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Gravitation field theory in flat space (in the presence of an electomagnetic field) with the most
general stress tensor: Equivalence with Einstein's theory
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Gravitational field equations and equations of motion for charged particles are obtained by an iterative

method, starting from a Lagrangian density in the "unrenormalized" flat space-time. Assuming (a) that the

proper masses and charges of the particles are constant and (b) that the gravitational potential is a tensor (no
scalar component) in the linearized version (first order in the coupling constant f) we obtain, by imposing

consistency to all orders in f, Einstein's theory which is therefore sounder in the field-theoretic approach than

in the usual Riemannian one where there is some arbitrariness (cosmological term, etc). The convergence of
our procedure is based on Deser's method but also includes the presence of electromagnetic fields and

considers in addition to the energy-momentum tensor T &, the most general divergenceless tensor t & depending

on four arbitrary parameters which prove to be no longer observable in the "renormalized" space.

I. INTRODUCTION

Einstein postulated his gravitational equations in
the Riemannian space, with the criterion of maxi-
mum simplicity.

He was, however, doubtful about the possible
addition of the cosmological term ~g ~ whose in-
troduction was strongly claimed by Eddington' on
the basis of the "natural gauge of the world. "
Moreover, Eddington' again showed that two other
alternative equations can be obtained starting from
a variational method and using two other different
invariants besides the usual completely contracted
Riemann tensor R (or, in Eddington's terms, G
=R —4A). In other words, Einstein's theory is not
unique even after choosing the observable space
to be Riemannian and gravitation to be reduced to
purely geometrical terms.

The present paper is mainly aimed at showing
that the field-theoretic approach starting from flat,
unrenormalized, ' pseudo- Euclidean space- time
leads in a sounder way to the Einstein equations
without the cosmological term (i.e. , with A =0).
In other words, one is more surely driven toward
Einstein's theory with A = 0 in the flat-space ap-
proach than in the curved-space approach.

A pure tensor theory (i.e. , with a potential rep-
resented by a. rank-2 tensor) is chosen here on
account of experimental evidence. '

This fact directly excludes the Jordan-Brans-
Dicke theory in Riemannian space; but the flat-
space approach in its complete, iterative form,
to all orders in f, is able to remove also the cos-
mological term and the Eddington arbitrarinesses.
Apparently, in the introduction of the nonlineari-

ties, ' arbitrary parameters appear, ' but it will be
shown that they are unobservable.

Moreover, this unique theory coincides, to
second order, with Einstein's theory. Finally
using the Deser' procedure, in one direct step this
theory is shown to be equivalent to all orders with
Einstein's theory. Actually, with his approach,
Deser' removed one restriction to the important
proof by Wyss. '

Indeed, Wyss showed that the field-theoretic ap-
proach, starting from flat unrenormalized' space,
univocally leads to Einstein's theory if gauge in-
variance (for the tensor potential) is a.ssumed to
all orders in the coupling constant f. Then Deser'
dropped this limitation by introducing the second-
order energy-momentum tensor T ~ obtainable by
a variational principle. The present paper shows
that such an energy-momentum tensor can be im-
plemented by the most general divergenceless
tensor t,8 (still representing an energy-momentum
for free fields and interaction) without changing
the theory. In other words, the results are inde-
pendent of the arbitrary parameters contained in
~ac.

Finally, in addition to the works by Wyss' and
Deser, ' the presence of an electromagnetic field
(with its coupling to the gravitational field) is con-
sidered as well.

II. SECOND-ORDER FIELD EQUATIONS AND EQUATIONS

OF MOTION FOR COUPLED GRAVITATIONAL AND

ELECTROMAGNETIC FIELDS IN THE FLAT-SPACE

APPROACH

The equations of motion are obtained by a
"bootstrap" procedure. The inconsistency of first-
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order field equations is removed by replacing the
particle stress tensor T',J~in (10) of the preceding
paper by the total stress tensor T"~"' including
gravitational terms. We get"

4~«- 4&+;«)"+ 0; ~«+ s~«(Pg.
'"'

o&-)') =fT'g~" .

