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Phase shifts due to a nuxture of iong- and short-range potentials
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We show that the generalized or modified %'KB method can be readily applied to a mixture of long- and
short-range potentials. The phase shifts of such a mixed potential are calculated to order h' by using the
solutions of the long-range potential as the bases of the approximation and treating the differences between the
long-range and mixed potential as a WKB perturbation. We demonstrate the method by a simple example
using a Coulomb and inverse-square potential. Comparison of the phase shifts with the exact results shows
excellent agreement. The phase shifts can then be separated into contributions due to the long-range and short-
range potentials plus a contribution due to the mixture or coupling of the potentials. For small angular
momenta, the contribution due to coupling is of the same order of magnitude as the Coulomb contribution,
but rapidly decreases with higher angulai momentum.

I. INTRODUCTION

In recent years, the measurements in scattering
experiments have become more exact. In many
cases, the potential that one encounters consists
of a mixture of long- and short-range potentials.
The conventional WKB treatment cannot be applied
to such a mixed potential. Vollmer' pointed this
out in his WKB treatment of the inversion problem.
In treating mixed potentials of this type, one can
truncate the long-range potential at some finite
distance' or apply a distorted-wave Born approx-
imation. The generalized WKB (GWKB) method
offers another alternative. The attractive feature
of the GWKB method is that it remains valid in
the low-energy region. Since the conventional
WKB approximation is a special case of the gen-
eralized WKB approximation, the GWKB treat-
ment can be readily applied to a greater variety
of problems over a larger range of energies ~

Applying the GWKB method to a pure long-range
potential, one of us' was able to obtain the specific
Coulomb phase shifts to order h' which agreed
with the results given by Rosen and Yennie. How-
ever, no consideration was given to the problem
of long- and short-range potentials. We now ad-
dress ourselves to this problem in order to ex-
tend the usefulness of the GWKB method.

In applying the GWKB method, ' one formulates
a model potential that is qualitatively similar to
the actual potential and whose Schrodinger equa-
tion can be solved exactly. Using the exact solu-
tions of the model as the bases of the approxima-
tion, one can obtain an approximation of the wave
functions for the actual potential. The differences
between the actual and model potential can then
be treated as a WKB perturbation. Since the long-
range potential is dominant at large distances, it
is a logical choice for the model potential. One
then determines the phase-shift difference between

model and actual potential (which in this case con-
sists of a short-range potential plus the long-range
potential). The total phase shift for the mixed
potential can then be obtained by adding the phase
shift of the long-range potential to this difference.
In Sec. II, the GVfKB method is applied to a mixed
potential which is made up of an arbitrary long-
and short-range potential. The approximation to
zeroth and first order in h' along with the phase-
shift connection formula is presented. Using a
Coulomb and inverse-square potential as a simple
example in Sec. III, we calculate the zeroth- and
first-order phase shifts in order to demonstrate
the contribution of the higher-order terms to the
approximation. Comparison of the phase shifts
with the exact results, as presented in Table I,
shows excellent agreement.

The expression for the phase shifts can then be
separated and identified as contributions due to
the Coulomb and inverse-square potentials plus
a contribution due to the mixing or coupling of
the two potentials. The results are presented in
Table II.

II. METHOD OF APPROXIMATION

In general, we wish to solve the radial Schri5-
dinger equation

d' P, '(r), + k, y, (r)=0,

where

q, (r}=re, {r),
P,'(r) = t, (r)

k' ——,[V), (r) + V„(r)] ——.,

~ =~{~+i).
The long-range and short-range potentials are
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TABLE I. Phase shifts due to Cou1omb and inverse-
square potentials. {a) GWKB approximation to zeroth
order in +~, {b) GWKB approximation to first order in
+, {c)exact results as given by Eq. {21). k I, &s.r. y/o,

TABLE II. Contributions to the total phase shifts for
2p.V"/h~=lp and p, ze jk =-1

2 0.250
2 0.250
2 0.250
2 0.250
2 0.250

2+v,"/S~ P E {a) {b) {c)

6
8
10
12

6 1 -1.3831 -1.3380 -1.3398
12 2 -1.2763 -l.2563 -1.2566
20 3 -1.2055 -1.1941 -1.1942
30 4 -1.1515 -1.1442 -1.1442
42 5 -1.1077 -1.1025 -1.1025

