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Threshold of pion condensation
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The threshold density for pion condensation in neutron matter is determined with a model including nuclear

interactions and the 5 resonance in m-nucleon scattering. Depending on the magnitude of N-6 correlations,

pion condensation can have a threshold as low as 0.1 neutrons/fm' or not occur at all. Applying the model to
nuclear matter, we find that in the absence of N-6 correlations physical pions have a very large effective

mass. With N-5 correlations, these effects are diminished, but pion condensation could still occur at twice

normal nuclear matter density.

I. INTRODUCTION II. STRUCTURE OF THE GREEN'S FUNCTION

Since the work of Sawyer and Scalapino' on the
possibility of a phase transition in neutron matter
to a phase with n' in the ground state, there has
been considerable interest in the details of the
phase transition. ' 8 This interest is due to the
complexity of the physics; neutron star structure
is probably only mildly affected by the presence
or absence of a charged boson condensate. ' Vari-
ous effects have been introduced in previous cal-
culations which have an important influence on

the existence of the condensation. These effects
are (a) nuclear interactions, including correla-
tions, ' (b) m-nucleon S-wave interactions, "(c)
resonant n'-nucleon scattering. "However, none
of the above-referenced calculations have includ-
ed all of these effects in a reliable way.

In this work we attempt to make a realistic cal-
culation of the location of the threshold, including
all of the above effects. In our opinion the most
convenient method for examining the threshold for
phase transitions is with the pion Green's function
for the normal state. Insofar as a pion ean cou-
ple to the other degrees of freedom of the system,
the Green's function contains all the physics nec-
essary to locate the threshold. The various effects
mentioned above ean be precisely defined and ap-
proximately evaluated with diagrammatic pertur-
bation theory.

In the section below, we discuss the structure
of the Green's function and threshold condition, "
since there has been some controversy on this. "
The following section describes the incorporation
of nuclear interactions into the Green's function.
The other effects, (b) and (c), are treated in a
more primitive way, and are discussed with the
results. Finally, we apply the same model to
nuclear matter, and essentially confirm the re-
sults of Barshay, Brown, and Rho. "

In Fig. & we display the analytic structure of the
Green's function for n defined in neutron matter
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FIG. 1. The complex energy plane with the singular-
ities of the pion Green's function displayed.
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where II(k, &u) is a self-energy.
The pole marked A is the m pole. The cut on

the same side of the real axis marked B is pres-
ent only if there are physical states having the
same quantum numbers as the m . There are none
such in the pure neutron gas, but in the actual
matter of neutron stars there are some protons
and we can have a neutron-particle proton-hole
excitation.

The cuts and poles above the real axis corre-
spond to states with the quantum numbers of the
m'. We have depicted the n' itself as C; the spec-
trum of proton-particle neutron-hole states as D,
and a possible collective ~ ' excitation as E.
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III. CALCULATION OF H

The basic graph describing the m-nucleon inter-
action is given in Fig. 2(a), and gives a contribu-
tion to the w self-energy in Eq. (l):

where G is the Green's function for a proton-par-
ticle neutron-hole excitation. The theory of Ref.
1 is obtained by the infinite-mass approximation
for G(0}

G"'(q, (u) = —p/cu, (3)

where p is the density of the neutron matter. Nu-

clear interactions modify G in tmo ways. First,
we use a Hartree-Fock G'o~ instead of (3). Second,
G"' is replaced by the random-phase approxima-
tion (RPA) Green's function, which allows corre-
lations to be treated. Let us first consider G~'} .

Baym and Flowers use a free-particle Green's

Our condition for a phase transition is simply that
the upper-plane singularities penetrate leftward
of the lower-plane singularities. This simply
means that it is energetically favorable to simul-
taneously create an excitation with the n' quantum
numbers together with an excitation of the m

quantum numbers.
The general condition for a phase transition,

that the energy gained by creation of a positive-
charge excitation just exceed the energy lost for
the creation of some negative-charge excitation,
may be easily cast in the Green's function lan-
guage. The minimum energy to create an excita-
tion is given by the leftmost singularity below the
real axis of some Green's function, or the right-
most singularity above the real axis. Our condi-
tion, that these minimum energies appear in the
same Green's function, is clearly sufficient for
pion condensation. It is also satisfactory because
it guarantees that in a model the same nuclear
physics is used for the calculation of the energy
of both excitations.

