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We show that there are no shadowing corrections to certain types of inclusive reactions in nuclei, in the sense

that the results one finds when shadowing corrections are applied are the same as if no corrections are

applied. Among these processes is production of particles at fixed angle. We suggest that this process should

have a linear A dependence at large transverse momentum, in contradiction with experimental data. We
discuss possible resolutions of this difference, and find we cannot explain it in a natural way, suggesting this

process may harbor even more interesting new physics than it has already revealed. We also mention a
possible linear A dependence for the production of high-mass dileptons on nuclei.

I. INTRODUCTION

The question of whether or not there are rescat-
tering corrections of final-state hadronic inter-
actions in inclusive reactions has been of interest
recently. ' Since these arguments are customarily
couched in terms of the parton model, some light can
be shed on the subject by examining other compo-
site models and trying to see, in detail, how this
problem is resolved. In this note, we investigate
inclusive reactions in nuclei as a paradigm case of
the problem of inclusive reactions in composite
systems. We show that when all final-state inter-
actions are taken into account in an optical approx-
imation, the inclusive cross section becomes iden-
tical to the cross section in which no finaI-state in-
teractions occur; this result holds for a wide class
of inclusive processes. This conclusion is natural
in this essentially classical model.

As an example of an application of the formalism,
we discuss the recent Fermilab data on large-p,
inclusive reactions from nuclear targets. ' We
discuss the difficulty of explaining these data by
conventional ideas of nuclear or elementary-part-
icle physics, so that these data constitute an im-
portant problem whose solution is not obvious at
the present time.

We also comment on the production of large mass
dilepton states in nuclear targets.

II ~ SHADOWING IN INCLUSIVE REACTIONS
ON COMPOSITE SYSTEMS

The extension of the Glauber theory to the case
of inclusive reaction on nuclei has been carried
out in Ref. 3. A reaction is visualized as taking
place as follows (see Fig. l): The projectile enters
from the left, and is allowed to scatter elastically
any number of times (including zero) before it
makes its first inelastic collisions at the position
z, (the z axis is taken to be along the beam direc-
tion). At z„an inelastic reaction oc.cure which
excites either the target nucleon or the projectile
(or both) to some state. This excited state then
propagates to the point z„scattering elastically
any number of times. At z„another inelastic ev-
ent occurs, and the process repeats to the point
z, . Clearly, both "shadowing" and/or "final- state
interactions" are present in this way of consider-
ing the process.

In Ref. 3 it was shown that the cross section for
a projectile to produce a given final- state particle
in an inclusive reaction with nucleus A when there
are exactly N inelastic reactions is

oA —Qf (f 2B N, N Do &ne(AF
N 0 inel Nib

perms Np

C2 8x» Ao)-' p(B, z)dz exp -Aa(~" ' p(B, z)dz exp -Ao(~" ' p(B, z)dz
J ~ OO

Here the ith inelastic collision is one in which the
state i goes to the state i+1 0'

p
ls the total in-

elastic cross section for this state on a nucleon,
B is the impact parameter of the scattering state,

and p(B, Z) is the nuclear ground-state density.
Thus, the term on the far right in the integrand
represents the elastic scattering of the projectile
to the point z„ the next term to the left represents
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& 0'j, j+13

i, j +1 i +1 i +1 y2k i+1 i
(2.2)

One may not wish to integrate over either k or x in
the last step. Insofar as the intermediate states
are different from asymptotic hadronic states,
I'j j„is then simply an integrated inelastic cross
section for the transition i -i+1. Depending on the
application, it may label certain quantum numbers
carried by these states. For example, in Ref. 3,
promotion to a state of high strangeness was of
interest, so I'j j „represents an inelastic cross
section with ASW 0. It should be noted that this ex-
pression depends on v'"" rather than 0' ' as one
might naively expect. This is due to the fact that
one is considering an incoherent rather than a co-
herent sum over final nuclear states, as is dis-
cussed in Ref. 3.

Equation (2.1) takes on a, more transparent form
if we assume all inelastic cross sections vj'~" have
a common value,

N 1o"= II (I' /o'"") fd'B[t(B)]—"e
i =1

where t(B) is an optical thickness defined by

(2.3)

the creation of the state "1"and its propagation to
the point z„and so forth. The quantity I «„is
an appropriately integrated inclusive cross section.
For example, we could integrate over transverse
momentum and longitudinal momentum, leaving
I i 1 dependent in principle only on the energy:

A

rr"=I', PN fd'B[t(8[] e-
N=1

To carry out the sum, we note that

d 2B t(B}Ee-t (B &
1

(N —1)!