1 —0.2189
2 -0.4641
3 -0.6294
4 -0.7538
5 -0.8535
6 -0.9370

-3.1378
-2.4045
-1.9115
-1.5707
-1.3262
-1.1442

-0.4072
—0.2346
-0.1477
-0.0997
-0.0711
-0.0529

1.8602
0.5055
0.2347
0.1323
0.0833
0.0565

4 -0.125
4 -0.125
4 -0 ~ 125
4 -0.125
4 -0.125

4
6
8
lP
12

6 1 -1.7477 -1.6821 -1.6862
12 2 -1.7524 -1.7272 -1.7278
20 3 -1.7724 -1.7589 -1.7591
30 4 -1.7924 -1.7840 -1.7841
42 5 -1.8106 -1.8049 -1.8049

10 1 -0.0423
2 -0.0923
3 -0.1256
4 -0.1506
5 -0.1706
6 -0.1873

-3.1378
-2.4045
-1.9115
-1.5707
-1.3262
-1.1442

-0.0826
-0.0473
-0.0297
-0.0200
-0.0142
-0.0106

1.9527
0.5125
0.2365
0.1328
0.0832
0.0566

2 -0.250
2 -0.250
2 -0.250
2 -0.250
2 -0.250

-8
-10
-12

2 2 1.5316 1.4594
6 3 1.3660 l.3391

12 4 1.2706 1.2564
20 5 1.2028 1.1941
30 6 1.1501 1.1442

1.4641
1.3398
1.2566
1.1942
1.1442

-3.1378
-2.4045
-1.9115
-1.5707
-1.3262
-1.1442

20 1 -0.0212 1.9481
2 -0.0461 0.5141
3 -0.0628 0.2357
4 -0.0753 0.1328
5 -0.0853 0.0832
6 -0.0936 0.0566

4 0.125
4 0.125
4 0.125
4 0.125
4 0.125

-8
-10
-12

2 2

6 3
12 4
20 5
30 6

1.6730 1.6213
1.7075 1.6857
l.7398 1.7277
1.7667 1.7590
1.7894 1.7841

1.6238
1 „6862
1.7278
1.7591
1.7841

-3.1378
-2.4045
-1.9115
-1.5707
-l.3262
-1.1442

30 1 -0.0141 1.9504
2 -0.0308 0.5130
3 -0.0419 0.2363
4 -0.0502 0.1335
5 —0.0569 0.0826
6 -0.0624 0.0561

defined by

limrV, , (r) = 5,
f'~ oo

limrV„(r) =0,
r~~

where 5 is a nonzero constant.
Selecting the long-range potential as the model

potential whose Schrodinger equation can be
solved exactly, we have

(
d' P, '(s)
d, + k, p(s)=0,ds

where

P, (s) = sR, (s),

P,'(s) = t, (s)

2 2P, Gk2 ——V[ (S}——
@2 .f. 2 7

~ = E(t+1},

and the phase shifts, o „, are known. As a special
case, the generalized%KB method reduces to
the conventional %KB me thod when P, (s}= 1.

Now the solution of Eqs. (l) and (3) must be of
the form

q, (r) ~ sin[kr+ f(kr) ——,'sf+5, ],

Q, (s} ~ sin[ks+ f(ks} —&wl+o„],

so that the phase shifts of the model are connected
to the phase shifts of the actual problem by

5, —o„=lim [ks —kr+f(ks) f(kr)], — (5)

To first order in 8', the phase-integral rela-
tionship is given by (See Ref. 6 for details)

which is the phase-shift difference. Equation (5)
is the phase-shift connection formula.

To zeroth order in h', the model is connected
to the actual problem by the phase integrals'

J
S r
P,(s)ds = P,(r)dr, (5)

Sy ]

where s is defined to be a function of r, and s,
and r, are the classical turning points of the model
and actual problem which satisfies the condition
P, (s,) =P,(r,) =0. Therefore,

1im [ks —kr +f(ks) —f(kr) ]
Tw oo

S r
P, I }d - P()dl). (v), '

1 1
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l S

P, (s)ds+ — G(t, )t, '"(s)ds
S S1

(9)

where

P, (r)dr+ — G(t, )t,"'(r)dr, (8)
1

and the primes indicate differentiation. There-
fore,

lim [ks —kr+ f(ks)- f(kr)] = lim P, (s)ds—
r~ oo

1

r P-2 S

p, (r)dr+ — G(t, )t2'l'(s)ds —— G(t, )t, '"(r)dr, (1())
1 S1 1

so that the phase shifts of the actual potential
are given by

5, = a„+lim [ks —kr +f (ks) —f(kr)].

The model equation is given by

d' P,'(v)
d, + k, p, (v)=0,
dv

where

(14)

III. APPLICATION TO A COULOMB AND INVERSE—
SQUARE POTENTIAL

In this section, we choose a Coulomb and in-
verse-square potential as an example. The se-
lection of the inverse-square potential as the
short-range potential was based upon the desir-
ability of presenting a simple example that clearly
illustrates the GWKB method and allows for a
simple verification of the results.

