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The deduction of the energy-momentum tensor from a variational principle is clarified in the field-theoretic

approach starting from the unrenormalized flat space-time. The procedure is applied to coupled gravitational

and electromagnetic fields obtaining the relevant, total energy-momentum tensor to second order in the

gravitational coupling constant f.

I. INTRODUCTION

In the field-theoretic approach"' to gravity, the
symmetric stress-energy density T 8 is required.
An elegant method, originally due to Vfeyl' and

successively developed by Trautman, ' obtains T „8
by a variational principle. There are good proofs'
of this method. However, some clarifications,
essential for practical applications, are missing.
The clarifications are emphasized in Sec. II while
in Sec. III the total energy-momentum tensor T '&'

is explicitly obtained for coupled gravitational and

electromagnetic fields, since they are not found

in the literature. Furthermore, the above stress
tensor will be used in the following paper. '

II. VARIATIONAL METHOD TO OBTAIN A SYMMETRIC

ENERGY-MOMENTUM TENSOR

%e start from the well-known variational prin-
ciple

0=5 d'x -a I.' '+L'~'),

where a =det(a 8) is the value of the determinant
of the fundamental metric tensor a 8, L the
Lagrangian density for the matter and the interac-
tion of the latter with the fields (more than one, in

general}, and L I' the Lagrangian density for the
fields and their mutual interactions.

If the matter consists of pointlike particles hav-
ing z coordinates which are particular values of
the current coordinates x, and the fields are, for
example, a vector field A and a tensor field g 8,
it is

line element (coinciding with the proper-time ele-
ment since the light speed is assumed to be unity),
and z =dz "/ds. If A„ is the electromagnetic field
and g 8 the gravitational field, only $„8 couples
with the electromagnet:ic energy-momentum ten-
sor, so that

ds = ao, 8dz dz

the Khalatnikov'-Infeld'-Kalman" equations are
obtained, '

d ~L &L D ~L .8

ds ez az ds az'

(4)

The explicit dependence of (2) on a (( is due to
the fact that the quantities considered as "primi-
tive" are z" (contravariant), A„, and (t( (( (covari-
ant}. The exclusion of z„ implies the presence
of a, s in (2}. This presence, neglected by Traut-
man, ' is necessary only for the particle part of
z (while invariant interaction terms of z with
A and g 8 can be obtained without the use of
a (().

As to the presence of a ~
&

notice that Eq. (3)
must be invariant. To obtain such invariance it
is convenient (as usual} to construct the Lagrangian
by covariant quantities such as A . 8 and g 8.~
(where the semicolons denote covariant differen-
tiations). But our primitive quantities are A„((
and (I(«(where commas denote partial differen-
tiations}. The passage from (I( t(. to g«& implies
the Christoffel symbols containing a ~

Letting z" vary in (I) the equations of motion are
obtained. ' Taking into account that dz are not
free being related by

where A is a scalar function, ds the invariant

where D/ds denotes covariant differentiation.
By varying ((( a (considered as the gravitational

field) in (1) we get"
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BL BI 8L
~|(tas ~kn8;y;y ~kn8;yX;yX

(6)

Here also second-order differentiations are
included since gravitation is nonlinear' and, to
second order in the coupling constants f, $„B.& „
appear in L.

Also the coordinates x can be varied in (1).
This implies variations for z", A„, g 8, a
and a 8. The corresponding variations for L in-
duced by 5z, 5A, 5( B are zero because of (5),
(6), and the field equations for the electromagnetic
(em) field [obtainable by varying A in (1)]. From
the remnant one can obtain' a symmetric tensor"

is taken into account in (5). Such a variation does
not affect (3) since the fields are present every-
where, independently of the test-particle position.
The other variation of a

&
is due to the direct

change of x, and should be present even if z were
artificially maintained as fixed. This variation
affects both (2) and (3), and is accounted for in

