minimum of the potential is A, &0,
so that only region 1 is accessible. The transition
from the O(N)-symmetric to the O(N) asymm-etric
[O(N —I)-symmetric] theory at m' =0 is first or-
der.

In P' theory we also have a second-order transi-

tion for m'&0 at 5A.'/Sr) =m'. We sketch these re-
gions and the transitions in Fig. 2 where we see
that the point m' =0, A. =0 is a tricritical point'
in that the loci of critical parameters for both
the first- and second-order transitions meet here.
We do not discuss, in this paper, how these para-
meters may be related to physical variables such
as temperature. '

Synopsis of remaining sections

In going beyond the tree approximation we make
use of the 1/N expansion, which has received
much attention recently x-e, io, ii This expansion
has the nice property that the leading-order quan-
tum corrections are of the same order as the clas-
sical quantities. Consequently, the leading order,
which adequately characterizes the theory in the
large-N limit, preserves much of the nonlinear
structure of the full theory.

In Sec. II we derive the effective action to lead-
ing order in 1/N for three dimensions, and con-
struct the effective potential, which is the quantum
generalization of the classical potential in that its
absolute minimum determines the vacuum, as has
been extensively discussed in the literature. '~"'"

In Sec. III we introduce a modification of the com-
posite field method of Refs. 2 and 5 to obtain the
particle propagators in the asymmetric vacuum to
leading order in 1/N for three dimensions.

In Sec. IV we discuss the massive boson propa-
gator and demonstrate the stability of the vacuum
to leading order in 1/N This is unlik. e XP' theory
in four dimensions, which cannot be consistently
studied in the 1/N expansion because the theory

(b)

X

- IST ORDE'Q

(c)
~ U

FIG. 1. The classical potential as a function of P2 /N
=x. Only x & 0 should be considered. The O(N} symme-
try is broken only in (a) and (b). (a) m~ &0, &&~0. This
corresponds to regions 1 and 2. (b), (c) m2&0, A, &0.
This corresponds to region 3 for ~AI sufficiently large.
(d) m2 &0, A. &0.

FIG. 2. The regions in A. , m2 of symmetry breaking
for fixed g, showing the first- and second-order trans-
itions.
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develops a tachyon and the vacuum becomes un-
stable, "' features which persist in higher order. '
In three dimensions the 1/N expansion is consis-
tent for A. (II)' theory, ' but this is not the most gen-
eral renormalizable theory of its type. This is
the motivation for adding a P' coupling. The re-
sulting P' theory is the most general renormaliz-
able scalar field theory in three dimensions and

possesses a much richer critical behavior. " (This
aspect has been studied by other authors. "")

We study one and two dimensions in Sec. V and
draw conclusions in Sec. VI. We leave to appen-
dices independent derivations of the stability of the
vacuum and the particle propagators.

II. EFFECTIVE ACTION TO LEADING ORDER IN I /N

A. Formalism

Our model has the quantum action

irreducible (1PI) Feynman graphs with a factor
P,(x} on external lines. It is easily seen that the
tree approximation to F(P} is the classical action.
All quantum effects are contained in graphs with
closed loops (each loop carries a factor of h).

The number of 1PI graphs is large and unman-
ageable in the present case. Consequently, we
make use of the formalism studied by Cornwall,
Jackiw, and Tomboulis, "who reduce the problem
to summing two-particle irreducible (2PI) Feyn-
man graphs by defining a generalized effective
action, I'(P, G), which is a functional not only of

Q,(x), but also of the expectation values G~(x, y}
of the time-ordered product of quantum fields,
T(C,(x)4,(y)}." We quote their result,

I'(Q, G) =l(Q)+ —,NtrlnG '+-, NTrS '(Q)G

+ I;(Q, G) + constant . (2.4)

G is shorthand for G„(x,y). & is defined by

5'f(y)
54.( )5e,(y}

(2.5)

(2.2)

We are interested in the effective action I'(P)
which governs the behavior of the expectation val-
ues P,(x) of the quantum field via the Euler-La-
grange equations,

51'(P)
(

}=0, a=1, 2, . . . , N. (2.3)

I'(Q} can be shown to be the sum of one-particle

(2 1)

This governs the behavior of the quantum field
4 (x) via the Euler-Lagrange equations,

51'(P, G)
5G„(x,y)

(2.6)

and substituting in I'(Q, G).
Rather than repeat previous work we refer the

reader to the above-mentioned paper" for the
proofs and details of these statements.

and is shorthandfor S~(P;x, y). I', (P, G) is the
sum of all 2PI vacuum graphs with propagator G,
and Q-dependent vertices given by the interaction
part of g(4+ /) [which we call g,„,(Q;4), where
2 was given in Eq. (1.1)]. The trace and logarithm
are functional.

