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An explicit procedure is presented so that from each solution of the coupled Einstein-Maxwell equations for

gravity and source-free electromagnetic fields, one can construct a set of solutions of the coupled Einstein-

Yang-Mills equations for gravity and source-free, unquantized, massless, gauge fields for any gauge group
which has an invariant metric. These solutions show that the Rainich-Misner-Wheeler "already unified field

theory" cannot be extended to massless gauge fields. As an example of the procedure a solution is constructed
which describes the exterior of a rotating black hole which has gauge charges such as isospin and

hypercharge. A curved-space generalization of the Wu-Yang solution is shown to be a special case except
written in a different gauge, Such black-hole solutions with massless gauge fields question %'heeler's "black
holes have no hair" conjecture.

I. INTRODUCTION

This paper discusses some solutions of the cou-
pled Einstein-Yang-Mills (EYM} equations for
gravity and source-free unquantized massless
gauge fields.

It should be emphasized that the gauge fields
considered here are not just those for the gauge

group SO(3} as originally considered by Yang and

Mills. ' Rather, they can be the gauge fields for
any Lie group which has an invariant group met-
ric, ' including all the gauge groups considered by
particle theorists in recent attempts to unify the
electromagnetic, weak, and possibly strong inter-
actions. "The gauge fields are then the vector
mesons which mediate the interactions, and the

gauge charges are the conserved quantities like
isospin and hypercharge derived by applying
Noether's theorem to the gauge symmetries. Sec-
tion II reviews the derivation of the EYM equations
and the special case of the Einstein-Maxwell (EM}
equations.

Section III presents an explicit procedure so that
from each solution of the EM equations one can
quite easily construct a set of solutions of the EYM
equations. These "linear solutions"' have been
known to some experts, but to my knowledge have

not appeared in the literature. Their physical
significance is discussed in Sec. IV. They also
demonstrate that the Rainich-Misner-Wheeler
"already unified field theory"' cannot be extended
to massless gauge fields as discussed in Sec. V.

As an example, a class of solutions is presented
in Sec. VI which describes the exterior of a rotat-
ing black hole which has gauge charges instead of
or in addition to electric charge. Special cases of
these solutions have been found independently by
other researchers. ' In particular a curved-space
generalization of one of the Wu- Yang solutions for
the gauge group SO(3} is shown in Sec. VII to be a

II. FIELD EQUATIONS

Consider an N-parameter Lie group G with struc-
ture constants c „.Assume the group has an in-
variant group metric' y~, . This invariance of the
group metric under the action of infinitesimal
group elements implies c'~,„=z~, c',„ is totally anti-
symmetric. The gauge potentials are A~„and the
gauge fields are

Then the gravity and gauge field action can be
chosen as

'll g g yp h. y p ~ )
4 (2)

where R is the scalar curvature. Variation ot the

action with respect to the spacetime metric g„v
yields the Einstein equations

GVv 8&T lfv

where the gauge stress-energy tensor is

special case. At first glance, the Wu- Yang solu-
tion appears horribly nonlinear because of mixing
between the space indices and the gauge group in-
dices. However, a gauge transformation is pres-
ented which transforms the Wu- Yang solution into
a linear gauge. This same transformation also
works in flat space.

The black-hole solutions with massless gauge
fields provide an exception to Wheeler's "black
holes have no hair" conjecture, ' as discussed in
Sec. VIII. Spontaneous-symmetry-breaking scalar
fields' are also an exception. It is hoped that it
will be possible to generalize the Higgs mechanism'
to curved space to produce black-hole solutions
with massive gauge fields. Finally, the Israel-
Carter black-hole uniqueness conjecture' is gener-
alized to the EYM equations.
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Variation of the action with respect to the gauge
potentials A~„yields the Yang-Mills equations

(4)

(5)

where *E~ is the spacetime dual of E~, and where
the magnetic gauge currents carried by the gauge
fields are

g„,
" = c'„A'„(*F)""/4w.

