
PH YS IC AL RE VI E W D VOL UME 12, NUMBER 8 15 OCTOBER 1975

Exact localized solutions of two-dimensional field theories of m~~sive fermions
with Fermi interactions*
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The classical equations of motion for field theories of massive fermions with Fermi interactions in one space
and one time dimension are investigated. It is shown that they all possess exact stationary solutions which are
localized, due to the vanishing of the stress tensor, a feature for this type of solutions only in two dimensions.
The explicit forms of these solutions are presented. More importantly, exact solutions for the bound state of N
localized massive fermions with scalar or vector Fermi interactions are also found.

I. INTRODUCTION

It has long been known that nonlinear field equa-
tions possess classical solutions having particle-
like properties. ' Recently, there has been wide
interest in such explicit finite-energy solutions
which might represent the classical approxima-
tion to extended particles. The question of quantiz-
ing these solutions' is of particular importance in
trying to construct quantum theories of extended
hadrons.

Here we investigate the classical equations of
motion for field theories of massive fermions
with Fermi interactions in one space and one
time dimension. We find that they all possess
exact localized solutions. In particular, we find
an exact solution for the bound state of N local-
ized fermions in theories such as the massive
Gross-Neveu model. The solution for the phase
between upper and lower components is shown to
be independent of the particular type of interac-
tion. This and a general method of finding the
solution is presented in Sec. G. Exact, explicit
solutions for specific models are worked out in
Sec. III. Then, in Sec. IV, the solution for the
bound state of N localized fermions with scalar
or vector Fermi interaction is presented. Final-
ly, in Sec. V, some relevant points are discussed.

4' ==2LI, 4'=2'.LI LI

We are looking for stationary solutions

4'(x, t) =e 's'p(x).

From (1), the equation of motion is

(ip' —m)4+ —=0,8LI
8+ (3)

and the energy-momentum stress tensor is given
by

Tpv s+yp8v+ tv L

The Hamiltonian density, therefore, is

H= md% + T»,
where

8
T» L + i 4 yy

(4)

In addition

8
Tip = i+yi —O' =Eg

8t

For the stationary solutions, the conservation law
8I'T„,= 0 then becomes

where L, contains all types of Fermi interactions
of the typical form (g'/2)(% i% )' so that one has

II. THE METHOD
d Tip p
dx

d Tip p
dx

(6a)

We will be concerned here with models of ferm-
ions with Fermi interactions in one space and one
time dimension. We are interested in obtaining
exact solutions of such models, which are local-
ized (or confined) in space and other possible in-
teresting properties that such solutions might
possess. We begin by discussing a method toward
such a goal. In general, the Lagrangian for such
models is

L=@(ig' —m)4 +L, ,

leading to

T»:const, T„=const. (6b)

We are looking for localized (confined) solutions
here and, therefore, with the boundary condition
g(+ ~) =0, demanding that the constants in (6b)
vanish, we obtain the following constraints:

(Va)

8
L+igy, —/ =0.
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With (Vb), the Hamiltonian density for the localized
stationary solutions then reads

III. EXACT LOCALIZED SOLUTIONS FOR SCALAR,
VECTOR, AND PSEUDOSCALAR FERMI INTERACTIONS

H=mgf. (7c) A. Scalar interaction

EP~g —n'og/+ Li =0, (8a)

or equivalently

Equation (Va) is easily satisfied by the choice of

y matrices y, =0„ iy, =O„and y, =y,y, =v„and
by requiring g(x} to be real. On the other hand,
Eq. (7b) becomes by virtue of (1)-(3)

The function H(x) as determined by the equations
of motion for g(x) =H (x)[;;„'~e]will now be calculated
First, we will discuss the scalar Fermi interac-
tion, i.e., choose as the interaction Lagrangian
LI = —,'g'(%% )'. From the equation of motion, (3),
we obtain in terms of u and t

—+ mu-g (u —v )u —Eu=02, 2 2

Eg g —mgg+i
~X

(8b)

Equation (Bb) is very interesting because it does
not depend on the particular type of interaction in-
volved. In addition, it assumes a greater signifi-
cance if one realizes that (8b) solves exactly for
the phase between upper and lower components.
In particular, if one defines

du—+ mv -g (u —v )v+Ev=o.2 2 2

dx

In addition, Eq. (8a) gives

ER g' —mRq' cos28 + 2 g'Rq' cos'28 = 0, (10)

t}(x}=

then

=H (x)

d(9

cos8
where the subscript S refers to the type of inter-
action under consideration. Using (9) and (10),
solutions other than the trivial one can be easily
found to be