The effective action as usually defined is found

by solving for G in the equation

8. I/N expansion

A little algebra shows that for our model

!(04. nod'4. 2 Snok. 4 abc , q.e'
2 3N 30N ' 6!N ' ' 4!N 10N

10404& g @ @2 ~0~o
C C4 /0

~ ~

~

6tH' ' ' 51 N' ' 6t& ' (2.7)

(2.8)

The vertices in Eq. (2.7) contain factors of 1/N or 1/N', but a 4 loop gives a factor of N provided the O(N)

isospin flows around it alone and not into another part of the graph. We will call such loops bubbles.
Then to leading order in 1/N the vacuum graphs are bubble trees' with two or three bubbles at each ver-
tex. Closed rings of bubbles do not contribute, since simply opening the ring will produce an extra fa,ctor
of N at least. Figure 3 shows some typical graphs. Of these, the only ones that are 2PI are shown in Fig.
4, and the Feynman rules for the relevant vertices are shown in Fig. 5. Using these rules (recall that re-
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{a)

{b}

FIG. 3. Some typical vacuum graphs for Z. ,{Q;4).
{a) These are order N. {b) These are order 1.

FIG. 4. The 2PI vacuum graphs.

peated indices are summed, and that there is a factor of K for each loop) we obtain

-S2 2 53I', (Q, G) =
4(N X, +

10N [G„{x,x)]'d" x —60~ [G„(x,x)]'d" x .

Therefore, Eq. (2.6) becomes

(2.9}

=0= ——,(G '),(, (x, y)+2 i'd& '(Q) — &o+ 1' [6,(G„(x,x)]6"(x—y)6G,(( x, y)

(2.10)

Rewriting this equation,

2 i(G-')„(x,y) =u-'(y)+
6 g+ ~1' 6.,G„(x,x)6"(x-y)+ ",~ 6„[G,.(x, x)]'Y(x-y) . (2.11)

Hence,

2 3 8'
—,'- ik Tr& 'G = constant+ Ao+ 1' [G«(x, x)]'d "x+

6 ~ [G„(x,x)]'d "x . (2.12)

Using Eqs. (2.11) and (2.12) in (2.9) we find the effective action,

S2 2 2I'(P) =I(P)+ —,
' iR Tr lnG '+ Ao+ [G„(x,x)]'d "x+,~ [G„(x,x}]'d"x, (2.13)

where G,~ is given implicitly by Eq. (2.11). We may simplify by separating G,(, into transverse and longi-
tudinal components with respect to an arbitrary unit vector, (t(, in the N-dimensional isospin space,

(2.14)

In this form we can invert G„directly to obtain

(G '),(
= (6, ((

—Q, (t'(()g '+ Q, Q((g

Take the trace on a, b,

G„=Ng +O(l), {G ")« Ng '+O(1) . —--
We take G„and g to be of order 1. Equation (2.11) shows that

G ' = B '(P) +quantum corrections .

(2.15)

(2.16}

(2.17)

But S ' is of order 1 so this assumption will be consistent with our later results. Now we substitute Eq.
(2.16) into (2.13) and (2.11) and keep only the leading order. G~ is diagonal in a, h, to leading order in
1/N, so the trace and logarithm on these indices simply give a factor of ¹

NS' 2 2N 53
I'(p) =I(p)+

2
ik Tr lng '+

4, z, +
10 [g(x, x)]'d "x+ 6', [g(x, x)]'d "x+O(1), (2.18)

(2.19)

These two equations determine the effective action to leading order in the 1/N expansion.
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C. Effective potential

If we restrict Q to be constant, the effective action takes the form

~(») =- ~(»)I»"* (2.20}

This defines the effective potential, V((P). (P is now a vacuum expectation value of (P(x) and G„(x,y) a
vacuum expectation value of T(4,(x)4),(y)) . We now have translational invariance of S(4) + (P) so g(x, y) is
a function only of (x —y}. We may write

»(«, ))=»(*—7)= J»(p) "' "'»"p/(2 )". (2.21)

And we define a function of (P, B(Q), by

B(0)=g(0) = g(p)(f "p/(»)" (2.22)

Then from Eq. (2.19}and rearranging terms,

1

g(p) o 6 N 5! N
=i -p + mo + ~ +KB +~ —+KB (2.23)

d "p —2

(2w )" —P' +m, ' + (!)J6)((P'/N +IIB)+ (q,/5! }((P'/N +RB)'

And from E(I. (2.18)

(2.24)

V((P) V ((P)
P ln P2+ ~ 2+ ~ 0 +gB +~8 0 +gB l& !) + RQP B2

(2))')" 6 N 5! N j 4! 10N 6!

(2.25)

We use the notation V, in place of U to indicate
that we are using bare parameters. In all other
respects V,((P) is the classical potential.

We now specialize to three space-time dimen-
sions, leaving one and two dimensions for Sec. V.
We insert a momentum cutoff, A, into the diver-
gent integrals to make them finite. We continue
all momenta to Euclidean values by taking p, = ~p4.
Thus, p,'-p = —(p +p, ') so with our metric we

must make the replacement p'- —p'. We then ro-
tate the integrals back to the real p4 axis. This
Wick rotation serves to define the boundary con-
ditions on the integrals, which are otherwise un-
defined. ' The net result of these operations on

Eq. (2.24}, for example, is

A d3p

(21r}'

to the Euclidean region. We will use this notation
throughout.