Here j~ and j„~ are called the electric and mag-
netic gauge currents because they appear in the
Yang-Mills equations where the electric and mag-
netic electromagnetic currents would appear in
Maxwell's equations.

In the electromagnetic case the gauge group is
the 1-parameter group U(l'). The only structure
constant is c'~=0 and the invariant group metric
is y,p 1 The electromagnetic potential is A'„and
the electromagnetic field is

where the electric gauge currents carried by the
gauge fields are

jo" = co~A" F, ~/4s

Another interesting identity, "which can be de-
rived using the symmetry of the spacetime connec-
tion and then the definition (1) of the fields, is

gP pP~0 (16)

I will show that g&, and A~& are a solution of the
EYM equations (3) and (5). To see this, first com-
pute the gauge fields. Substitute (16) into (1) and
use (9) and the antisymmetry of co,„ in q and r:

F „„=P(SoA' —s A' )+c',„P'P"A'„A'

(17)

ities in the gravitational field. However, the fol-
lowing theorem presents a class of solutions in
which the nonlinearities in the gauge fields drop
out. '

Theorem. Let G be an ~-parameter Lie group
with an invariant metric y~, . Then for every solu-
tion of the coupled Einstein-source-free-Maxwell
(EM) equations there is an (N-1)-parameter set of
solutions of the coupled Einstein-source-free-
massless-Yang-Mills (EYM) equations for the
gauge group G. In particular" if g„„A&, E &„,
T, "' characterize the EM solution, then g„„A~&
pro yP philo y P& y 0& j I 0 j P 0

characterize the EYM solution, where P~ are N
parameters which satisfy the single constraint

(15)

Proof Let g„.„and Ao& be a solution of the EM
equations (11) and (13). Pick N arbitrary para-
meters P subject only to condition (15). Define
gauge potentials:

So the action (2) reduces to

(& —g~g +Fo F' )d "x
167| KX pp

(9)

(10)

Next compute the gauge stress-energy tensor. Sub-
stitute (17) into (4) and use (15) and (12):

T pv
& pvpa(Fop&Fov lgovFpK&pp )/4&

(18)
Pv

CTP

Einstein's equations become

and

~ojf v 0 (13)

where the electromagnetic stress-energy tensor is
ov (Foo~Fov 1+vFOKAFO )/4

and finally, Maxwell's equations are

Constraint (15) was chosen to make result (18)
possible. Since the gauge and electromagnetic
stress-energy tensors are the same, their Ein-
stein equations (3) and (11) are the same. Since

gv, is a solution of (11), it is also a solution of
(3). Now compute the electric gauge currents of
the gauge fields. Substitute (16) and (17) into (6)
and use the antisymmetry of c,~, in q and &:

c&, P PVAo Fovo/4m

(14) =0 (19)

These are reasonable because the electromagnetic
field itself does not carry electric charge or mag-
netic charge.

III. SOME SOLUTIONS

In general it is difficult to find solutions to the
coupled EYM equations (3) and (5) because of non-
linearities in the gauge fields as well as nonlinear-

On the other hand, to compute the left side of the
Yang-Mills equations (5), differentiate (17) and
use Maxwell's equations (13):

g j1V
p goPV

I

=0. (20)

Equations (19) and (20) show that both sides of the
Yang-Mills equations (5) are zero, so that g„, and
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=0 (21}

The theorem is proved.