In our calculations below we shall ignore the

np
' states. The ratio of neutrons to protons is

of the order 10: 1., so this state cannot have a
great effect on the total energy. Also, the Fermi-
gas model may not be appropriate for this dilute

gas of protons; for example, pairing correlations
or clumping into supernuclei (which occurs at the
lowest densities at which we find condensation)
may completely alter their response characteristics.

The condition for the phase transition which we
seek will be that the poles marked A and E meet,
or if there is no pole E, that pole A meet the
branch cut D.

(a}

FIG. 2. The elementary nucleon pole contribution
to the pion self-energy.

function similar to the Lindhard function,

In this work we will use the pn
' Hartree-Foek

Green's function, defined by

(5)

The self-energies e(k) contain the kinetic energy
and a potential energy, as indicated in Fig. 2(b).
The potential is a function of density and the mo-
mentum of the nucleon; me shall calculate these
in terms of integrals over the effective interaction
between nucleons in matter.

This potential can be quite significant for the
condensation question. The symmetry potential
in ordinary nuclei, if extrapolated to neutron mat-
ter, implies that the proton potential is much
deeper than the neutron potential. This makes it
easier to create a pn

' excitation, and thus lowers
the critical density for w condensation. For ex-
ample, Negele" finds for a density of 0.16 fm '
a difference between the average neutron poten-
tial and the proton potential of 77 MeV. However,
our calculations yield proton and neutron poten-
tials which are nearly equal, if second-order ten-
sor effects are neglected. Our actual calculation
of G~o} mill be by numerically performing the in-
tegration in Eq. (5) with a parameterized poten-
tial energy function U(k, p).

The nonpionic nuclear interaction is also im-
portant because the short-range repulsion will
hinder the condensation. "" The same effect in
nuclei weakens the m optical potential. "'"'"
Physically, we understand the effect as follows:
The nucleons mill stay further apart on the aver-
age than in the absence of the potential. There-
fore, the pions have to propagate further off their
mass shell and the condensation is more difficult
to achieve. In our theory, as in Ref. 7, correla-
tions arise from the dynamic effect given by the
diagrams in Figs. 3(b) and 3(c) to be added onto
the basic m exchange, Fig. 3(a). These graphs
represent the exchange of heavy mesons together
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(a) (b) (c)

where && = 300 MeV. Et may be derived by sum-
ming the series of graphs shown in Fig. 5. It con-
tains the nucleon pole (I/a) which we already in-
cluded in the basic theory, Fig. 2.

Thus we write

FIG. 3. Correlation effects modifying the basic pion
Green's function.

with pions. Instead of calculating these explicitly,
let us lump together all interaction effects, ex-
cept the one-pion exchange, into a t matrix, "3„„.
Then these graphs can be included in the n self-
energy by replacing G") by

GRPA G( )(1 1I G(o))-1

Thus, the m self- energy becomes
RPA 2f 21 2GRPA

(6)

This RPA Green's function generates the bubble
sum of graphs illustrated in Fig. 4. To calculate
V„„, we assert that the graphs with multiple me-
son exchanges are well approximated by the static
G -matrix or effective interaction. A calculated G-
matrix interaction would include the one -pion ex-
change (OP E) in the static limit, however. It is only
necessary to subtract out this potential from the
effective interaction

Vcorr = Veff VopE ~

We now turn to the other contributions to the n'

self-energy. The m S-wave repulsion we treat in
the manner of Ref. 8. Below the condensation
point, where n -m interactions are unimportant,
this is

II„=2(ux 219 (MeV)p.