Performing the integration in E(I. (2.26),

, a

&of'
+ — Sob S~y + permuta& ions

tON

B((P)= ——m, '+—' +KB—+ ~ +KB-
2H 4~ ' 6 X 5! N

(2.2 I }

We could apply the same operations to the effec-
tive potential in E(I. (2.25}, but we prefer to work
with its derivative. Calculating sV/S(P, using E(I.
(2.24) we find that the terms with a factor of SB/
S(P, cancel. This was arranged when we set
61'((P, G)/5G =0 and so we will omit the explicit

)», ."~ (&.»»)."„(&.»s}'

(2.26)
0 3~/ ~d 8g + peffTIUfQf)OAS

l5N

We have introduced the subscript, E, to indicate
that the integral and momenta have been continued

FIG. 5. The relevant Feynman rules for Z, (Q;4 )
Pl|nkowski momentum) .
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verification. The remaining terms give simply

sv
m, + ——+hB + ——+KBq~

(2.28)

Qf course, this is really the tree-approximation
result only if the finite parameters m', A. , q are
the coupling constants in the absence of symmetry
breaking defined by

D. Renormalization

We can absorb all cutoff-dependent terms into
the definition of finite renormalized quantities by
the prescription

AB B
2

g2'V

tfCC Qb

g4y

= A. „„,, (6~6,~ + pe rmutations), (2.34)

hA q, AA '
6 2p' 5! 2P

SA
10 2g

(2.29)

g6y I

~4a~4vd4'. ~4a~0e&yf @=p

g „I5 Q5 g5 f + permutations)

g 7JQ ~

y6 q y2 2 j./2

B(Q) = ——m'+ — +KB + ——
,

+KB-
4g 6 N 5

(2.30)

which demonstrates that B(P) is finite.
Equation (2.28) becomes

—+ Ii
8$

(2.31)

So that V(P) is finite, up to an unimportant con-
stant.

E. Spontaneous symmetry breaking

From Eq. (2.31) we see that if there is a non-
zero minimum of V(P), then

qP
m + — —+SB + —, —+kB =0

6 X 5~
(2.32)

must be satisfied. But from Eq. (2.30) this implies
that at this value of (b' we have B(p) = 0, so Eq.
(2.32), which characterizes the extrema, becomes

m'+ — —+ —, =0. (2.33)

This is the same equation as for the tree aPProx&-
mation, but in terms of renormalized parameters.

Note that there is no renormalization of the P'
coupling because there are no logarithmically di-
vergent graphs to leading order in 1/N. This fact
also ensures that there is no field renormalization.

With these substitutions Eq. (2.27) becomes

In fact they are not the same. For example, at
(Ie) =0 we have

x/~

B(0) = ——m' + —5B(0)+ —[hB(0)j'
4m 6 5f

(2.36)

These equations show that B(0)e0 and so m„„'
t ni'. This means that there is a finite renormal-
ization connecting the coupling constants defined
by Eqs. (2.34) and the finite parameters defined
by Eqs. (2.29). But we choose to use our parame-
ters m', A. , q to discuss symmetry breaking con-
veniently.

Because Eq. (2.33) is the same as the tree ap-
proximation, our conclusions of Sec. I remain
valid to leading order in 1/N, and the three re-
gions of symmetrybreaking of (1.6) are unchanged,
except for the restriction of the parameters in re-
gion 3 given in Eq. (1.7). While we have shown
that the extrema of the classical potential coin-
cide with those of the effective potential, it is the
effective potential which must be minimized. But
Eq. (1.7) was found by requiring that the minimum
of the classical potential in region 3 be absolute.
Consequently, this condition will be modified by
quantum corrections and the values of the parame-
ters at the critical transition will be altered. We
have not calculated this correction since the quali-
tative features remain, in particular, the existence
of region 3 as shown in Fig. 2.

In Sec. III we verify these results by an indepen-
dent, but related, method and calculate the parti-
cle propagators in the presence of symmetry
breaking.
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III. PARTICLE PROPAGATORS IN THE PRESENCE OF SYMMETRY BREAKING

A. Composite field

2275

Equation (2.18) for the effective action may be written

I'(p) =f(((f)+ — d"x ](., + "' + "' '
[hg(x, x)]'+—ih Tr lng '+O(1) . (3.1)

With some algebra,

I'(y) =I(dtf)+ —, d "x hg(x, x)+ —+ X, —
10 hg(x, x)+ ——2 ' hg(x, x)+—

p2 2
~

fee(e 3

+](., — + —' — +—ih Trlng '+O(l) .
N 30 N 2

(3.2)

We introduce the function f(x), which depends on Q(x), by

f(x)= hg(x, x) +
y'(x)