(2.6)

single collision, then we would interpret the chain
of inelastic collisions in the following way: We
would say that at some particular location, z&, the
state of the projectile was changed. For example,
z,. could be the position at which the large mom-
entum transfer was imparted to the projectile.
The other inelastic scatterings at z„z„etc., are
then "normal" forward going inelastic collisions,
of the type that have been discussed elsewhere4
and occur in small momentum transfer collisions.
We shall discuss below the possibility of several
"special" (e.g. , large-P~) collisions within the
nucleus.

At every location except z, , then, we want to sum
over all possible final states i+1, since we are
not interested in any particular intermediate step
in the chain. In that case, by definition,

—
O inel

jy j+1 PP

so that Eq. (2.3) becomes linear in I'„, where I'„
is now the inclusive cross section for the single
hard collision in the chain.

For the case of an N step chain, the hard colli-
sion can occur on any of the N inelastic sites, so
the actual measured cross section for producing
the final state of interest is

t(B) =Ac[""
/

"p(B,z)de. (2.4) and, interchanging the summation and integration,

If we are interested in one particular final state
(for example, one produced at large p„and if we
have reason to believe that it is produced in a

1.
S = d'Bt B —jt(B

l =0

d BtB (2.7)
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FIG. 1. A typical production process in a nucleus.
The 'X" represent elastic scatterings, and the inelastic
scatterings occur at the vertices labeled "z&", "s2", etc.
Further discussion is given in the text.

Using the definition of t(b) in Eq. (2.4), and the
fact that the density is normalized, we finally
arrive at

0"=I' A1 h (2.8)

as our final result.
Equation (2.8) is precisely the result we would

have obtained had we assumed that the incoming
particle made only one hard collision and no soft
ones (i.e. , if we had assumed that there was no
shadowing). However, the physical picture behind
the result in this case is very different. We have
allowed an arbitrary number of elastic and inelas-
tic collisions in addition to the single hard colli-
sion, but have found a result which is formally eq-
uivalent to the single hard collision alone.

The crucial fact which leads to this result is the
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cancellation in Eq. (2.7) between those terms re-
presenting multiple elastic scattering and explicit
integrated inelastic scattering. This cancellation
is in fact local in z, so that Eq. (2.1) also exhibits
it, as we shall now show in abbreviated form by
generalizing our result to the case where the ele-
mentary cross sections after the hard collision
are different from those before it. In this case,
the expression for o'N would be

I' (1 ) Z' (2 )
A h h
2 tymel gmel

dnBf(B)N8-t &8) (2.12)

where F) (F"'} refers to the first (second} hard
collision. P roceeding as bef ore, we find

IO) I(2)
(Ao ine))&

O inel 0 inel

o„= g F„fd'Bdz, p(B, z } )(F,.T )J
n&f

1 & 1 ~t 1 L

n+f ~N-1
d 8 dz dz pB z pB, z). (2.13)

X—(F T )ne-&BP' rr. "B
2 R )

r, =A p(B z)dz (2.10a)

TR=A p B,z dz.
1

(2.10b)

Carrying out the sum over n and j subject to the
constraint that n+j+1=N, we can retrace the steps
leading to Eq. (2.6} to find

A

,"=B„QNfd'Bfd,p(B,),
N al

X (O inc) 2p y g inc) 2' ))d -)
1 L 2 R

)& e)q)[ —(gine) T +gine) Z' }j,
(2.11)

which, when the sum over N is performed, will
lead directly back to Eq. (2.8).

The only way that a result which is not propor-
tional to A can be obtained in this approach is to
allow more than one hard collision. For future
reference, we present here the derivation of the
double "hard" scattering term, from which the
generalization to any number of "hard" scatterings
can easily be made. As before, we are not requir-
ed to make assumptions on the excitation cross
sections.