The resonant n -nucleon scattering is well pa-
rameterized by the Chew-Low theory, "having an
amplitude in the 33 channel

8f ply 1 1

2 1 — /„8(1 / ))' (12)

Migdal's expression for 11' (Ref. 4) differs from
Eq. (12) only in that the factor 2 is replaced by —,'.

If we simply add (12) to the (( self-energy, the
model neglects &N corre1ations completely.
Barshay et al."emphasize that the ~ correla-
tions are as important as the NX correlations
in damping the condensation tendency. While the
necessary details of the &N interaction can only
be guessed at, we can make a crude estimate of
the possible effects by scaling the 4N t matrix.
to the XN t matrix. In the quark model, the m

and magnetic p coupling constants are in fact pro-
portional, giving proportional t matrices for the
nucleon and isobar. From the Chew-Low theory,
E(I. (10), the coupling constant for (( in the f(IA

interaction is —, its value in the NN interaction.
Assuming that all N4 t matrices are greater by

this factor, we can combine EIN„„~ and H& to obtain

2f Q 2(G(0) 4- 4 GA)[ 1 11 (G(0) + 4 G6)] 1

(13)

where -G = I/((42s- &0) +-,'/((0((+(d).

IV. NUCLEAR INTERACTION

4 f212 4f2l2
3 (d(1 —CO j(dg) 3 40

4 f 'IP'

3 &s(1 —(d/(dR)

and the contribution to the m self-energy from the
two graphs in Fig. 6 is

4 f20'
3 (0(1 —00/02(2)

' (10)
We now describe the interactions we use to cal-

culate the single-particle potentials U and the par-

+ 4 ~ ~

FIG. 4. Bubble graphs of the RPA Green's function.
FIG. 5. Sum of graphs giving rise to the b resonance

in Chew-Low theory.
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where f (r) is his correlation function and X is the
healing constraint. This is approximately equal
to20

U&(r) = v(r)f (r), r & d

&&(r ) =v(r}, r&d
(15)

ticle-hole interaction 'U, ~~. We consider two mod-
els for the interaction, the first suited for dense
matter. Here the two-body interaction 'U is taken
to be a product of a free nucleon-nucleon poten-
tial, and a correlation function calculated from the
constrained variational theory of Pandhari-
pande, "" The free nucleon-nucleon potential v(r)
is Model III of Ref. 19. This potential has a short-
range soft-core repulsion, common to all partial
waves. The long-range central part depends on
partial waves; we consider four potentials: sin-
glet even 'U„, singlet odd 'U, , triplet even 'U3„
and triplet odd 'U, . In addition, we consider sep-
arately the tensor potential and the singlet-S
potential, which is stronger than the singlet D.

Pandharipande calculates the effective interac-
tion as'

kV +
j sj

FIG. 6. 4-resonance contribution to pion self-energy.

We shall use the interaction in the form (15), with
correlation function f calculated by Pandhari-
pande's method. The G matrix for the effective
interaction is taken as the plane-wave matrix
element of this potential.

A second model was considered which would be
more realistic at low densities. Borysowicz
et al."have calculated coordinate-space poten-
tials which closely fit C matrix elements of the
Reid22 potential in finite nuclei. We compute
plane-wave matrix elements of these potentials
to approximate the G matrix.

The neutron and proton single-particle poten-
tials are given by

2'Ug l odd
Ujk', k j = kJ,Q 4kjkt+k) rjjrj, '

~k j—~k'~rlx
&k pn 0 even

(16a)

43k''
le(&' p) = 2 s p «(2f+1) r'«f j'(Ik -k'Ir}[''0 j(r) +-'1lsk(r}]

0
(16b)

This was fitted by hand to a power-series expansion in k' and p; the fit reproduces the potential quite ac-
curately in the range 0.16~ p ~ 0.8 fm '. The fit with the dense-matter potential is

U~ = [-42.2+ 380(p —0.3)'] + (4.34 + 28.2p —13.95p')k' —(0.55 -0.13p)k',

U„=[-56.6+ 295(p -0.46)~] +27,8ph' (0.16-0.416p)|'I .