(3.3)

In this notation the effective action is

2 2

P(P)= (d":(pedi —,'P, f'+ —, 1, — ' f' — f + —'XT )ed ' O(1). (3.4)

And g ' is given by a rearrangement of Eq. (2.19) as

g '(x, y) =i + m,2+ a f(x)+ '
6,

6"(x —y). (3.5)

It is tempting to think of f (x) as a composite field with its own Feynman rules defined by the Lagrangian
of Eq. (3.4). But this is incorrect since the presence of the nonquadratic f' term means that the theory de-
fined by the Lagrangian,

(3.6)

is not equivalent to the original. We have used the field )((x) to indicate that this is a different theory, and
that f(x) is not a field. This difference means that we cannot directly use the composite-field method of
Refs. 2 and 5, which was found to be so convenient for A.P' theory. "

However, 1st us look at the theory defined by the Lagrangian of Eq. (3.6) is more detail. The Green's
functions for this theory involving external Q particles can be derived from the functional integral,

N N
exp — j) = df(t) dy exp — d"z 2 8&ft)

' ——
2mQ +j +

) gQ f X +

(3.7)

eXP px(f) = (ddleXP 2
d *] (e„d) ——,','P'"+(P'-, ] ' (de)e P 2

d"«&(P, X)} (3.8)

where we have introduced L (Q, ](),

~Q4'X N
~ nQA' 2 NnQX'

12 4l ' 10Ã & 3X5&
'

Expand this about a particular value, X of X,
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8& 82L —3~'L
L(Q, X) =L(Q, X)+(X —X)— + &(X —X)', +~6(X —X)

&X x=x x=x x=x
(3.10)

Choose X such that

aL/6x( „-„=o.
From Eq. (3.9) this condition is

(X, + q,X/IO)(X —y'/N) = O.

We may choose

X
= 0'/N

so with a little algebra and Eqs. (3.10) and (3.13),

(3.11)

(3.12}

(3.13)

4tN 6tN"Z~ "ION " N
'

6~

Therefore, the functional integral of Eq. (3.8) becomes

(3.14)

exp —Iy(j) = (dp) exp — d"x —,'(s„p)' ——,'m, 'p' — ', — ' +jp

h/N —4! ' 10N N 6! N
4

(3.15)

Shift the integration variable in the X integral by p'/N,

4 6

exp —W(j ) = (dP) exp —j d "x —,'(6 P)' —6m6'P' — —" +jP
4

n 004 2 OOX
1 3 )

1 " 6/~N f 4i ' 106 6! (3.16)

The y functional integral alone (without the integrand of the X functional integral) generates the Green's
functions of Q' theory, so this equation nicely demonstrates that the two theories are distinct.

It is crucial to note that the X functional integral generates a loop expansion with expansion parameter
h/N, and with a P-dependent propagator. There are no tree graphs generated since the translation of the

X integral by p'/N extracted these from L(p, X). Schematically,

(dX) exp „d"x A6+ ' X'+ ', = exp — —(1 X loop) + — (2 X loops)+ ~ ~ ~, (3.1V}3x 5t

so that Eq. (3.16) becomes

0

exp = (dg) exp — d "x —,'(8„$)' ——,'m6'P' —4' —"6',~+j P+ —(1 X loop)+ (3.18)

The extra terms generated by X loops are p dependent, which is why this theory is not equivalent to p'
theory. But for calculations to leading order in 1/N, the Green's functions for this theory are the same
as those of the original theory. Obviously the same consideration applies to the effective potential. Thus,
for our purposes we may replace the original p' theory by the theory defined by the Lagrangian of Eq.
(3.6), from which we obtain the Feynman rules shown in Fig. 6.

The X propagator carries a factor of 1/N, and p bubbles contribute a factor of N. Therefore, the only
graphs which contribute to leading order are those with one P loop (or none}. It is important to realize
that we cannot go beyond the leading order for Q' theory with this substitute Lagrangian. Thus, while we
have reduced the problem to summing a set of one-loop graphs, we are not subsequently allowed to look
at higher-loop graphs.

As a check of this reasoning the reader may verify, using the Feynman rules of Fig. 6, that the one-p-
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loop graphs do indeed sum to the term —2'¹gTrlng ' of Eq. (3.4) and that g '(x, y) is given by Eq. (3.5), but
but with f (x) replaced by X(x).

The net result is that the effective action for the new theory, correct to leading order in 1/N is

2

p(y ) dox (S y)2 ~ 2y2 ~ 0 2 ~ 00 3 !QXG w 0XD'r ~ tg Tr In p+ ~ 2+ 0XQ+ 70X0~X p 2 o 4I Xo 3y5IXo 2x5! 12 2 6 5!

(3.19}

where we have written X, in place of X, anticipating an infinite shift in the X field, necessary for renormal-
ization.

It should be realized that although we relied on results in Sec. II to arrive at this result, once obtained,
the new theory can be used to study P' theory independently of any result in Sec. G. Thus this method con-
stitutes an independent check of previous results as well as a means of obtaining the Green's functions.