IV. PHYSICAL SIGNIFICANCE OF THE SOLUTIONS

A. Solutions are distinct

It might be asked whether these linear' EYM
solutions are physically distinct from the original
EM solution out of which they were derived. After
all, if all gauge fields E~„„appear in the ratios P~,
isn't it possible to pick a new basis in the Lie al-
gebra (gauge space} so that P~ = (1,0, . . . , 0}?
Then the only gauge field present would be E'„,
and the EYM solutions would be identical in form
with the original EM solution. So aren't the new

EYM solutions just the original EM solution de-
scribed in strange variables, i.e. , a case of mis-
taken identity ~

No f First, although the gauge fields in these
linear solutions are present in the ratios P~, a
test particle does not need to have gauge charges
Q in these same ratios. The gauge charges on a
test particle are measured in the laboratory be-
fore we send the particle into the region of space
approximated by the solution. We know whether
the particle is a proton or a neutron, whether it
has electric charge or not, whether it has isospin

1 2
+2 or —&. Since the test particle feels a general-
ization of the Lorentz force,

mu". „u' = y„q'Z'"„u", (22}

it can probe the solution to find out which type of
gauge field is present.

Second, although an over-all rotation of the ba-
sis in gauge space may be irrelevant, the relative
direction between gauge fields and test charges is
significant. The basis cannot be rotated so that
both the fields and charges are proportional to
(1, 0, . . . , 0}. In fact even the over-all rotation
was chosen in the laboratory by convention (up to
quantum-mechanical limitations due to noncom-
mutativity) before the test charges were measured.

Third, if the symmetry is broken then there is
a preferred basis which cannot be rotated at all.
Thus, the linear EYM solutions are physically
distinct from each other and from the original
EM solution.

B. Solutions with sources

Presently under investigation is the problem of
incorporating sources into the solutions. I sus-

A~„are a solution. Finally, compute the magnetic
gauge currents of the gauge fields. Substitute (16)
and (1'I} into (8} and use the antisymmetry of c,~„
in q and &.

j„~"= c,~ Pvf'Ao„JEO) /4w

pect the theorem may be immediately generalized
to produce solutions with sources whose gauge
charges Q' are in the same ratios P~ as the po-
tentials A~„and the gauge fields E~„„. (These
charge ratios will show up in the black-hole solu-
tion (27}, where the gauge charges are Q = P~Q'. }
Such solutions have several physical applications.

One application might be to make the admittedly
poor approximation that a neutron star is all neu-
trons. Then the gauge charges would be propor-
tional to the expectation values of the neutron's
~-spin, U-spin, and V-spin:

(23}

with electric charge and hypercharge proportional
to those of the neutron:

(24}

It might then be expected that the gauge fields
would also be present in these ratios. Protons,
electrons, and other particles with different gauge
charge ratios could then be incorporated as per-
turbations or as test particles.

Another application might be to take initial data
for two widely separated black holes with different
gauge charge ratios, to allow them to approach
each other, and to investigate the nonlinear inter-
action of the gauge fields.

C. Solutions are unquantized

Finally, these solutions are unquantized. This
is not a serious objection because eventual quan-
tum solutions will have to have these solutions
among their classical limits.

V. RAINICH-MISNER-WHEELER "ALREADY
UNIFIED FIELD THEORY"

In 1925 Rainich' showed that the electromagnetic
field is completely determined (up to a constant
called the "complexion" ) either by its stress tensor
or, via Einstein's equations, by the curvature
of a spacetime filled only by electromagnetic ra-
diation. Further, he gave necessary and sufficient,
algebraic and differential conditions on the curva-
ture so that it could describe a spacetime filled
only by electromagnetic radiation. In 1957 Misner
and Wheeler' extended this "already unified field
theory" by pointing out that unquantized mass
could be described as either wormholes or geons
in a multiply connected spacetime which satisfies
Rainich's conditions. Unquantized charge could
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Vl. EXTERIOR SOLUTIONS FOR A ROTATING

BLACK HOLE WITH GAUGE CHARGE

As an application of the theorem, begin with the
Kerr-Newman solution in Boyer-Lindquist coor-
dinates":

ds' = —p 'b [df -a sin'8 d0]

+p ' sin'8[(r'+a')«p —adf]'

+ p2g-ldr2 + p2d6)2

A' = -Q'cosa p 'r[dt —asin'8dg]
—Q sino. ' p

' cos8[(r'+ a')dp —a df],

where

A = r' —2 Mr + cr' + (Q') ',
p' =y'+ o' eos'g

(25)

and M, a, Q', and ~ are constants which may be
interpreted as the mass, angular momentum per
unit mass, electromagnetic charge, and complex-
ion of the black hole. Thus, Q'cos is the electric
charge and Q'sin is the magnetic charge. The
complexion & is usually set equal to zero. This is
a four-parameter solution of the EM equations.