(17a)

(17b)

The potential has units MeV, density p has units
fm, and the momentum k has units fm '. The
second-order tensor interaction is not included
here. We have estimated this to be a correction
to the proton energy of --40 MeV, in which case
the difference between proton and neutron poten-
tials is 38 MeV at p =0.16, roughly half of
Negele's result. We will present results both
with and without this term, so the prediction of
any better models can be estimated. There is a
strong k2 dependence in the proton potential, not
found in the neutron potential. This is the well-
known effective mass of the Hartree-Fock (HF)
potential. It makes U~ actually repulsive at large

k', inhibiting the condensation.
The calculation of the particle-hole interaction

is somewhat complicated because it is off-diagonal.
The Green's function carries spin 1 and isospin 1,
which determines the contribution of the different
spin-isospin component of the force by crossing
relations. We express the interaction, in terms
of the momentum of the pion 0, which is the mo-
mentum transfer for the direct part of the interac-
tion, and the momenta p, p' of the neutron holes.
We have

t~...= 1".(&) —1",(Ip -p'I)+ l's (p, p') +1'r(p, p'} —&»„
(18)
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where
2f'k'

OPE i +y2

p' -p -q . p' -p+q

(21)

The next-to-last term is the tensor interaction,
and is given by

with

U' (q) = -4 f r '&r j(qr)['o

(rim�

'(r-)U1
0

directfor
exchange'

The tensor interaction is defined in the usual way,

Vr(r„, (x„(r,) =S„Ur(r). (23)

To get an idea of the importance of correlations,
we list in Table I some matrix elements. Not on-
ly is the effective interaction less attractive than
the one-m exchange potential, it actually has the
opposite sign for low momenta. As a consequence,
G " is much reduced from G", and there may
not exist a collective + ' state with the n' quan-
tum numbers. We also see that the correlation
effect is greater in the lower-density model of
nuclear interactions, as might be expected.

TABLE I. Interaction potential between nucleons in
MeVfm3 with k =1.4 fm ~ and p =0.18.

The first two terms are the direct and exchange
parts of the central interaction, given by

V, (k) = —,'['U, -(k) —11,.(k) +'U, -(k) —'U,, (k)], (19)

&(q) =-'[U, -(q)+U, (0)+U,-(0)+U (e)] (2())

Equation (19) is also given in Ref. 23. The third
term in Eq. (18) is the extra singlet S attraction,
given by

V. RESULTS FOR NEUTRON MATTER

We now calculate the threshold neutron densities
predicted with the various m self-energy terms.
As pointed out by Weise and Brown, ' the correla-
tion effects on G play an important role. We cal-
culate G by representing the Fermi sea on a dis-
crete mesh in momentum space, computing 'U,„„
between states of this mesh, and numerically per-
forming the operations in Eq. (5) and Eq. (6). In
Table II are quoted sample results for G, com-
puted at a density of 0.18 fm ', momentum trans-
fer 1.4 fm ', and energy 100 MeV. The G"" with-
out tensor is close to the model with infinite nu-
cleon mass, O' . The correlations reduce G by
a factor of 2 approximately. This is a greater
quenching than what Weise and Brown' obtained
by a cruder estimation of correlation effects, and
also greater than estimated by Migdal. '

In Table III we exhibit the threshold conditions
for the various different possible models for II.
The simple model has a collective Pn ' state
which meets the n' pole. Not all the models with

a realistic interaction have a collective state, so
the condensation occurs then when the m pole
meets the Pn