B. Effective potential and renormalization

Restricting Eq. (3.19) to constant P we obtain the effective potential,

Ir(y )
1 2y2 0XQ loXQ + loXO 2 + 0Xo'Y + 1 p2 2 + ~ + loXoNA. ' N ' '

A.
~' NS '~ d"4 A.

4! 3x 5! 2x 5! 12 2 s (231)" 6 ' 5! (3.20)

We remind the reader that the superscript A on the integral indicates the momentum cutoff, and the sub-
script E indicates that the integral and momentum 0 are Euclidean. We will look at the derivatives of this
potential,

)
2 + ~0X0+ 10X0

gy2 2 0 6 5I (3.21)

+ lOXo
X + !QXQ y2+ d ~ 6( 0 10 loX0)

12 ' 10 ' 12 ' 10 2 s (2tr)" 112+ mO'+(Xo/6)X +(ti,/5!)Xo' (3.22)

In three dimensions the integral is familiar from Sec. II,

BP Q 'gQXP Q h A 8 2 2P!t.OXO QOXO
A.o + X-—— + —n~ + +

ax 12 10 X 2v 4m 6 5! (3.23)

We can make both Eqs. (3.21) and (3.23) finite as
A- ~ by the prescription

Bore $ propagator I &tb
p2

SA
Xo= X+ 2y ~

SA q~ SA
6 2 ' 5! 2H

A. A.o+ 10

(3.24)

Bare X propagator

l~!I ~o
5I

12 j

Ng

7J gp I

Equations (3.21) and (3.23) become

+X nX'
2 6 5! (3.25)

—2i~P P~b
QI

8V N qX Q 5 2 Ay qX
A. + —

X
——+ fH + +

X 12 10 X 4~ 6 5

(3.26} 6

Note that the renormalization prescription for the
coupling constants is the same as that of Eq.

FIG. 6. The Feynman rules for S{@,g) {Minkowski
momentum) .
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(2.29) so the finite parameters m', x, 7} are the
same as those of Sec. II.

x = 8+&x& (3.31)

C. Symmetry breaking 4a=&a~ a=1, 2, . . . , N —1

For a broken symmetry we require 4„=o+&y) .
(3.32}

BP BP
, =0, —=0. (3.27)

From Eqs. (3.25) and (3.26) we see that this im-
plle s

This defines the effective action as a functional of
the new fields, and as a function of the constants
(X), (Q&. These constants are chosen such that

A.X 'OX 0
6 5! (3.28)

ar ~r ~r—= —= —=0 for 8=v=a =0.
ae e~= no

(3.33)

and

nX 4' 0 (3.29)

This requirement means that (X) a.nd (P& are the
VEV's of X and Q, and thus were derived previous-
ly. That is,

m'+ — — +
5, (3.30)

This is the tree-approximation result again, ver-
ifying the conclusion of Sec. O.

In Eq. (3.29) we choose the solution X = p2/¹ [Re-
call Eq. (3.12) where we also chose this solution
for the stationary point of L(P, X). The other
choice would imply BV/8$2 =m2+10X2/q for all p2,
which is unacceptable. ] With this choice Eq.
(3.28) implies

(3.34)

., x &0)', 2} &0&'

6 N 5! (3.35)

(3.36)

Recalling the relation between X and X, and using
Eqs. (3.32) and (3.31), we also have

D. Propagators
(('= m'+(o+(y&)'. (3.37)

We shift the fields in the effective action of Eq.
(3.19), defining new fields, w, a, 8, by,

With these substitutions the effective action be-
comes

1(v, o, 8) = ~ d x —2(e„v) +-2(S„&r) ——,m, w' ——,m, (o+(1t1)} + 4, 8+ + 2+ +3„5, 8+ & + 2+
21821so21212o20(0&}0(0)

!

8+ ~ + —[n' +( o+(p))']-~I 8+
N

+ 2p [2'+(o+(4))'1((1&2 IA

+2 iSTrln z+~~,'+
6

e+ + + +~5, e+ +2+ (3.38)

Then using the renormalization prescription of Eq. (3.24) and Eq. (3.35) for the value of the constant (P&,
we obtain, with considerable algebraic manipulation,

F(n, a, e) =
2

2x 5!

N 7}(y)' )IA '

+ (y) „2}(y&' N2}8' 2} +, 2}(y&+4! 10N 2~ 6 10 N
™3x5! 2x5! 5!

1 2}(y)', N q(4)' h A

12 10+ 12 10M 2m'

+—iS Trln 0+ —A+
1

e+
f1t' . 1 q(P) 2}8 (3.39)
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This can also be calculated from the graphs in
Fig. 7 and the reader may check Eq. {3.4V) graph-
ically using Feynman rules derived from the La-
grangian of Eq. (3.42).