2 —e ~ » eos 2e)g' cos'2 6

Equation (Sb) turns into a differential equation
solely in terms of 0 which is easily integrable,

2(m-E) 1+o.' tanh'Px
g' cosh'Px(1 —a' tanh'Px)'

i.e.,

d6}—= —E+ mcos26.
dx

The appropriate normalization condition in the
ferm ion-number -equal-one sector is

Performing the simple integration x
=id6/(mcos26 —E} one immediately obtains the
solution which determines the energy eigenvalue of E to be

6(x) = tan '(a tanhpx),
E=

[1 ~ (g2/2}2]1/2

with

m-E
n=, P = (m' -E')'~' .m+E,

In order to see that the exact classical solution
describes a localized state, we calculate the ex-
pectation value of the classical Hamiltonian:

Here one should realize that E & m corresponds
to a confined solution. It is, in fact, remarkable
that the phase 8 does not depend on the interac-
tion, but is solely determined by the parameters
cy and P. A large step is, therefore, taken in the
determination of the exact classical solutions that
have confinement character. It remains now to
determine R(x) which obviously depends on the in-
teraction. To do that, one can use the equation of
motion or, alternatively, Eq. (8a). This will be
dealth with in the next section.

g(H)=m gPdx=, sinh '— (12)

B. Vector interaction

The interaction Lagrangian in this case is L,
= —,'g'(4y„4)'. The equation of motion now becomes

Threefore, for g'-0, (H)-m (free massive fermi-
an). In fact, (H)~ m for all values of g', a conse-
quence in agreement with our expectation.
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—+ mu-g (u +v )u-Eu=0,2 2

dx

,
( )

2(m-E) 1
14)g' cosh'Px(l +a' tanh'Px)

'

Here the normalization condition fgtgdx =1 yields

E =mcos-, g', (15)

which imposes the requirement on the coupling con-
stant g' ~ m so that the spectrum is composed of
positive-energy fermion states. The expectation
value of the classical Hamiltonian in this case
turns out to be

du
dx
—+ m v+g'(u'+ v')v+Ev = 0 .

The equivalent of Eq. (10) here is

ER„' —mR, ' cos2e+-,'g'R, ' = 0.
Again, with (9), the solution is easily determined
to be

restrict ourselves to positive-energy fermion
states, we must reject the solution of Eq. (18).
It appears that positive-energy localized fermion
states do not appear in the solution of the two-di-
mensional fermion model with pseudoscalar self-
interactions. If only for completeness, we record
here the expectation value of the classical Hamil-
toian:

(H) = —m[1+ (2/g2)']'i2 . (2o)

This simply follows from the solutions discussed
in (11), (14), and (18).

D. Other types of interactions

Here we would like to point out that other types
of interaction such as S-P, V-A, or A are all
equivalent with V. In addition, an interesting rela-
tion between the functions R&, Rp, and R„ is the
following:

2+R 2 R 2

(H)=, sin—.2m . g
g 2

Here again, one sees that the spectrum is re-
stricted to (H) ~ m for all possible values of g'
in the range O~g' & n, showing that the exact
solution exhibits "bound" -state behavior.

C. Pseudoscalar interaction

(16)
IV. BOUND STATE OF N LOCALIZED FERMIONS

In this section, we will be concerned with solu-
tions to the massive Gross-Neveu model. In par-
ticular, we will show that there exists an exact
"bound"-state solution of N localized fermions.
The massive Gross-Neveu4 model is described
by the Lagrangian

L=q(ip' —m)q + &g'(~)', (21

The choice of the interaction Lagrangian here
is Lz = ——,'g'(2Tey, efe)'. To obtain the desired solu-
tion, we proceed following the method established
previously. The equations of motion are

dv 2 2—+ mu-2g uv -Eu=0
dx

—+ mv+2g u v+Ev =0.du 2 2

dx

where 4 is the N-component massive fermion
field. We seek again stationary solutions of the
form 212(x, f) =e ' 'tjI(x) within the classical frame-
work established previously. The corresponding
equations that must be solved here are much more
complicated since they involve quartic interactions
among N-fermion fields. Their form, however,
remains almost the same. The equations of motion
read

The constraint equation is
8

iy, ——m g'(gg) 2)';-=Eyog;, (22)

ERp mRp cos2~ + 2g Rp sin'28 = 0 .

