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The astrophysical implications of the light scattering and capture cross sections of a Curzon naked singularity
are discussed. It is found that a Curzon naked singularity possesses a neatly circular capture cross section for
photons of approximately the same size as that of a Schwarzschild black hole of equal mass. This suggests
that a black hole and a naked singularity can produce similar astrophysical effects.

In the past few years considerable effort has
been expended in the study of astrophysical
phenomena associated with black holes. This ef-
fort seems finally to have been vindicated by the
probable identification of these improbable objects
in compact x-ray sources. Naked singularities-
spacetime singularities not hidden behind an event
horizon —represent solutions to the field equations
of general relativity for compact gravitational ob-
jects that are as exotic as black holes. Although
no argument can presently be given for the
astrophysical evolution' of naked singularities,
they should not be a Priori dismissed as unphysi-
cal; some consideration of their observational
properties is worthwhile.

Of particular interest are those effects which
could distinguish a naked singularity from other
compact objects (e.g. , a black hole or a neutron
star). Astrophysical processes involving only the
weak-field region of the geometry would not seem
to be capable of such a distinction because of the
ambiguity of the source (e.g. , a Newtonian multi-
pole field could in principle be constructed to pro-
duce any weak static field). The large-angle scat-
tering of photons offers a greater potential for ob-
servational distinction.

In general the cross sections for large-angle
scattering or capture for a naked singularity will
be very different from that for a black hole. It will
be shown, for instance, that the addition of a quad-
rupole term can enlarge the capture cross section
without bound. Sufficiently contrived naked-singu-
larity geometries can be constructed to have al-
most arbitrarily peculiar properties in this regard.
Perhaps a more astrophysically relevant question
is: Can naked singularities mimic the light de-
flection characteristics of black holes&

To investigate this question we consider the
Weyl-metric, 2 static axially symmetric vacuum
geometries of the form

The function g, which plays somewhat the role of
a Newtonian potential, satisfies
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and the function y is generated from g by
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where P„(x) is a Legendre polynomial and the a„
are arbitrary coefficients. The a, and a2 terms
correspond respectively to Newtonian monopoles
(i.e. , "mass" M as measured by Keplerian orbits)
and quadrupoles. For a finite number of nonzero
a„'s these geometries have singularities which are
not shielded by a nonsingular event horizon and
hence are naked.

To illustrate the possible differences in the scat-
tering of photons by these naked singularities and
black holes consider the etluatorial (8= m/2) tra-
jectories in a "monopole plus quadrupole" field

g(r, 8 = w/2) = -Mr ' —aMr ' .
The two integrals

(6)

The solution for g that could represent the exterior
field of a compact object is

g(r, 8) =-Q r '""~a„P„(cos8),

(ds) = —e'~dt'+e'" ' (dr'+r'd8')

+ e 2~r2 sin2B d P2 .
—= gr-2 sin-26I e2&dQ
dA.

(8)
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(where S and Z are constants and A is an affine
parameter) follow from the static and axial sym-
metries of the Weyl geometry. When these are
substituted into the relation

dx" dx'
dA. dA.

=0 (9)

M
y(r, 8) = —2, sin'8 .2r2 (12)

for photon trajectories, the radial equation

2 dr '
-2e'& =b '-r 'exp(-4Mr '-4uMr ')

d(eA)
(10)

results, where b = g/h is the impact parameter.
The minimum radius to which the photon penetrates
is given by the vanishing of the right side of Eq.
(10). If the right side is positive-definite dr/dA.

cannot vanish and hence there is no turning point;
the photon is captured. The maximum impact
parameter for capture is therefore given by the
minimum of the function r exp(2M/r +2elM /rs}.
For arbitrarily large u this critical impact
parameter is arbitrarily large and hence the
equatorial width of the capture cross section is
arbitrarily large in contrast to, e.g. , a Schwarzs-
child black hole which has a critical value for
b =2WSiV

As a candidate for a Weyl geometry which may
more closely resemble a black hole, a, choice is
the Curzon geometry. 4 This field has only a
"monopole" term (o. = 0} and from the analysis
above has a critical impact parameter in the equa-
torial plane of b = 2 exp(1)M, which is only 4. 6/0

larger than the critical value for a Schwarzschild
black hole. The full Curzon geometry is given by
choosing

34
q(r) =-—,r

and hence

The geometry is regular everywhere with the ex-
ception of the "point" r = 0. The "point" r =0,
t = const corresponds to a 2-surface with infinite
area on which the static Killing vector (8/at ) is
null and represents the event horizon for the
Curzon geometry. ' The curvature invariant
R 8&qB " diverges exponentially as r goes to
0 (except at the poles 8 = 0, & where it goes to 0)
and hence the Curzon singularity is naked.

For the special case of photon trajectories in

the equatorial plane, the calculation of deflection
can be reduced to quadrature. From Eq. (10) we

have that the turning point r;„ is given by

b = r;„exp(2Mr;„'),

and the deflection (change in p) is given by inte-
grating Eq. (8}and Eq. (10},

~t
5(b}= s 2 exp

x —exp -1 (14)

4M
6

For a general null orbit the first integrals given
in Eqs. (7}, (8}, and (9) are not sufficient. Either
a fourth integral must be found (cf. Carter's
integral for the Kerr geometry) or the geodesic
equations must be used to determine the full orbit.
With the usual change of dependent variable
r =Mu ', the elimination Qf the t variable through
Eq. (7), and the change of the independent variable
from X to Q, Eq. (8), the relevant equations for the
trajectory are

For large impact parameters the integral of course
gives the familiar result

~ du dg 2 . 2 d6

d(I}
= (2u' —u)sin'8 e" "" e +(2+u'sin'8) — +(2 cot8+u' sin28) — —+(2u' —u —u'sin'8)

dQ dQ dQ

1 ~ g 2sln28 1 ~D 2 ~Q ~6
df d fII) d fII)

, = —,
' sin28e" "" e ——,

' sin28 — +2usin'8 — —+(2cot8+~u sin28)

(16}

[For circumpolar orbits Q =const, and Eqs. (16)
and (17) are invalid. In this case Eqs. (7) and (9)
and the geodesic equations can be used to derive
equations similar to Eqs. (16) and (17).J

To start the integration of Eqs. {16}and {17}
requires a specification of the initial coordinates

(8„$,) and the first derivatives (du/dQ), and

(d8/dQ)„and these must be related to the incident
angle and impact parameters (be, b8) of the in-
coming photon (see Fig. 1}. At u =u, =0 (r =~) the
geometry is flat and a simple geometric analysis
reveals
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The dependence of the deflection angle on the im-
pact parameters shown in Fig. 2 illustrates that
for (&S'+&S')' 'a 10M the asymptotic formula Eq.
(15) is a good approximation for a general null or-
bit. The (weak field) scattering of light by a Curzon
naked singularity is very similar to scattering by
a Schwarzschild black hole. The interesting result
is the size and shape of the capture cross section
(a strong field effect). The largest critical impact
parameter is for an equatorial orbit with befit

=5.42M, the smallest value is for a circumpolar
orbit with a bcflt =5.10M, a g& difference that
brackets the Schwarzschild black-hole value 5.2M.
The similarity with regard to scattering and cap-
ture of light by the Curzon naked singularity and

the Schwarzschild black hole suggests that at least
certain types of naked singularities if they can be
formed may be difficult to distinguish observa-
tionally from black holes.
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