Now substitute Eq. (3.47) into (3.43), take Four-
ier transforms, and continue all momenta into the
Euclidean region,

t %2M
-&u '(x-y)

6o(x)5o(y)

P+k

FIG. 7. The x bubble contribution to the inverse 0-0
propagator. There is a factor of 0{x) on external lines,
but no propagator.

t 5r d, ,, (. , l

6o(x)5e(y) . . .

I

�@~7
-ip ~ (x-y)

5e(x)5e(y). . .
(3.49) Eq. (3.53) may be written

X(y&'

3N

and the 0-o propagator as

(3.54)

(3.55)

NX' d'y 1
+

12 'l2 s (2v)' k'(k+P)'

iG-'(p) =
-p

—X(((» X, , Xk
6 12 48p

(3.50)

Inverting this

The momenta on the right-hand side of these equa-
tions are Euclidean, and the value of the integral
in Eq. (3.49) is 1/8p, where p =op . Thus the in-
verse propagator in Euclidean momentum space,
G '(p), is

A. k—'E p+—
G..(p)=

48

p p + —p —27M
XS
48

(3.56}

This completes the derivation of the particle propa-
gators in the presence of a spontaneously broken
O(N) symmetry.

Note the resemblance of Eq. (3.55} to the tree
approximation for XQ' theory, and Eq. (3.56) with
the analogous result obtained for A.Q' theory in
three dimensions by Coleman, Jackiw, and Polit-
zer. ' In Sec. IV we elaborate on this similarity
and discuss the o. propagator. In Appendix B we
derive this propagator by an independent method.

G(p) =
, xx xn x'(y&'

12 48p 36
IV. ANALYSIS OF THE 0 PROPAGATOR

From Eq. (3.56) we see that the poles of the cr

propagator, G „(p), are given by

(3.51) p'+ p —2m' =0, (4 1)

where the momenta are Euclidean. Solving for p,
The o-0 propagator, the one of physical interest,
1s

Xhp= ——k — + 2P'Pl
96 S6

(4.2 }

G..(p)=
, (

ai)
k X X(y&'

P P'+
48 P+

(3.52)

„...l(e&' «e&',
6N 5!N' {3.53}

Thus with the notation

We can put this into a more convenient form. Us-
ing Eqs. (3.35} and (3.41) we deduce that

1/2

7 =+ (~q)'~' m'
6g

(4.3)

So that if the symmetry is broken, X is alu&ays

posi t ive. Then from Eq. (3.53),

1 X(y&'
6

(4.4)

We wish to write this in terms of our renormalized
parameters m', X, q. Eliminating (P& from Eqs.
(3.35) and (3.41) we obtain the relation
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But for symmetry breaking to occur we must have
(P)'&0, so that m' is always negative. Thus the
allowed region of the parameters m' and X for
symmetry breaking to occur is

8 = —ln —, —ln (5.6)

where 18 is an arbitrary renormalization mass.
Define renormalized quantities by

m'&0, X&0. (4.5)

This is analogous to the result obtained for A. Q'

in three dimensions. In fact, as expected, if q=0
the o propagator is identical to that of aP' theory'
(a slightly different numerical coefficient is used
in the Lagrangian of Ref. 2). As a consequence of
this similarity in three dimensions, the 0 propa-
gator for P' theory has the qualitative behavior of
the o' propagator of A. Q' theory Th. is behavior is
discussed in Ref. 2, to which we refer the reader
for details. Here we note that the poles of the o

propagator in the complex p' plane are both on
the second sheet (the o particle is unstable), and
the real part of p' at the poles is negative. This
means that the v particle is physical, not a tachy-
on, consequently the vacuum for the broken sym-
metry is expected to be stable. In Appendix A we
demonstrate this stability by studying the effective
potential directly.

A' ~ q, 5 A'
m' =mo'+ ——ln —, +——ln

6 24m M g 5t 4m M'

A'
A. =A, + —' —ln=

~ 10 4m M

(5.7)

With this prescription,

c =m + — —+KB + — —+SBn
6 N 5L N

(5.8)

(5.9)

c' and B are now cutoff independent, but B again
diverges at c' =0. As before we cannot allow this
possibility if the symmetry is spontaneously bro-
ken. Thus, symmetry breaking is forbidden,
which verifies Coleman's theorem. "

V. ONE AND TWO DIMENSIONS VI. CONCLUSIONS

From Eq. (2.24) and (2.28) we have

A
dna

(2w)" p'+c' ' (5.1)

Bv
= c2y (5.2)

where we have introduced the notation

c =m + ——+KB + ——+SB~0 no
6 N 5t

In one dimension the integral of Eq. (5.1) is
finite and gives

B=1/4c .

(5.3)

(5.4)

Thus the bare parameters may be taken to be
finite. Note that if the symmetry is broken, Eq.
(5.2) requires that, at the value of P' for which

V{Q) is a minimum,

c'=0 (5.5)

must be satisfied, which in turn requires, from
Eq. (5.4), that II(p) diverge at this value of p'.
But inspection of Eq. (5.3) shows that c' =0 cannot
then be satisfied for any finite value of Q'. Thus
symmetry breaking is forbidden.