The long-and short-range potentials are then
given by

v=ks,

P,'(v} = t, (v)

2 2'g
1 ————

v v

n = l(l+ 1) .

(15)

The phase shifts for the Coulomb potential are
given by

o, = arg1'(l+ 1+iq)

V„(r)= ze'/r,

v„(r}= V,"/r',
and the Schrodinger equation becomes

=gg(l+1)+ Q „—tan '

(16)

P,'(p)
dpd 2 + k~ qi(P) =0

~

where
p =kr,
P,'(p) = t, (p)

(12)
The classical turning points are given by the

condition P, (v, ) =P, (p, ) =0, so that

v, = q+ (g'+ n)'",

p, = n+ (n'+t))'~,

p, Ze
h k

2 p. Vo"
p

0

n = l(l+ 1) .

1 ——2g p

P P
(13)

and the phase-integral relationship to zeroth order
in ti', given by Eq. (6), can be written as

V v(v' —2rtv —n)'" =(—p' —2rtp —P)'" —,
v, v

p P

and Eq. (7) becomes

V & P+p 1/2 -1 7 1/2 . -1 / 1/2 1/2 Xlim v —p —q ln — =
~2 ln . + I3 sin 2,/2

—n sin . , /2
——{p —n ) .

p g'+~ (q +p) (q'+ n) 2
(17)

To zeroth order in O', Eq. (11) becomes
2

GWKB 1 ~ ~ 1/2 ' -1 ~ 1/2 ' -1:0 + 27) ln 2 + p Sln 2 1/2
—n Sin

'g + Q. ('g +P) (Y7 + Q)

where cr, is given by Eq. {16}.
Substituting Eqs. (13) and (15) into Eq. (9) yields
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3P'(2r)p+P) 3a'(2r)v+ a)
2h (rip+p) ' ' 2K'(riv+a)~ '

so that Eq. (10) becomes

u i r) +P,r., 1 . , rt, r, 1, 1~-p-nl — =~6, + P +8 1/2 s 2 )]/2 ~ + 1/2 sin 2 ]y2
p g +Q 8P jg +pj 8o. + OI)

v (,(, ,(,
)

v 1 1 tl(P —a)
2 16 P'" a'" 24( r'l+P)(rP+ a)

'

The phase shifts to first order in 8' are given by

g GWKB —0 Pl/2 + +1/2 + q ln r r + P]./2 + Sin-1] 1 g 1 n yP 1

8P 8n 2 g +e 8P"' (n'+ P)"'

8a'" (rp+ a)'" 24(r)'+ p)(rp+ a) ' (20)

where o, is given by Eq. (16).
The validity of Eqs. (18) and (20) can be easily

verified by allowing 2p, V,"/)f' to take on integer
values such that

P =,' + l(l+1)

y =-,r)tn, + p +,r, srn

1/2 1 . -1
8al/& (g + )1/2

r) (P —a)
24(q'+ p)(r)'+ a) ' (24)

= I.{L,+1)

I (i+1)(i+2)

I. l(/ —1)

for

2pVO"
(

2l+2
6'

This approach is mainly for convenience so that

6,„.„., =argf'((l+1)+1+iri)+-,'rr. (21)

(22)

where

1/2 1 1/2 1 7T

s.r. 8 1/2 ~
8P 1/2

The results of Eqs. (18), (20), and (21) are pre-
sented in Table I and show excellent agreement.
Comparing the zeroth- and first-order phase
shifts with the exact results shows that inclusion
of the higher-order terms improves the accuracy
of the approximation.

The phase shifts to first order in A', given by
Eq. (20), can be rewritten in the form

and o, is given by Eq. (16). o„can be easily
identified as the short-range contribution to the
phase shift by merely setting g =0 or solving for
the phase shifts due to a pure inverse-square
potential. Since y vanishes when either potential
is "turned off, " e.g. , g =0 or P = +, it can be
lossely interpreted as a coupling term due to the
mixing of the two potentials. Because of the par-
ticular nature of the inverse-square potential,
the phase-shift contribution (cr„) is independent
of energy. In general, the short-range phase-
shift contribution will be energy dependent and
should decrease with higher energy. Because
v„ is independent of energy in this case, a com-
parison can be made between y and O„and the
results are presented in Table II. For small
angular momenta, y is of the same order of
magnitude as a, and cannot be ignored. However,
y decreases rapidly with increasing values of /,

so that

51 —g +0

may prove to be a good approximation for the
phase shifts due to a mixture of long- and short-
range potentials outside the low-energy small- /

region.
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