The theorem prescribes how to construct an
/&3)-parameter solution of the EYM equations

then be described as field lines which thread
through the wormholes. Thus, all of classical un-
quantized physics could be described in terms of
the curvature of spacetime.

It had been hoped that the remainder of physics
could also be described in terms of the geometry. '
This requires that physically distinct situations
have distinct geometries. However, the theorem
proved here provides EYM solutions that are geo-
metrically indistinguishable from each other and
from an EM solution. They have the same metrics,
the same stress tensors, the same singularity
structures, and the same gravitational fields. A
test mass which carries no electromagnetic or
gauge charges cannot distinguish whether the geo-
metry was produced by an electromagnetic field or
a gauge field. However, as shown in Sec. IV, the
solutions are physically distinct. Thus, the theo-
rem produces many physically distinct solutions
which all have the same geometry. The already
unified field theory cannot be extended to mass-
less gauge fields. "

However, the solutions considered here are only
for massless gauge fields, and the only observed
or theorized massless gauge meson is the photon.
All others have distinct masses. These distinct
masses may leave distinct footprints on the geo-
metry permitting a new extension of the already
unified field theory. "

(four parameters from the Kerr-Newman solution
and N-1 from the theorem). Thus, pick parame-
ters P~ subject to

QDQq (QO)2

So the new solution can be written as

ds' = p's[d—f asin'—8 dQ]'

+p -' sin'8[(r'+a'}dp -adf]'

+ p2~-lyr2 + p2d6)2

A~ =-Q cos&p 'r[dt -asin'8dp]

-Q sin& p 'cos8[(r'+a')dP —adf],

(26)

where

6, = r' -2M&+ a'+ y~, Q~Q',

p' =&'+ a' cos'~,

and M, a, Q, and o.' are constants which may be
interpreted as the mass, angular momentum per
unit mass, gauge charges, and complexion of the
black hole. Thus, Q cosa.' are the electric gauge
charges and Q sino' are the magnetic gauge
charges. Of course an arbitrary position-depen-
dent gauge transformation as well as an arbitrary
coordinate transformation may still be made with-
out producing a new solution. The singularity
structure of the new solutions is the same as that
for the Kerr-Newman solution with the same in-
equalities between M, a, and (Qo)'= y~, Q Q' to
prevent or permit naked singularities. "

VII. WU-YANG SOLUTION

In 1969 Wu and Yang' found three static spher-
ically symmetric solutions of the Yang-Mills
equations in flat space for the gauge group SO(3).
In my units and conventions" the structure con-
stants are c „=e~„e'/)f, and the invariant group
metric is y~, = 5~, , where e' is a coupling constant
and the gauge group indices p, q, r take the values
1, 2, 3. The first Wu- Yang solution is

A~ =r '~'„qx~dx"Aje',

where the space indices q, f are summed over 1,
2, 3. A curved-space generalization of this solu-
tion has been obtained by several authors. ' At

first glance this solution appears nonlinear' be-
cause & & mixes gauge indices with space indices
and because quantities such as j~" are nonzero.
However, it is in fact linear, but expressed in a

(15)

Then d&' and A~=P~i4' are a solution of the EYM
equations with parameters M, a, Q', &, and (1V-1)
of the P~'s. Replace these parameters by I, a,
o.', and Q =p~Q'. Then constraint (15) yields
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sing cos~ cosset) sin~ cosset)

-cosQ cos~ sinft) sin~ sing (28)

-sin8 cos |II

The result is

y-'~dt '+ y' sin'gdy'+ y2~ -~~2+ y2dg2

A' = (sin& cose cosP dP + sing d8) fi/e',

A' = (sin& cose sing dP —cosP de)A/e',

A' = -sin'e dQff/e',

where

g = r' —2Mr + (8/e')',

(29)

and M is the mass of the black hole. Finally,
transform to rectangular coordinates producing
the curved-space Wu- Yang solution. This same
transformation also works in flat space.