The analogous expression to Eq. (2.6) for two
hard collisions, N —2 normal inelastic collisions,
and any number of elastic scatterings is just

(2.9)

where the incoming particle and its excitations
previous to the "hard" collision, characterized by
inelastic cross section all&el, scatter j times to the
left of z„ the position of the hard collision, and the
outgoing states, characterized by o2»el, scatter n
times to the right. We have defined

This is as far as we can take the general prob-
lem, but more insight can be gained by choosing
particular forms for the density. For example,
if we choose

p(B, z) = 2e- (g +B )/R
(Waft)' (2.14)

then the integrals can be evaluated explicitIy to
yield

o) &n)
(A}'2=r, r„4 Z, . (2.15)

If, in addition, we assume thats =BOA' ', then
we see that the double hard scattering term will
increase with A as A'~', in comparison to A' for
the single hard scattering. Clearly, this argument
can be extended to any number of hard scatterings.
For M hard collisions,

gA A (2+N)/3
hl (2.16)

III. LARGE-pi REACTIONS ON NUCLE1

Having studied the general problem, we turn to
the case which first sparked our interest. Recent
experiments, including the experiment of Cronin
et al.2 on nuclear targets, show that inclusive
cross sections for p, & 1 GeVf'c depart dramatically
from the usual exponential fall in p' seen at small
p, and instead behave more like p,—,where nz

depends on the detected particle but is always» 2n

As we shall discuss below, t:his behavior is com-
patible only with nuclear processes in which the
large p state is produced in a single hard collision.
We would then expect this situation to be adequately
described by our normal extension of the Glauber
theory. This, in turn, means that for pn%1 Gep/c,
we expect a cross section of the usual geo-
metrical size-A' ' passing over into an inclusive
cross section-A' as p~ increases into the region
where the power-law falloff becomes dominant.

Cronin et al.' find a strikingly different result.
We can summarize their findings in the following
way: In the reaction
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dE" o -gn(P, y(f, E)dsp H& (3.1)

Figure 2 shows the dependence of n on p, for de-
tected pions. n is significantly greater than 1.0
in the region where power falloff is important.
This qualitative effect persists for all detected
particles, with the "asymptotic" value of n

(see Fig. 2) being 1.1 for pions, 1.3 for protons,
and 1.4 for antiprotons.

Moreover, the form of Eq. (3.1) seems well
established. Figure 3 shows a log-log plot of the
cross section vs A. The three available points are
extremely well fitted by a straight line. If this
experimental result persists, then a power series
in A is of course ruled out.

The discrepancy between the experimental res&lt
and the result predicted by a straightforward ex-
tension of current ideas leads us to suppose that
one of two things is happening. Either (1) there
is something wrong with the basic formalism lead-
ing to Eg. (2.8), or (2) the inputs into the formal-
ism are wrong at large P,. The latter alternative

p+A-H+X,

where A is the nuclear target and H is the mea-
sured hadron at large p„ the invariant cross sec-
tion is of the form

A. Geometrical effects

The Glauber theory is derived under the eikonal
assumption. The apparatus of Cronin et al. ,

'
however, measured particles at 77 mrad in the
laboratory frame (which is the rest frame of the
nucleus). This means that the emerging large-p,
state travels a nonforward path through nuclear
matter on its way out of the nucleus. Could this
introduce a spurious A dependence?

To investigate this question, we considered a
single hard collision process is a uniform spher-
ical nucleus. In this case, for radius R and den-
sity p, we have

T(b) Apo'"" (ft' —b')' '. (3.2)

The geometrical effect is taken into account by
replacing the exponential absorption factor in Eq.
(2.3) by a term

&
—2'(b)& Ap& hr (3.3)

would imply that some interesting new physics is
manifesting itself in the anomalous A dependence.

Clearly, alternative (2) is the more interesting
one. In order to be able to conclude that there is
new physics, however, it will be necessary to
rule out alternative (1). Unfortunately, the only
way to do this is by explicitly checking as many
"uninteresting" alternatives as we can think of.
It is to this task that we now turn, along with some
preliminary discussion of possible new physics.

E —- A"dz
dip

I
~ Ti/ Be

I 4/Be
where Ar is the difference in the actual path length
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FIG. 2. Exponent of A in the process p+A —~+X
at 8*=90' and a bombarding momentum of 300 GeV/c.
Data are from Ref. 2.

FIG. 3. Illustration of power dependence of inclusive
cross section on A, The data, taken from Ref. 2, are
for n- production at p~ =4.58 GeV/c, bombarding energy
300 GeV/c.
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traveled by the large P, state and one that would

have gone straight forward.
It is straightforward geometry to show that for

a single hard collision at z,

fall in t, and multiple scattering terms retain an
exponential behavior.

We must first say that the curve of Fig. 3 is in
fact easily fitted by functions of the form

d3

d'p (3.6)

z
+

(y R2}2i2 (3.4)

where n and Q are the direction cosines of the new

particle direction and B„and 8, are the x and y
components of the impact parameter, respectively.
We have dropped higher-order terms in o. and P
because we are dealing with small angles.