(7)
Equations (2} and (3) contain both covariant and

contravariant components of the metric tensor.
It can be shown that both such quantities are to
be assumed, however, with some arbitrariness. "

III. APPLICATION TO COUPLED ELECTROMAGNETIC

AND GRAUITATIONAL FIELDS
5L

ng g nt)

2 a (Lv' a) B-(I,~a)
~a Sa~B Sa "B

such that T &' =0 gives (5).
Note that when x" is varied, a 8 undergoes a

double variation. One is due to the change of z
and affects a B appearing in (2) only: Its effect

(7)

Let us apply the above procedure to find the
energy-momentum tensor (to second order in the
gravitational coupling constant f) for pointlike
particles in gravitational and electromagnetic
fields.

The matter-plus-interaction Lagrangian density
(2) for point particles in (coupled) electromagnetic
and gravitational fields becomes, to first order
in the coupling constant f,

L( m) LQ) + L( int )

m (n)d (n)dz 5 (x —z(„)) (-a B + f B) g 0 )lyB + e(„)Av~a (a) pdz(~)dz (~) )
(8)

where m(„) is the proper mass of the nth particle,
including the electromagnetic self-reaction mass.
Consequently A is the electromagnetic (vector)
potential due to all the other particles but for the
nth considered.

Having in mind the variation to be made, we
write (8) as a function of the "primitive" quanti-
ties z, g 8, and A . For example, this prevents
us from writing 2 z, i.e., the choice of just con-
travariant coordinates z involves the introduction
of the covariant components of the fundamental
metric tensor a B. In this spirit, in (8) ds is ex-
plicitly written as (a Bdz dz B)'~' both when it ap-
pears as the integration variable and in z = dz™/ds.

The Lagrangian density (3) for the gravitational
and electromagnetic fields and their interaction
is explicitly given (to first order in f) by'

L(f) lg gn8;y g gny; 8+ g, &P', a

1
q q; Il+ 1F FBI+le

T(CIII) lxB

where g—= P, and, as usual, Tn&'

Fny Fp 4a a&Fy&F with Fn& =A &. a —A n. 8 ~

Using (5) and (8) and integrating over a volume
containing the nth particle only, ' we have

m „[(I+5((,„'"„)z'„)'(„,—2f4, ']
= -m(„)gqq. „z)'z + e(„)F„Bz . (10)

By (6), (8), and (9) the gravitational field equa-
tions a,re obtained,

ggae q
(a; 8) a+ y, n8+ an&(q~y ~~)

f (T(a)aB+ T (em) aB) (11)

where Zg =—tt}
' and T~ =T~' ey with

T(p) n8y)

(12}
To obtain the total energy-momentum tensor

T'„'B') (for particles, fields, and their interactions),
use is to be made, in (8) and (9), only of the chos-
en "primitive'* quantities z, A, A &, g 8, and

This has already been done in (8), while
in (9) the Christoffel symbols must be explicitly
obtained. Using Eqs. (7), (8), and (9), and taking
into account that ea„),/ea =-a aB), and

Ba, ~/sa, =-a~a zaB~, we finally obtain
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~aa =Tae+flpvTnS +0pn;a(}';8 —2(}'py;(n08)
' +2(p( nks)X'

0 p. ~Ps '- 4p(a0. s)' — (us. )~4
" 4a);pcs" —20us;) 0p'"

—4 usta&
' —4 as; y

0' + 0;(a 4s) p
'" —0;a 0; s

+ans(34;p(} 2(}pa;w4 +(}pv;A + }(; pp4 ) 2fga81 +FayF8

—r'aasFp, FP'+2fg~ Fs&&F"&+2fg"PF, Fps —sf' sFp„F"

fgF-a Fsp fa -sf~, F„F''I+ gga 8F&F~.

The symmetric tensor, given by (13), is the desired total energy-momentum tensor since, by equating
its divergence to zero and using Eqs. (11) and (12), one obtains Eq. (10).
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