If the proper masses of our pointlike particles
are assumed not to be affected by the gravitational
field, the continuity equation is

where m("„,'is the proper mass of the nth particle.
The stress-energy tensor T&&s'" must be (i) sym-

metric, and (ii) such that fdV, T ~' =0 gives (2)
and the first-order equations of motion as given by
(10}of Ref. 9. A particular tensor T,s is given by
(13) of Ref. 9. But it is not unique, since it can be
implemented by the most general divergenceless
tensor f

& given by Eq. (27} of Ref. 6, containing
five arbitrary parameters A, B, C, D, and E:
But E must be zero if our theory is Lagrangian. "
Consequently, we have

Dm & '/ds = 0(n) (2)

T."8"= T.&+&l4;.s&)
+ &&;.&(;&- «.&(4;.0'"+ &ll»"")j

~- &&;n«+ &~«;.0'"+ &~«&»' &.&~;«)&' —&;&~&«).
'" —&.&~&)';6)"+ ~«(&t'u. '""&+ )'&, "r&'"+0~ 0r'")1

+ C [g»...q""+ y», .P"".,—a.,(4».„&t"""+2g""g .„'- P""g;ri)1

+Dier&a&I'«)&
'

~r&a~;«) + ~ar;r~a
'

~r&a;«)& ~

~rr. &n'4& —~r&a;«)~;~+ u«( ~ r;~r4 + ~&r' ~ +4&r; 0 ' )]

+ gyyT(p+em) +D y T(p) + g+ C y+ qT(p) C & y»T(p+em) + Dyqw T(p+em) (3)

where T'~~" ' = T'~~ + T"~ ' with T "~ ' =F „F~"--&a ~F»F», and the particle stress tensor T p~' = T'~~" is
given by (12) of Ref. 9.

To obtain the equations of motion as well as the electromagnetic field equations (modified Maxwell equa-
tions) to second order in the coupling constant f, the Lagrangian densities for particles and interactions
are required with f accuracy. They can be determined by imposing that (1) and (3) are obtained by vary-
ing |t) ~ in the total Lagrangian. With the same procedure as in Ref. 6, we get"

I (P)+ L (em)+L (P+g)+ L (P+em)+ L (em+g) T(P+em)e8& + g, f, T(P)+8

C D 1(2+D)flgaBgP T&P+em)+ + + f2y ~a&&T&r)
4

+ (].—B)f gP~ T &"~~'+ ——+ ———f2$PT & + —'f2P
A 8 1
4 2 4 2 pp oB

+&- ) '~'f dsg8(, A *l,lt'&* — (,)+fr,„r"F",

4fPJ" ~+'"+2f'4i.4;&—;+'"+f'0 0 +'"&""

f'4, iP&..+'" -f'l0"I" .&:+ -f'00+ .+~, -

where in (4} L&r' refers to particles, L" ' to the em field, L&r" ' to'particle interaction with the electro-
magnetic field, L'p'~' to particle interaction with the gravitational field, and I " '" to the interaction be-
tween electromagnetic and gravitational fields. Moreover, as in Ref. 6, e( ), A, and F

& denote the elec-
tric charge of the particle and the electromagnetic potential and field, respectively.

By varying the particle coordinates in (4} and integrating over d'x (as appears in the action integral),
the second-order equations of motion for the nth particle are obtained,
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'e'8' ')t—z„fg-u&rz zzzr+2fgr„z" —(2D+4)f g„rgz" +(1—B)2f'gg„P"+2f g „zuz "&C&„~~+f2 ———+—P„,&I&"'zr
2 )t'u 2 'X 2 ' aV 'X 2

2 8 A 1
+ f2 ——— —gpz„+ fu(D+2)p„„g",z "z'zr —2f 2(g„„z"zr) z„+f2(B —

l)&&&g~p "zezr

r,~&'—+—fe.~;,*"' r'&»+-4&&le.:.*""+f*(e—e+~)r"e.s;.

~ 0 e&f'(e,r,-.*'*"ee,;,*'r&+. r*(e &-e)-re:.'f*e :e r.".*""" (e&

where, for simplicity, the subscript (n) is dropped. By varying the em potential A in (4), the second-or-
der electromagnetic field equations are obtained,

E" .„=7 +f(E" &)&
—2E' g,"+2E g, ). +f [2D&I& g„,E —2Dg, g' E "—4&)&„"&),E"'—(D+l)g,„g'"E"

—2(B —2)g&I&rF '+2(B —2)g(, E"'—(B —2)a/Fr ].„—,
where, in the case of point particles, the electric current density is given by j' = (- a) '~'Z&„&e&„&
&& fds&„&6e(x-z&„&)z&'„&.

Notice that the motion given by (5) can be described as being due to a pure electromagnetic field in a
curved space-time whose metric is given by'"

e g
——

g
—2fr q+f'(2D+4&r „&+ r(2Br—2&er g+f'( —B+-) g e&f'(——8 —e) I&

—Il„'

(6)

III. EQUIVALENCE OF THE CLASS OF THEORIES OBTAINED, WITH EINSTEIN S THEORY

Einstein's equations, in the presence of electromagnetic field, are

fz(T&e&u+ T&em&e)

where the asterisk denotes quantities in the Riemannian space. Equations (8) are here translated" into
flat space-time to second order in f, generalizing the Rosen" procedure by the following rules:

g*8=a»- 2f &)'
&&

z*~=z~
(n) (n) y

Pl(n) m (

e(n) e(n) '