Substituting back into Eq. (2.5} we now find for
the modified nuclear weight

J d2B T(b) exp{—[o'"~~ T(B)(1+B a+B @)])

B. Cross-section difference between preWard-collision

and post-hard-collision states

It is certainly conceivable that the state emitted
at large p, differs in its properties from the norm-
al hadronic state, and specifically in its cross
section. Nonetheless, the expectation of a value of
the index n of unity is independent of the choices of
the parameters which govern the interactions of the
final state, as is clear from Eq. (3.9) and the arg-
ument that follows. Therefore, this effect cannot
give rise to a spurious A dependence.

C. Multiple hard collisions

One of the classical results of the Glauber theory
was the explanation of diffraction bumps in part-
icle-nucleus differential cross sections on the
basis of the fact that at large momentum transfers
(although not nearly as large as those being dis-
cussed here), it is easier for the nucleus to trans-
fer momentum in a series of small bits rather than
all at once. This, in turn, means that at large t,
the multiple scattering terms dominate the cross
section. This result depends on an exponential

7 g exp @mes T B 1+0 0 Q aP

(3.5)

Thus, we see that geometrical effects will come
in only at the level of the scattering angle squared.
This means that it would be a 1% effect in the ex-
periment we are considering, and is not respon-
sible for the A dependence anomaly. Although we
have proved this result only for a uniform density,
we expect that it will hold for any spherically sym-
metrical density.

where the second term represents double hard
collisions, the third three hard collisions, etc.
In fact, only C, and C, are necessary.

However, the P~ dependence of the double scat-
tering term would in principle be wrong. (This
may not be easily observable at present energies. )
If we had a double hard scattering, we would have
a term proportional to

d'k
Q}Ill f2' (3 7)

where p, is the momentum transferred to the final
state, and k is the momentum transferred in the
first collision. We have assumed here that the
large p, cross section falls off as (p,) . The re-
gion of integration over k cannot include 0 =0 and
k =p„as one might expect at first glance. because
it was assumed in the derivation of Eq. 42.8) that
the nucleus was partitioned among those nucleons
on which elastic, ordinary inelastic, and hard col-
lisions took place. A "hard" collision with zero
p, would, by definition, be one of the former types,
and we would therefore be double counting if we
took this region of the integral into account. Sim-
ilarly. if p, =k, then the second collision has zero
P„and the argument repeats itself.

If we exclude the regions ~f2 I
& cp, and ~k -p,

~

«p, then the above integrand is perfectly well be-
haved, and, by dimensional arguments, gives a
result

1

(p }2m —2 ' (3.8)

D. Many-body interactions

Another proposal which has been advanced to ex-
plain the data is that the large-p, particles are the
result of interactions in which two or more nuc-
leons are the effective target, so that the center-
of-mass effect from a heavier target will come

This means that the coefficient of the double hard
scattering term will fall much more quickly with

p, than will the coefficient of the single hard scat-
tering term. Consequently, at sufficiently large
P~, these terms will become negligible, and we
will be back to the prediction of n =1.

The reader shouM note that if the region [ I2(

(kJ fixed, rather than (&(&epj, is chosen, then

P~ behavior is recovered. The choice between
these can in principle be determined by experiment.
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2 2 (N')
kf hf (3.9)

For simplicity, we shall take x„=x for all M.
x may be s-dependent.

It is then straightforward to compute m„, s'"',
E„, etc. , in terms of x and s. Since we are inter-
ested in average transverse momenta (p~) of, say,
detected pions, we compute the momentum of the
excitation, emerging after M collisions at angle
e„and divide this momentum by a, the decay mul-
tiplicity. In general, n= n(m„) (for example, in
the old nova model, ~ a~ logms). Then we would
have

(p', ) = sine(p') = sine —(E„'-m„')'~'.1

In this formula,

(3.10)

into play. In this picture, a particle which is seen
and interpreted as a large-P, event on a single
nucleon is actually the result of a smaller-p, event
on a larger effective target.

There are two ways in which this sort of argu-
ment can be advanced. It might be thought that the
projectile, after suffering the collision through
large p„gains mass in subsequent collisions.
This mechanism for boosting the effective energy
in a collision in a nucleus has been discussed in
detail elsewhere. "We could also postulate the
existence in the nucleus of some sort of coherent
cluster which behaves as a single particle in large
P, collisions. We shall see that the first suggestion
will not explain the data of Cronin et al. , and pre-
sent arguments against the second. We study these
propositions in turn.