In two dimensions B(p) is logarithmically diver-
gent,

We have found the effective potential and particle
propagators for O(N)-symmetric p' theory to lead-
ing order in the I/N expansion for one, two, and
three space-time dimensions. The O(N) symmetry
can be spontaneously broken only in three dimen-
sions, and we have found three regions of the re-
normalized coupling constants for which this can
occur.

We have checked all these results by independent
methods, and find that the I/N expansion is con-
sistent for P' theory to leading order in I/N

Because we are restricted to three dimensions
by renormalizability, and because of the rich criti-
cal behavior exhibited by this model, it is hoped
that these results will be useful in the study of
critical phenomena as well as advancing the under-
standing of symmetry breaking in applications to
particle physics.
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APPENDIX A: STABILITY OF THE VACUUM

We wish to investigate the behavior, as a func-
tion of (II)', of the renormalized effective potential
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given by Eqs. (2.31) and (2.30). To simplify the
algebraic manipulations we introduce the notation,

Sg
(4v)25!

fined in Sec. I, and

U,() sU()
~x

U'(x„.„}=0.
(A6)

SB+—=y
N

Q2 =x ~

Then Eq. (2.30) becomes

20/ 5tm2y-x=-~" y + y+
7l 71

With some algebra,

10' 5!m2y'Il-&I-2 ~ C y, t;)=O
7l n

Solving for y,

(A2)

(A3)

10m ' 5!m2
(A7)

This means that for x) x„„, y is real. Further-
more, expanding the right-hand side of Eq. (A4)
in powers of 1/x we find that y is increasing as

(1 —g)y = x ~ g'i' (I ~ &)+010m 1

7l x

In our notation of this appendix, Eq. (2.31) is

(A8)

For x& x„„we must have U'(x) & 0 since x„„mini-
mizes U(x). Equation (1.5) which gives the solu-
tion of Eq. (2.33) for the value of P' at the mini-
mum shows that for symmetry breaking to occur

(1 —g)y = x+ g ~ g'i2 x'+ x+
rl rl

~V 2 A,m'+ -y+ —y'
6 5! (A 9)

Now,

t 10m' 5!m'
n n

(A4)

20m 5!m' 203}x'+ x+ =, U' x),
g YJ 0

(A5)

where U(x) is the classical potential function de-

Thus as p' —~ from its value in the vacuum, sV/s@,
is real and increasing. The same applies to V(P),
confirming the stability noted in Sec. IV.

Note that even to the left of the minimum of
U(x), i.e., x(x„„, y, and hence V(P), is still real
for a small region of x. This persistence of the
reality of the effective potential into an unphysical
region was noticed for A. $4 theory by Coleman,
Jackiw, and Politzer. '

APPENDIX B: 0 PROPAGATOR

We wish to find the a propagator by the direct summation of graphs.
Take the Lagrangian of Eq. (1.1) and shift the fields as in equation (3.32). After some algebra we find

the new Lagrangian Z(m, o) to be

g( o) 1(s )2 1(s )2 1 2 0(4) 10(4) (P o2) (0) g )0(4) o2
6N 5&N' 6N ' 10N

2 ~0&0& )o&0&
&&)O

860&0& O3 '(0)
&

}0&4'& (p 2}O !o&4 (p 2}2O
~ ~

~

6N 5!N 6!N' 6N ' 10K 5!N'

(a+ '} - "' (e+ ')'
5! N 4!N 10N 6t1P

Define renormalized parameters by,

m' =m '+6m2 A. =A,D+5A, , vj =go ~ (B2)

We have anticipated the absence of p' coupling renormalization, and 5m' and 5A. will be specified later.
With these substitutions and using Eqs. (3.35) and (3.41) for (P) and 7, the Lagrangian takes the form

Z(x, o) =-(s„v)'+ ,(s„c)'+—, 5m—'+ (v'+o') —(X —5z)
6

+ 5m'+
6 (p)o

(0&'o'

l(4) o3 (g 5g) (4~ (3t2 +o2)o 1(4) (22 +c2)2o 1(4) (22 ~o2)o2
6!N 6N 5!PP

+ 5'
(Z —5A)(v'+c')' —,~(x'+o')' .! (B3)
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Note that the counterterms contribute to the 0' one-
point function and the m mass. Both of these quan-
tities must vanish. The a one-point function must
vanish because we have shifted the field to ensure
just this. So we may ignore graphs with a transi-
tions to the vacuum in our calculations below.
The m mass must vanish because these fields cor-
respond to the Goldstone bosons. W'e will not ig-
nore the contribution of the counterterms to the
m mass because this term is needed to cancel
other contributions explicitly.

Those Feynman rules which we shall need from
this Lagrangian are shown in Fig. 8 for Minkowski
momentum. The substitution p'- -P' will give the
Feynman rules for Euclidean momentum, which
we use throughout this appendix.