Again, with (9) and (17}, the solution for R2'(x) is
easily seen to be

2(m —E) 1+a' tanh'Px
4a2g' sinh'Px (18}

If we follow the normalization procedure estab-
lished, we obtain

[1~ ( 2/2g)2]1/ 2 (19)

In contrast to the previously discussed cases, how-
ever, the energy eigenvalue for the pseudoscalar
Fermi interaction is negative. Therefore, if we

where g; stands for the wave function of the ith
field. In particular, expressing g; in terms of
R; and 8;, where the usual definition

i cos6);

sin 6),-
~li, =R

dR;
m -g R, cos26& R; sin28; .2 2

dx
(23b)

In addition, the constraint equation similar to that

is used, the equations of motion become

dx
2', — cos2e, +2' =g ee,

' os2e, )cos22, , (222I
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in (8b} gives

2

T =EN'0 m—A+ 2
(40}'

=E Q R)' —m QRy cos28)

2 N 2

+—~ B 'cos28
j=l

=0 (24)

The model can also be solved if instead of scalar
interactions as in the Gross-Neveu model one as-
sumes a vector interaction, i.e., Lz = (4 y„+)'
where again, 4 is an N-component field. The so-
lution outlined then still persists, having the same
features as before, except that the function B~ now
becomes B„. That is, the solution and expectation
value of the classical Hamiltonian appropriate
here are, respectively,

y By
WN

'

It is easy to see by simply substituting into Eqs.
(23) and (24) that

8; =8 for all i (29)

R; =R»/v~N,

8 =8
(25)

for all i, where R» and 8 are given in Eqs. (10)
and (11), respectively, is a solution. This by no
means implies that it is a unique solution, but it
is the only solution obtained so far.

It is very interesting to know that this solution
exhibits properties of a "bound" state. In order
to see that we first calculate the energy eigenval-
ue by imposing the normalization condition

(H)=, sin-,'Ng'.

2Nm
(H)» =

2 stnag
o

With the inequality

sin2Ng' & N sin&g' for g' ~ m

we again obtain

(30)

In a similar manner, the expectation value of the
classical total Hamiltonian of a collection of N
fermions each of which interacts only with itself
through a vector Fermi interaction is simply

to obtain

m
[I+(-'g'N) ]'t' ' (26}

Thus the solution in (29) also describes a "bound"
state of N localized fermions.

Following the discussion of Sec. GI, the expecta-
tion value of the classical Hamiltonian is easily
calculated to be

(H)=, sinh '(-,'Ng') . (27)

It is obvious that (H)& ¹n Recall from. the dis-
cussion in Sec. GIA that the expectation value of
the classical Hamiltonian for a single localized
fermion is (H)= (2m/g') sinh '( —,'g'}. So, for any
assembly of N such localized fermions noninter-
acting with each other, the expectation value of
the Hamiltonian is

(H)„=, sinh '(-,'g') . (28)

From the inequality

sinh '(-, g'N) &N sinh '(-,'g'),
valid for finite g', we immediately see that

(H)&(H)».

Thus, the wave function so obtained in Eq. (25) de-
scribes a bound state of N localized fermions.

U. CONCLUDING REMARKS

It should be pointed out that the massless limit
of the localized solutions obtained here does not
exist. We have shown that the phase between up-
per and lower components is independent of inter-
action. This is particularly important in view of
the fact that for E =0 the phase obeys the sine-
Gordon equation as can be easily demonstrated.
It is very interesting to note that the classical
solution for E =0 found in Sec. III for the massive
Thirring model and the solution 4 =48 of the sine-
Gordon equation satisfy the correspondence equa-
tions recently discussed by Coleman. ' We also
found localized solutions of a bound state com-
posed of N fermions for the massive Gross-Neveu
model. This is the first time, to our knowledge,
that such solutions have been discussed.

Recently Dashen, Hasslacher, and Neveu' have
developed a functional method of quantizing classi-
cal particle-like solutions for theories containing
fermion fields. Their method can be applied to
attack the problem of quantizing the solutions pre-
sented here. We plan to deal with this matter and
related problems in a future publication.
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