'The state which is produced in the hard collision
may have properties which differ from normal
hadronic matter. We mentioned cross-section dif-
ferences in part B. Although assumptions of this
type take us into the realm of new physical ideas,
the data may well warrant such excursions.

As an example, suppose the excitation produced
at large P, picks up mass with successive colli-
sions within the nucleus but that it decays into a
fixed number of pions when it emerges. It is then
conceivable that the fastest detected pions would
come from the state which has undergone the most
collisions within the nucleus. Clearly the larger
A is, the more collisions will occur, so this effect
could introduce an A dependence. As an exercise
of the kind of calculation which might be done, we
shall give results for this particular approach.

We imagine starting with a finite excitation mass
mp and large available energy s af ter the hard co1-
lision. After M collisions, the resulting excita-
tion has mass m„and energy F.„. The energy and
momentum transfer variables in the Mth collision
are s'"' and t'"'. Our key dynamical assumption
will be that m„ is the following function of s:

s
Z = —x"

2m

m =x[sx(( '(1+x)s ~(1+»+» )]'

m, =x~s,
m, =x[sx(1+x)]'".

(3.1 la)

(3.11b)

(3.11c)

(3.11d)

(3.13)

It is instructive to consider first the fixed multi-
plicity term alone. For any fixed (i.e. , s-indepen-
dent) value of x, the term-E„2 dominates the term
-m„', since E„'-s' while m„'-s. Since lnx(0
(x(1}, this term is negative, and rather than
growing with M, (pg in fact decreases with in-
creasing M. On the other hand, if x =O((m2/s)s},
then both E„and m„drop with increasing M, so
that a high A nucleus would favor production of
slow particles.

In order to assess the importance of the second
term in Eq. (3.12}, we ask the straightforward
question: What is the bound on da/dm„which
makes d(p~)/dM positive? We find

du' 4
[E((*in» —ms2 ln(x (1 +x))] .

(3.14)

For fixed x, we can again drop m„ terms compar-
ed to E„terms. The equality point of Eq. (3.14)
gives

lnm~lnx@=exp
lnx 1+x (3.15)

Since lnx'/lnx(1+x) )1, n must grow faster than
m„- ~s, which is not kinematically allowed. The
case x = 0((m'/s)s} similarly does not save the sit-
uation. We must conclude that it is not possible to
explain the data with this approach.

If we cannot think of collisions with several nuc-
leons in a microscopic sense (that is, if we can-
not consider the collisions separately), could not
a genuine many-body interaction have occurred' ?
Of course, this possibility cannot categorically be
ruled out, but a number of points would have to be

Now since M-A' ' so long as cross sections do
not depend strongly on M, we are interested in a
positive slope for (p'„) as a function of M; a pos-
itive slope will then give an increase of n with p, .
Therefore, we compute

d(pi) d(Pi) 1, d a
(P', ) m„lnx(1+x),

Q m~
(3.12}

where the slope term for fixed multiplicity is
g %

[E ' In» -—,'m„' In(»(1+x))] .
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made. First, if nuclei cluster into high "effective
mass" states, why is there no evidence for such
states in normal small t production processes?
Second, the physics of an hadronic state which
could remain coherent up to v t =O (5 GeVlc) is
rather foreign to our present experience. Finally,
if this is indeed the correct solution to the large-P,
problem, it would be necessary that the probability
of hitting a cluster vary with A in just such a way
as to produce a line on a plot such as thai in Fig.
3. Again, while this cannot be ruled out, the pre-
dictive power of such a scheme appears rather
limited.

E. Comments and conclusions

The authors' who have written on the large-p,
problem have proposed some of the solutions we
have discussed in this section. We find, upon
close examination, that these solutions simply will
not work when they are confronted with the precise
data2 of Cronin et al. This means that whatever the
final solution of the problem turns out to be, it will
involve an "interesting'* result, as opposed to the
"uninteresting" alternatives we have been consid-
ering.

process'

p+A - l'/-+X

at large invariant dilepton mass. This is a process
which can be used to produce the new g particles
at proton accelerators.

From our results, we expect that the cross sec-
tion for this process will be

d g
Ed/

=Ac(p+ p - l' l +X)

and not, as has been postulated, '

Z 3

Edp
=A'i'o(P+P - l'l +X) .

Thus, in going from nuclear production data to
cross sections on protons, the extrapolation will
be as A' as opposed to A' '.

Of course, as in the case of large p„ there
might be more surprises in store for us (could we
find A", n&1?), but A" represents our best ex-
pectation at the moment.
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