By the same arguments as in Sec. IIB the only
graphs which contribute to the o propagator to
leading order in 1/N are bubble trees with two
external 0 lines. As a first step in the summation
of these graphs we define a quantity S to be the
sum of all vacuum bubble trees with one zero-
momentum insertion. We can write S in the form
of an implicit expansion, shown graphically in
Fig. 9. A perusal of this figure will convince the
reader that this expansion includes all graphs in
S. With the convention that there is a factor of
I/N at the insertion, which makes S of order 1,

X- 5Z qS'
5A(p)' 3 30

6N

5~(y)'
6N

(84)

Summing this series and inserting a momentum
cutoff,

k d 'k, XS qS' 5l}S 5}}.(P)'
3 s (2w)' 3 30 3 6N

This integral is familiar from Sec ~ II

(85)

II A } LS qS' }}AS IIX(P}',)'~'
2 2m' 4m 3 30 3 6N

™
(86)

We now define a renormalized quantity S which
we will show to be finite,

and using the Feynman rules of Fig. 8, we obtain

Bore cr propagator [p'-'X&4+ + sm' + sx&49]
'5N 2N

SA
4m' (87)

B«6 m prpagator i Sab

[o'+ am*+ ak&ed]
6N

a
& ( X-Sr%)&f&

(Sab Scd + permutations)
[5N~

Choose the counterterms to be the same as in Sec
Secs. II and III, but expressed in terms of renor-
malized parameters (hence the minus sign),

5 628 5t 2H
(88)

—8 & —& I ( Jab /cd + permutatlons)
5N

a

( 4b ~cd 3ef + permutatioas)
e c

d

[ v&4»' + (X-s} ) ] 5,b
]5N

a

I
2 ( ~abcd + permutations)i~

d

FIG. 8. Relevant Feynman rules for S(7r, &)

(Minkows-

kii momentum) .
FIG. 9. The expansion of the vacuum bubble trees of

$(7r, o) with one zero-momentum insertion.
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With these substitutions Eq. (B6) becomes

s (ts qs*j'&'
(B9)

which shows that S is finite. Now the m propagator
to leading order in 1/N is

(Blo)

where Z,* in the proper m two-point function,
shown graphically in Fig. 10. Algebraically,

i (X 5X-) i qS'
3 30

FIG. 11. The proper & two-point function, Z~(P). (a)
The chain graphs. (b) The S insertions.

Therefore, the graphs of Fig. 11(a) give

—i/p' . (»2)
The proper o two-point function, Z,*(p}, is shown
graphically in Figs. 11(a) and ll(b). Along the
chain of bubbles in Fig. 11(a) the two subgraphs
of Fig. 12(a) sum to an effective vertex,

It is easy to see from these equations that the m

mass is simply the quantity under the square root
in Eq. (B9). This must vanish as we have already
remarked, which implies that S =0. It is sufficient
to note that this is a solution of Eq. (B9). This
means that in summing the chains of bubbles which
which contribute to the proper o two-point function
in Fig. 11(a), we can use the massless m propaga-
tor,

d'k 1

(2 )' k'(k+P}'

ix(y)' zh X K

3 48p 48p
(B17)

Recalling the definition of m', in Eq. (3.55), we
conclude that the chain graphs give

iZ,*(P) = — Xh 1+2zm' Xl

+other terms .

The integral appeared in Sec. III and its value is
1/8P, so the above series sums to

1qgd$1
3 2 15&.. (2v)' k' (B13) The remaining graphs in Z,*(P), of Fig. 11(b},

give us the "other terms, "

Here, as elsewhere, the factor of —,
' is due to the

additional twofold symmetry of the two-bubble
graph. The integral is just A/2v', so using the
value of 5X from Eq. (B8), the effective vertex is

other terms= g 15 +
3

S 15S 2
. q(y)' X-5Z iq, 1

(B19)

—iX/3. (B14) Now, since S =0, we have S =Ah/4n'; and using
Eq. (B2) the "other terms" become

Similarly, at the ends of the chain the two sub-
graphs of Fig. 12(b) sum to an effective vertex, other terms = —i 5m'+ 5~(y '

2N
(B20)

X- 5Z 1 r)(y) A 1 —iX(y)
2 15 2v' J 3

(»5)

Therefore, the proper o two-point function to lead-

(b)

FIG. 10. The proper ~ two-point function, Z„*. The
bare inverse ~ propagator is not included and there are
no propagators on external lines.

FIG, 12. For calculation of effective vertices. (a) In
the chain. (b) At the ends of the chain.
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ing order in I/N is

m'XII Xh -', 5~(y)'
Z, (P) ——

24
+

4&
—5m—

(B21)

And the o propagator to leading order in 1jN is G..(P) =

— (':,")
A.S

p p + p 2@i
(B22)

The 5m', 5X terms cancel, and using Eq. (2.55)
again,

(B22)
This is the result of Sec. III, which completes the
independent derivation of the o propagator.
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