' branch cut. Using the realistic
nucleon-nucleon Green's function is of great im-
portance, throwing the condensation to a high den-
sity. The repulsive S-wave interaction further in-
hibits it to the point where it no longer occurs at
reasonable densities. The contribution of the 4
resonance, when calculated by Eq. (12), brings
the condensation point down to less than the den-
sity p, of normal nuclear matter, p, =0.16 fm ' .
Including 4N correlations raises the critical den-
sity but the extent to which it is raised is very
sensitive to the details of the nuclear short-range
correlations. For example, using the dense-mat-
ter model we find the critical density to be slight-
ly above p, as shown in Table III, but using the
effective interaction of the low-density model we

do not find condensation at all. Since the theory
depends so strongly on the AV correlations, we

cannot make any firm conclusions.
In a recent calculation, Backman and Weise"

attempt also to make a realistic assessment of
the possibility of condensation including NN and
Nb, correlations and find that condensation will
occur. However, these authors do not consider

Dense model '
Nuclear model

«Qd +Q8

160

270

UOPE Ucorr

-330 -650 480

-310 -650 590 gHF 6RPA

TABLE II. Particle-hole Green's function in

MeV fm with 4 =1.4 fm, p=0.18, and cu =200 MeV.

' See Ref. 19.
See Ref. 21.

-0.9x 10 -1.11x 10 -0.7x10 3



THRESHOLD OF PION CONDENSATION 2235

TABLE III. Threshold of 7t condensation in neutron matter.

Model

Simple (II &'~)

II RPA

II" + second-order
tensor potential

IIR~A+ JIS II'

IIR~A+IIs +II

IIR~A+ IIs, + II&
+ second-order
tensor potential

IIN~+ Ils „

pcritical (fm )
-3

0.17

0.3

0.22

»0.8

0.10

0.085

&0.225

co~ (MeV)

126

152

100

130

k„(fm ~)

1.0
1.3

1.2

1.7

1.44

1.50

the 8-wave repulsion and use a weaker 'U„„ in the
NN and the Na channels than we use. [Note added
in Proof: In a subsequent calculation the 8-wave
repulsion was included; a critical density of twice
normal nuclear density was found. See S. O.
Hackman and W. Weise, Phys. Lett. 55B, 1 (19'I5)]

VI. APPLICATION TO NUCLEAR MATTER

Further guidance can perhaps be otained by
studying nuclear matter: An optical potential can
be deduced from the dispersion of the poles of the
Green's function, and compared with empirical
optical potentials. To generalize the theory to
nuclear matter, we add a contribution to the self-
energy for the protons, II„(-&o):

ll nuclear matter IIX(~) +IIN ( ~) (24)

since II(-~) describes the v' system interacting
with a proton sea.

In additjon jn the numerical calculation of II
we explicitly excluded states below the Fermi sur-
face, although in principle this is unnecessary,
since violations of the Pauli principle cancel out
of II(m)+II(-&u). The single-particle energies
used in G" "are pure kinetic energies.

TABLE IV. Dispersion of pions in nuclear matter.
The coefficient a in Eq. (26) is tabulated for normal and
twice-normal nuclear matter density.

We calculate numerically the pole of G as a
function of momentum. For low-momentum pions,
only the 4 contribution is important and the model
is very similar to that of Barshay et a/. " To
make the identification with their model, it is on-
ly necessary to set the energy variable at the
pion mass, and choose the 4 coupling constant
G' as

4 f2
Q2

3 4n'' (25)
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The parameter n, which is equal to 1 for free
pions, is given in Table IV for the two most re-
alistic models at nuclear matter density, and at
twice nuclear matter density. We see that for the
case with no/4 correlations, the dispersion is
almost anomalous at normal nuclear matter den-
sity. There is a high density of pionic states
which would surely be observable. a is predicted
to be negative at supranormal densities, and a
condensation would probably occur near twice nor-
mal density. However, inclusion of N4 correla-
tions changes the picture. The dispersion is nor-
mal in nuclear matter, albeit with a large effec-
tive mass. At twice normal nuclear density the
density of states is again quite high and condensa-
tion would probably occur.

Model

JIg+ IIg

IIg~ (Eq. 13}

p =0.16 nuc/fm3

0.1

0.35

p =0.32 nuc/fm3

-0.63

0.035
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