A word of caution'. It is not easy to tell when
two solutions of the EYM equations are identical
or when one solution is really linear. The fields
I" „, are not gauge invariant; they are only gauge
covariant. Further, the potentials A~& and the
currents j~" and j»" are not even gauge covariant.
For example, for the Wu-Yang solution in their
choice of gauge j~"e0 and j»" 0, but in the linear
gauge j~ = j» =0. Thus, one must be careful.P

VIII. BLACK-HOLE CONJECTURES

Wheeler' has conjectured that "black holes have
no hair" other than mass, angular momentum, and
electric charge. Bekenstein" has proved several
theorems in support of this conjecture, but the
proofs depend on specific Lagrangians. In his
thesis Bekenstein recognizes that the proof does
not work for massless Yang-Mills fields so that
black holes can have gauge charges, but he does
not give an exact solution such as (27). The proof
also does not work for spontaneous-symmetry-
breaking scalar fields which have a Lagrangian

nonlinear gauge.
To obtain the curved-space Wu-Yang solution

from solution (27), choose parameters a= —,'a
(purely magnetic gauge charges); a= 0 (no rotation,
spherical symmetry); Q'= Q'=0, Q' =-@/e' [third
component of isospin is -0/e', i.e. , the isospin of
274(e/e')' protonsj. Then perform a position-
dependent gauge transformation by the SO(3) matrix

like

I.= fiP g (-2 Q'"Q ~ -aa$2-~A/~ r-), (30)

I would like to thank J.M. Nester, C.W. Misner,
B.S. DeWitt, J.Isenberg, R.H. Gowdy, D. R. Brill,
and L. Lindblom for helpful discussions and sug-
gestions. I would especially like to thank S. Deser
for thoughtful comments on an earlier version of
this paper. This work was part of thesis research
at the University of Maryland.

where w&0 and»0. There exists solutions for
this Lagrangian coupled to gravity in which the
geometry is Kerr (except possibly for a cosmo-
logical constant depending on the value of &) and
the scalar field has the constant value s( t&/A-)'~

There may also exist solutions in which the scalar
field is nonconstant.

Massless gauge fields and spontaneous-symme-
try-breaking scalar fields are unphysical when
considered independently. However, at least in
flat space, they may be combined via the Higgs
mechanism' to produce massive gauge fields which
are physical. The problem of generalizing the
Higgs mechanism to curved space is presently un-
der investigation. In the process it may be possi-
ble to bypass Bekenstein's theorem and produce a
black-hole solution with massive gauge fields
whose gauge charges will be real isospin. When
and if this can be done, it will be possible to dis-
tinguish between black holes which were formed
out of neutrons and those which were formed out
of A particles because neutrons and A' particles
have different isospin. This says nothing about
baryon number because none of the present gauge
theories have baryon number as a gauge charge.

A separate question is that of uniqueness. I ex-
tend the Israel-Carter conjecture' to say that the
black-hole solutions (27) are the only solutions of
the EYM equations which are stationary, asympto-
tically flat, and possess nonsingular event hori-
zons of two-sphere topology and whose gauge fields
fall off as 1/r at infinity and are nonsingular on the
horizon. At present, no counterexample is known.

Support for the conjecture comes from a theorem
by Loos" in which he proves that in flat space "all
spherically symmetric gauge fields can by a gauge
transformation be thrown in Coulomb form, for
any gauge group. "
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