(8)

%e get for the field equations

&&I'.z+ 0; »C, .&; &"+z.z-(tj', '"'-
&))

~W=- f&'"«.z;~'&.r:-z &.&-;z&r-) '2f &'";e(&r&-;z& &.z;r)-
f0'"(0,&.;z&

—4.-z;,)+2f4.""0z,;, 2f4."'u~;, fO—'",.P~;z-
+ s.zf(-24"" 0' +24. 8" 0'"0 - &)"'"-0-+ 0""'0 )+-f'0 T"'+f'4T"'
-y'a, qT'»-2f'q~, T(»+2f'a, q~"T(»+f'q T (»&"

+2f a z&i&
"T&' '+f T r'+ f T'z '+2f gr"F F&+ f g &&F

F'" —f'F„E'P'&& &&.
-

The equations for the electromagnetic field, which in curved Riemannian space are given by F*~~=J*,
become by (9) and (10)

Fru — a+f(Frey 2Feaqr+2Eerya)

+f2( 4 j, qeaFxr+ 4q &I&erEku 4'&)&a Ere + q qaxEru+ 2qyr Fee & yyFre)
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The equations of motion for the test particle, obtainable in the curved space by

(Tw(P) + T8 (em)'(iB —0el' ag

are, translated by (9) and (10}into flat space, for the nth particle

(13)

—rz (1+fg,„z'z")—2fg, zzz —2f'g z$,„z'z"zz+zf'z (p,„z'z"}']= E—zzz+ f(,„Pz."(1+fg~„PP), (14)

where, as in (5), for simplicity the subscript (n) was dropped.
Since the tensor potential is not observable, to describe a theory like that of Sec. II, any other function

g &
biunivocally related to |t z can be chosen.

The expression

A B 1 C D 1
0 ((=4 +f(D+2)4,l((+f('J3 —1)40, +f —————44a +f —————4,.4'"&

(( (15}

transforms the equations as follows:

Eq. (7) - Eq. (9},
Eq. (1)-Eq. (11),
Eq. (6)-Eq. (12),

Eq. (5)-Eq. (14).

The last three transformations for the field equa-
tions and the equations of motion mean that the
class of theories of Sec. II can be described in the
same way as Einstein's theory. The transforma-
tion Eq. (7)-Eq. (9) says that the new potential, by
which the theories of Sec. II are described, is
linked to g*„s exactly as g 8 in Einstein's theory.
This means that the four arbitrary parameters ap-
pearing in the theories of Sec. II are unobservable,
and that such theories are just equal to Einstein's
theory to second order in f.

To prove that such theories converge to Ein-
stein's theory to any order in f, Deser's very
powerful procedure' is used directly, including
the presence of particles and electromagnetic
fields as well. One obtains, to second order, field
equations which are a particular case of (1) [with

T,z given by (3)]. But we showed that the class of
the apparently different theories (differentiated
by the values of the four arbitrary parameters)
corresponds to only one "observable" theory.

Consequently, since one of them converges to
general relativity the whole class of theories does
the same.

IV. CONCLUSIONS

The class of theories of Sec. II was obtained
under the following assumptions: (a) The proper
mass and charges of the particles are independent
of the gravitational field; (b} the gravitational po-
tential is a.ssumed to be a second-rank tensor (with
no scalar component} in the first-order version of
the theory (which is unique}; (c) field equations and

equations of motion are obtainable from a Lagran-
gian density (Dicke's framework'). The various
theories studied here are apparently different from
one another because of four arbitrary parameters.
But, as shown here, they are unobservable and
therefore the arbitrariness is irrelevant (to second
order in f) and the above gravitational theories co-
incide with Einstein's theory. "

Now the Palatini formulation argument deduces,
as shown by Deser, ' the Einstein result to all or-
ders using the stress-energy tensor to second or-
der only (which is the lowest one containing gravi-
tational terms).

Summarizing, the field-theoretic approach start-
ing from flat, unrenormalized space univocally
leads, under assumptions (a), (b}, and (c), to gen-
eral relativity in its simplest form, i.e. , without
the cosmological term. By contrast, in the
curved- space approach, there is no indication
either against or in favor of it.

Finally let us also recall, following Thirring, '
that Einstein's approach does not tell us why the
observable space is Riemannian.

On the contrary, the field-theoretic approach
(1) predicts that gravitation is attractive (since
total energy is positive, in a theory whose poten-
tial is an even-rank tensor, only if equal sources
attract each other); (2) leads automatically to a
Riemannian space-time structure (and thereby de-
fines the standard clocks and rods); (3) constructs
the gravitational theory following the pattern of
well-understood theories (in particular electrody-
namics); and (4) eliminates the cosmological term
(which is quite unnatural in it"} as well as the
Eddington- type ambiguities. '
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